GSA Data Repository Item 2018114

1 2 3 4 5	Ancuta, L.D., Zeitler, P.K., Idleman, B.D., and Jordan, B.T., 2018, Whole-rock ⁴⁰ Ar/ ³⁹ Ar geochronology, geochemistry, and stratigraphy of intraplate Cenozoic volcanic rocks, central Mongolia: GSA Bulletin, https://doi.org/10.1130/B31788.1.
6 7 8 9 10	Whole-rock ⁴⁰ Ar/ ³⁹ Ar geochronology, geochemistry, and stratigraphy of intraplate Cenozoic volcanic rocks, Central Mongolia
11 12 13 14	Leonard D. Ancuta ¹ *, Peter K. Zeitler ¹ , Bruce D. Idleman ¹ , Brennan T. Jordan ²
15 16 17 18 19 20 21	¹ Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015, USA ² Department of Earth Sciences, University of South Dakota, Vermillion, SD 57069, USA Supplementary Information
22	
23	⁴⁰ Ar/ ³⁹ Ar Geochronology Methods
24	Samples were processed for whole-rock ⁴⁰ Ar/ ³⁹ Ar geochronology to isolate groundmass material
25	for dating by removing alteration products and phenocrysts. Following crushing in a Rocklabs
26	steal ring mill for <10 seconds, fine material was washed away using distilled water, samples
27	were then dried and sieved and material between 180 and 250 microns was retained. Samples
28	were then washed in a sonic cleaner in 1.5 M nitric acid for 15 minutes to remove alteration
29	products, then for an additional 15 minutes in deionized water. Once dry, magnetic material was
30	removed using a hand magnet prior to picking under a binocular microscope. Clean unaltered
31	groundmass was selected for dating and any visible phenocrysts were removed. Samples that
32	showed a strong reaction with nitric acid or appeared highly altered were not dated. Samples
33	were rated based on their purity and are described in detail in the supplemental Table DR1.

Approximately 1-2 mg of groundmass was picked for total-fusion analyses and 10-20 mg of groundmass was picked for step-heating analyses.

Samples for total-fusion analysis were packaged in aluminum foil, while samples intended for step-heating analysis were packaged in copper foil. Both step-heat and total-fusion samples were loaded into Pyrex tubes along with GA1550 biotite (98.79 Ma; Renne et al., 1998) spaced at known intervals to serve as flux monitors. Calcium and potassium salts were also included in all irradiations to monitor interfering nuclear reactions on Ca and K. Samples were irradiated in several batches: I52 was irradiated at Oregon State University TRIGA reactor, I48, I55 and I57 were irradiated at the McMaster University reactor, and I58 was irradiated at the USGS TRIGA reactor.

Total-fusion analysis was completed on 225 samples, GA1550 flux monitors and salts using a Merchantek CO₂ laser system coupled to an automated extraction line and Argus VI noble gas mass spectrometer. Following irradiation, samples analyzed by total fusion were unpacked and loaded into a copper planchet. The CO₂ laser was then used to completely fuse each 1-2 mg sample. Gas released into the extraction line was cleaned using a cold finger cooled with LN₂, and additional cleanup was completed using two Zr-Al alloy SAES GP 50 getters for five minutes before gas was released into the mass spectrometer for analysis. An additional ten samples underwent step-wise outgassing in a Modifications Ltd. double-vacuum resistance furnace coupled to the mass spectrometer. Analyses of atmospheric argon were used to constrain the mass discrimination of the mass spectrometer. Blanks were analyzed before each sample for the step-heat samples and after every four samples for the laser total-fusion analyses. Optical-

57	grade CaF ₂ and vacuum-fused K ₂ SO ₄ salts irradiated with each irradiation were analyzed to
58	monitor interferences from Ca and K.
59	
60	Analytical data were reduced using ArArCALC v2.5.2 (Koppers, 2002). The analyzed blank
61	values were used to blank-correct all analyses. J parameters were calculated from the total-fusion
62	analysis of the GA-1550 flux monitors. Measurements of the position of each sample relative to
63	flux monitors were used to interpolate a J-parameter for each sample. Ages were then calculated
64	taking into account the calculated J parameter, blank-corrected data, mass discrimination and
65	inference corrections. Plateau ages are reported for the samples that were dated by step-wise
66	outgassing. All ages are reported at the 1σ confidence interval; quoted errors include all
67	contributions from the analyses, uncertainty in the flux-monitor age, and uncertainty in the decay
68	constant.
69	
70	SUPPLEMENTARY REFERENCES
71 72 73	Koppers, A.A.P., 2002, ArArCALC—software for 40Ar/39Ar age calculations: Computers & Geosciences, v. 28, no. 5, p. 605–619, doi: 10.1016/S0098-3004(01)00095-4.
74 75 76	Renne, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T.L., and DePaolo, D.J., 1998, Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating: Chemical Geology, v. 145, no. 1-2, p. 117–152, doi: 10.1016/s0009-2541(97)00159-9.
77	
78 79	TABLE DR4 REFERENCES
80 81 82 83	Barry, T., Saunders, A., Kempton, P., Windley, B., Pringle, M., Dorjnamjaa, D., and Saandar, S., 2003, Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources: Journal of Petrology, v. 44, no. 1, p. 55.
84 85 86	Devyatkin, Y., and Smelov, S., 1980, Position of basalts in the Cenozoic sedimentary sequence of Mongolia: International Geology Review, v. 22, no. 3, p. 307–317, doi: 10.1080/00206818209466888.

87 88 89	Hankard, F., Cogné, JP., Quidelleur, X., Bayasgalan, A., and Lkhagvadorj, P., 2007, Palaeomagnetism and K-Ar dating of Cretaceous basalts from Mongolia: Geophysical Journal International, v. 169, no. 3, p. 898–908, doi: 10.1111/j.1365-246X.2007.03292.x.
90	
91 92	TABLE DR4 REFERENCES CONT.
93 94 95 96	Ivanenko VV, Karpenko MI, Yashina RM, Andreeva ED, Ashihmina NA (1988) New data on potassium-argon ages of basalts in the western slope of the Khubsugul rift (Mongolia) [Novye dannye o kali-argonovom vozraste basaltov zapadnogo borta Khubsugul'skogo rifta (MNR)]. Doklady Akademii Nauk SSSR 300:925–929.
97 98 99 100	Rasskazov, S.V., Logachev, A.N., Brandt, S.I., Brandt, B.S., and Ivanov, A.V., 2003, Late Cenozoic Volcanism in the Baikal Rift System: Evidence for Formation of the Baikal and Khubsugul Basins due to Thermal Impacts on the Lithosphere and Collision-Derived Tectonic Stress: Berliner Paläobiologische Abhandlungen, v. 4, p. 33–48.
101 102	Schlupp, A., 1996, Néotectonique de la Mongolie occidentale analysée a partir de données de terrain, sismologiques et satellitaires
103 104	Tielke, J.A., Kastl, B.C., and Otgonhuu, J., 2007, Genesis and evolution of Tertiary lavas of the central Hangay mountains, Mongolia: Keck Geology Symposium, v. 20, p. 17–24.
105 106 107 108	Yarmolyuk, V.V., Kudryashova, E.A., Kozlovsky, A.M., and Lebedev, V.A., 2008, Late Cenozoic volcanism of Khangai (Central Mongolia): Evidence for recent orogeny in Central Asia: Doklady Earth Sciences, v. 422, no. 1, p. 1032–1036, doi: 10.1134/S1028334X08070064.
109 110	
	Tables
	Tables DR1-DR4

KML File

 $2018114_Mongolia_Age_final.kml$