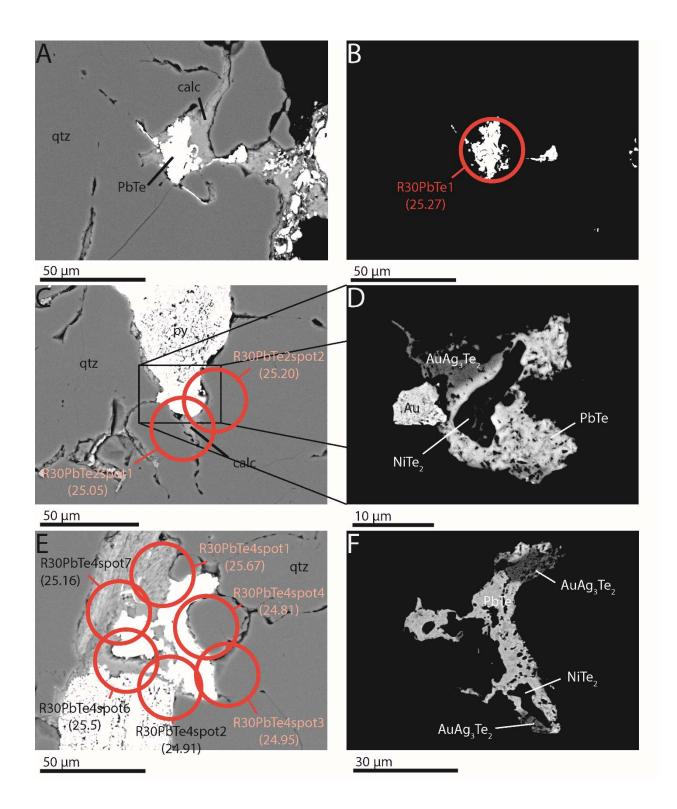
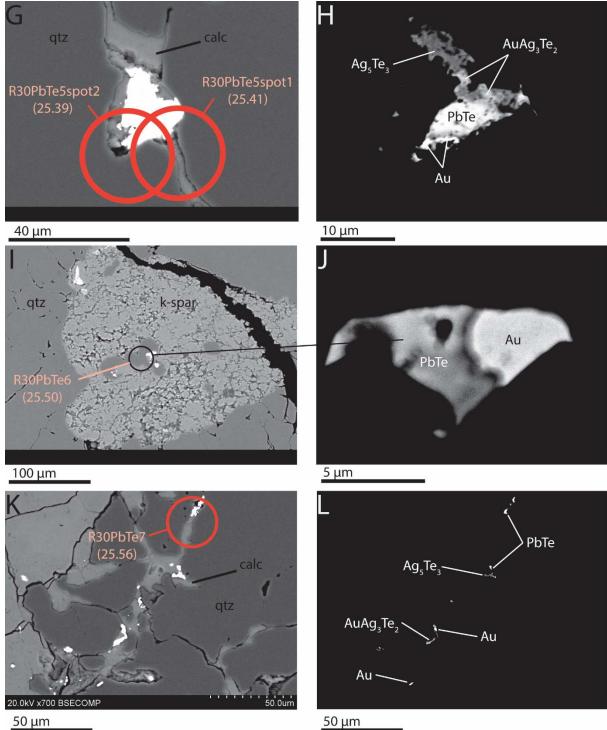
Haroldson, E.L., Beard, B.L., Satkoski, A.M., Brown, P.E., and Johnson, C.M., 2018, Gold remobilization associated with Mississippi Valley–type fluids: A Pb isotope perspective: GSA Bulletin, https://doi.org/10.1130/B31901.1.

DATA REPOSITORY

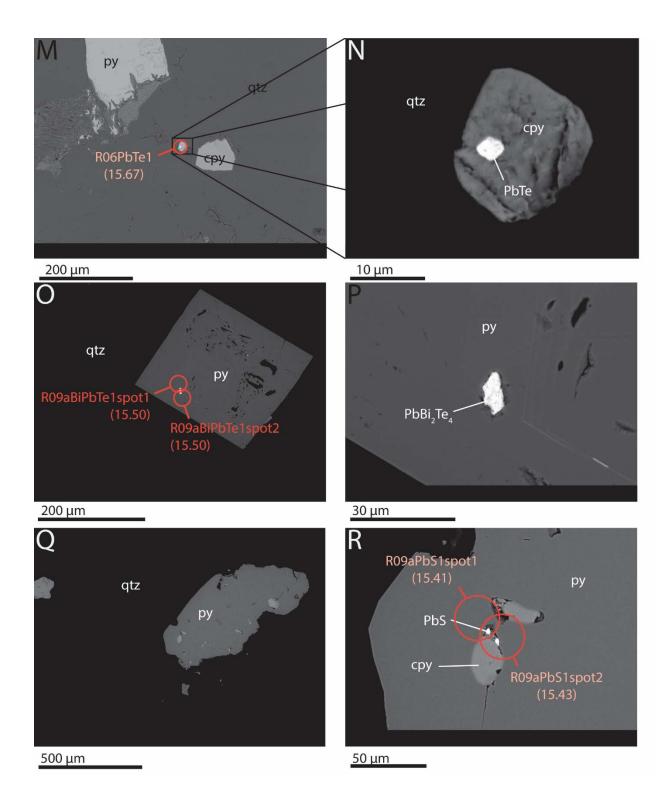
FURTHER METHODOLOGY OF LA-ICP-MS PB ISOTOPE ANALYSIS

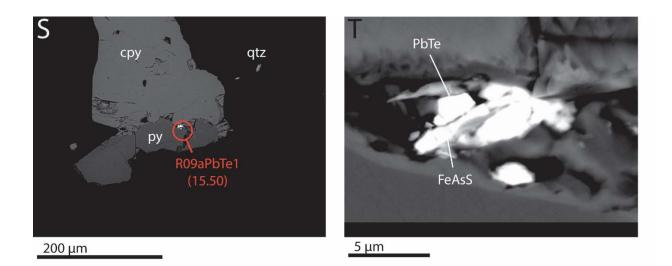
Details of the methods used for Pb isotope analysis by femto second laser ablation (fsLA) are reported below. Helium was used as a carrier gas to transport LA-generated particles out of the HelEx cell to the plasma. Just prior to the ICP torch, Ar from a Cetac Aridus II was added to the LA stream by connecting the sample-out tubing from the Aridus to a glass tee connected to the torch. The aerosol from the laser ablation cell was connected to the part of the tee that was in line with the torch and the sample out from the Aridus was connected to the part of the tee normal to the torch. The flow rate of He added to the arm of the HelEx cell was 0.25 L per minute and the flow rate to the large part of the cell was 0.45 L per minute. The Aridus was operated with a nebulizer pressure of 40 psi, which supplied gas to a Savillex self-aspirating concentric nebulizer that had an uptake rate of ~125µl/minute. The sweep gas of the Aridus was set to 5.4 L per minute. These tuning conditions were established by maximizing the Pb ion signal during ablation of NIST glass SRM610 with the pulse energy of the laser increased to 10 µJ. A higher pulse energy was used because at the low fluence used for the Pb isotope analyses of Pb sulfides and tellurides, the NIST glasses are poorly ablated. Use of the Aridus allowed us to add Tl to the LA-generated particles, which was used to correct for instrumental mass bias. Under these He and Ar gas flow conditions, Pb and Tl solutions aspirated into the mass spectrometer from the Aridus produced an instrument sensitivity of \sim 750 V per ppm for both Pb and Tl. For comparison, the sensitivity of the instrument when it is tuned for maximum sensitivity with only the Aridus connected to the torch is 1250 V/ppm. The lower sensitivity for LA setup is caused because of the He addition and because the Aridus sweep gas is a lower value as compared to when the instrument is setup for only introduction of material from the Aridus.


Laser ablation Pb isotope ratio analyses were collected using the time-resolved analysis feature of the Nu Plasma software and are based on 100 seconds of data collection while firing the laser for 125 shots at a repetition rate of 4.03 Hz. During the ablations a 10 ppb solution of Tl made from NIST SRM-997 was aspirated into the Aridus. All measurements were performed using Faraday collectors fitted with 1×10^{11} ohm resistors. Ion signals were corrected for background by subtracting on-peak zeros that were measured for 60 seconds at the beginning of an analysis session in which 2% HNO₃ was aspirated into the Aridus and the laser was not fired. All Pb isotope ratios were corrected for mass bias using an exponential mass-bias factor based on the measured 205 Tl/²⁰³Tl ratio of Tl that was aspirated into the Aridus and applying that beta value directly to the measured Pb isotope ratios. Isobars of 204 Hg at mass 204 Pb were monitored at mass 202 Hg and 201 Hg and were found to be 0 after on-peak-zero subtraction and thus no Hg correction was applied. The mass-bias-corrected ratios were then normalized to the average Pb isotope composition of NIST SRM-981 that was analyzed at the beginning and end of every


analysis session, assuming Pb isotope ratios for SRM-981 to be equal to those measured by Galer and Abouchami (1998).

To test accuracy of this LA method, a natural mineral standard was developed. The standard used was pyrite from the Rio Tinto mine (Spain) collected from near the abandoned T16 train tunnel. The Rio Tinto pyrite is essentially devoid of Pb (the Pb ion signal during ablation of pyrite was $\sim 5 \times 10^3$ counts per second as measured using ion counters), except for small micron-sized grains of galena that occur as inclusions in pyrite or between pyrite grains (Figure DR-2). To determine the homogeneity of Pb from galena in these pyrite grains, 22 conventional solution analyses of pyrite that weighed between 0.2 and 2 mg were performed. The measured Pb concentration of these different pyrite dissolutions was highly variable (50,000–500 ppm Pb), but the Pb isotope ratios were homogenous. The variable Pb concentrations are interpreted to be a result of the inhomogeneous distribution of galena in the pyrite but the homogenous Pb isotope ratios indicate that these galena crystals all have the same Pb isotope composition. Laser ablation analyses of galena inclusions identified by SEM were interspersed during the LA analysis of the Reef samples. Total Pb ion signals (the sum of ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb and ²⁰⁸Pb voltages) for 21 analyses of this pyrite standard ranged from 66 to 1.4 total Pb volts and the measured Pb isotope ratios match those of the conventional solutions analyses (Table 1). The range in Pb ion signals reflects the relative size of the galena crystals and, because of the Gaussian beam profile of a fs-laser, the position of the laser spot with respect to the measured galena crystal. The reproducibility of these Rio Tinto pyrite/galena standards is 0.12% per atomic mass unit and we believe that the external precision of the Pb isotope ratios of the Reef samples is the same because the Reef samples had the same range in total ion signals as that measured for the Rio Tinto pyrite/galena standard. We highlight that because the area of ablation was larger than the phase of interest and the amount of that phase being ablated at any particular time is variable, the total Pb ion intensity was variable for any giving analysis and thus it is not possible to use ion intensity to infer Pb concentration in the Pb-rich phase.


REFERENCES CITED


Galer S.J.G., Abouchami W., 1998, Practical application of lead triple spiking for correction of instrumental mass discrimination, Mineralogical Magazine, vol 62(A), p.491–492, doi: DOI: 10.1180/minmag.1998.62A.1.260

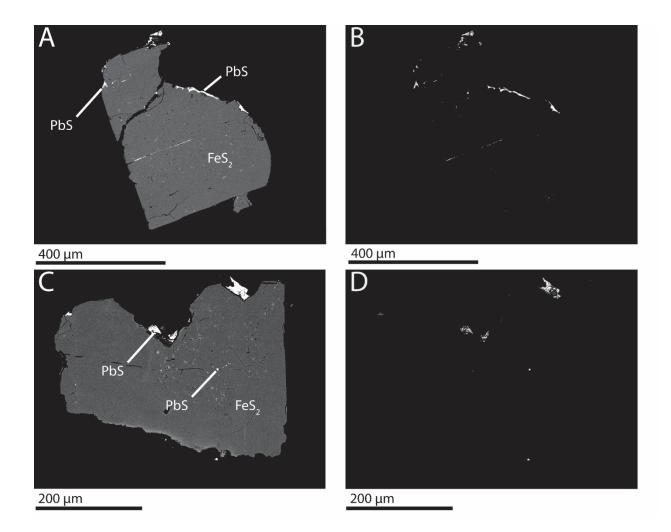


Figure DR-1. (A) – (T) Backscattered electron images of Pb-rich phases analyzed by femtosecond laser ablation and MC-ICP-MS. Left column shows textural relationship with surrounding host, right column images are magnified and have a similar or lowered brightness setting to show intergrowth of various phases. Red circles show location of analyses and each is labeled with the sample number from Table 2 (measured 206 Pb/ 204 Pb isotope ratio is in parentheses).

Figure DR-2. Backscattered electron images of Rio Tinto standard grains mounted in epoxy. Left column shows total grain, right column images have a lowered brightness setting to show the galena on grain boundaries and along fractures.

Sample ID	Total Pb V	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ P
Solution analyses of 0.2–3 mg size	d dissolutions of the	Rio Tinto Pyrite				
Rio Tinto B		18.199	15.635	38.247	0.8591	2.1016
Rio Tinto C		18.199	15.634	38.248	0.8591	2.1017
Rio Tinto D		18.193	15.633	38.239	0.8593	2.1019
5P-187		18.198	15.636	38.249	0.8592	2.1018
5P-187		18.198	15.636	38.248	0.8592	2.1017
5P-188		18.199	15.635	38.246	0.8591	2.1016
5P-188		18.199	15.635	38.246	0.8591	2.1015
5P-189		18.199	15.636	38.247	0.8592	2.1013
5P-189		18.199	15.637	38.249	0.8592	2.1017
5P-190		18.200	15.636	38.249	0.8592	2.1017
5P-190		18.198	15.635	38.249	0.8591	2.1010
5P-191		18.198	15.637	38.248	0.8593	2.1017
5P-191		18.197	15.634	38.248	0.8593	2.1019
5P-191 5P-192		18.194	15.633	38.235	0.8593	2.1018
5P-192 5P-192		18.192	15.633	38.235 38.227	0.8593	
						2.1015
5P-193		18.191	15.633	38.234	0.8593	2.1018
5P-193		18.191	15.634	38.235	0.8594	2.1018
5P-194		18.196	15.637	38.250	0.8593	2.1021
5P-195		18.199	15.636	38.251	0.8592	2.1019
5P-195		18.197	15.635	38.247	0.8592	2.1018
5P-196		18.194	15.636	38.242	0.8594	2.1019
5P-196		18.196	15.637	38.247	0.8594	2.1020
Mean		18.196	15.635	38.244	0.8592	2.1018
2-SD		0.006	0.003	0.013	0.0002	0.0003
Laser ablation analyses of galena	nuggets in the Rio Ti	nto Pyrite				
run 4A	24.23	18.19	15.64	38.23	0.859	2.101
run 4B	16.88	18.21	15.65	38.24	0.859	2.100
run 4C	2.88	18.21	15.65	38.23	0.859	2.100
run 4D	10.12	18.23	15.66	38.25	0.859	2.099
run 4E	9.81	18.18	15.63	38.22	0.859	2.102
Rs01 RTcg2 spot1	66.47	18.18	15.62	38.21	0.859	2.101
Rs01 RTcg2 spot2	33.40	18.18	15.62	38.21	0.859	2.102
R30 RTCG2 spot1	4.78	18.23	15.67	38.22	0.860	2.096
R30 RTCG2 spot2	15.93	18.18	15.63	38.18	0.859	2.099
R30 RTCG2 spot3	1.96	18.18	15.63	38.15	0.859	2.098
R30 RTCG2 spot4	3.18	18.23	15.67	38.19	0.860	2.095
R30 RTCG2 spot5	14.25	18.20	15.65	38.20	0.860	2.100
R30 RTcg5 Tl only spot2	10.73	18.19	15.63	38.21	0.859	2.100
R30 RTcg5 Tl only spot2	2.52	18.16	15.61	38.15	0.859	2.101
R30 RTcg5 Tl only spot3	1.97	18.15	15.59	38.14	0.859	2.101
R30 RTcg5 Tl only spot5	1.09	18.14	15.59	38.10	0.859	2.099
Rs02 RT04 01	7.03	18.26	15.69	38.27	0.859	2.100
Rs02_RT04_01 Rs02_RT07_01	17.97	18.19	15.62	38.27	0.859	2.097
Rs02_RT107_01 Rs02_RT10_01	1.39	18.19	15.62	38.21		2.100
	2.29				0.859	
Rs02_RT10_02		18.26	15.68	38.29	0.859	2.098
Rs02_RT10_03	6.51	18.23	15.66	38.26	0.859	2.099
Mean		18.20	15.64	38.21	0.8593	2.099
2-SD		0.07	0.06	0.10	0.0005	0.004

TABLE DR-1. MEASURED PB ISOTOPE COMPOSITIONS OF RIO TINTO PYRITE STANDARD