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COMPUTATIONAL DETAILS 

We have used a commercially available engineering package, MSC MARC/Mentat, to create and 

analyze 2D axisymmetric and 3D finite-element models. Another engineering software, Abaqus 

Standard v.2016 (Dassault Systèmes, Simulia, Providence), has been used to replicate the 3D 

models adopting the same simulation strategy, and cross-check for consistency in the stress 

calculation for those shapes that have edges and corners.  

For those models that have at least one rotational axis (sphere, ellipsoids of revolution and 

cylinders), 2D axisymmetric models were constructed with MARC/Mentat using six-node 

triangular elements (element 126 in the MARC library) that have a node at each vertex and at the 

midpoint of each side that allows a parabolic interpolation function to be used along each edge.  

These models were calculated assuming an axisymmetric geometry utilizing full integration.  For 

the other shapes, 3D models have been reproduced with both MARC/Mentat and Abaqus to check 

for consistency in the obtained solutions for the stress. All 3D models have at least three orthogonal 

mirror planes, therefore only 1/8 of the selected shape was created. The resulting model consisted of 

about 400͘000 four-node linear isoparametric tetrahedral elements (element 134 and C3D10 in the 

MARC and Abaqus library respectively). The finished 1/8 model was then reflected through three 

orthogonal mirror planes and joined along the resulting inner surfaces. Material properties and 

boundary conditions were assigned, and then a mesh convergence analysis was performed. The 

models were calculated as 3D solids assuming constant dilation using full integration.  The element 

is integrated numerically at a single point at the centroid of the element and linear interpolation 



functions are used. An iterative process was used to discretize the model with different mesh sizes. 

Smaller elements were used to discretize the region around and inside the inclusion while larger 

elements were used for the remaining part of the model (Fig. DR1). The mesh was refined in the 

areas with higher stress gradients until the calculated stress distribution appeared smooth. To 

simulate the external pressure, edge loads were applied to the external boundaries of the 2D models 

and face loads were applied to the 3D elements on the external boundaries of the host. MARC uses 

numerical integration to calculate equivalent nodal loads given the dimensions of the area over 

which the distributed load is applied.  Face loads are integrated using a single integration point at 

the centroid of the element face to which they are applied. Face and edge loads are assumed by 

MARC to have the same units as the elastic moduli (i.e. GPa).  Boundary conditions were placed on 

the appropriate edges and faces of the models to avoid rigid body rotation and translation in the x, y 

and z directions. 

 

 

Figure DR1.  3D Finite element meshes of a prismatic 
inclusion with aspect ratio 1:5:5 (blue region) and of the 
surrounding host. Only an eighth of each model is 
shown. The full model is obtained by reflection through 
three orthogonal mirror planes, as described in the text. 

 

 



 

 

ELASTIC PROPERTIES  

As discussed in the main text, the calculation of the remnant pressure on the inclusion were 

performed using linear elasticity (i.e. neglecting the temperature and pressure derivatives of the 

moduli, dK/dT, dK/dP, dG/dT, dG/dP). The properties used are reported in Table DR1.   

 

TABLE DR1. ISOTROPIC ELASTIC PROPERTIES USED FOR THE SIMULATIONS REPORTED IN FIG. 2 AND 
3 IN THE MAIN TEXT 

Mineral 

Bulk 
Modulus, 

K0T  

(GPa) 

Ref. 

Shear 
Modulus, 

G0T  

(GPa) 

Ref. 

Young’s 
Modulus, E 

(GPa) 

Poisson’s 
ratio, ν  

Quartz 37.0 Scheidl et al. (2016) 44 Wang et al. (2015) 94.53 0.0742 

Pyrope 163.7 Milani et al. (2015) 94 
Sinogeikin and Bass 
(2002) 

236.7 0.2590 

Diamond 444 Angel et al. (2015b) 535 
Grimsditch and 
Ramdas (1975) 

1145.1 0.0702 

Olivine 126.3 Angel et al. (2017b) 78 Abramson et al. (1997) 194.1 0.2440 

Feldspar 55 

Average value for alkali 
feldspars e.g. 
Waeselmann et al. 
(2016)  

35 Brown et al. (2006)  86.63 0.2375 

 

The correction for the geometry for the specific case reported by Ashley et al. (2016) requires the 

calculation of geometrical factor Γ at two different values of Tend (31 and 500°C). Therefore, the 

elastic properties to be used in the FE calculations must be evaluated at these two temperatures. The 

bulk modulus of almandine has been calculated with a PVT-EoS that combines data from Milani et 

al. (2015) and Scandolo (2016). Its shear modulus is allowed to change with temperature and 

pressure according to the P and T derivatives from Arimoto et al. (2015). The variation of the quartz 

bulk modulus has been evaluated with the new EoS proposed by Angel et al. (2017a), that includes 

an improved description of the α-β structural transition. The shear modulus of quartz has a small 



variation over T (Lakshtanov et al., 2007) which does not affect significantly the results of the 

calculations, and is therefore assumed to be constant. The resultant elastic parameter used for the 

simulations at each Tend are reported in Table DR2.  

 

TABLE DR2. ELASTIC PARAMETERS FOR ALMANDINE AND QUARTZ USED FOR THE CALCULATIONS 
OF THE GEOMETRICAL FACTOR REPORTED IN TABLE 1 IN THE MAIN TEXT 

Tend  
(°C) 

Pend  
(GPa) 

Pinc 

 (GPa) 

Almandine (host) Quartz (inclusion) 
Geometrical factor (Γ) K0T  

(GPa) 
G0T  

(GPa) 
K0T  

(GPa) 
G0T  

(GPa) 

31 0 0.3 172.54 94.86 39.03 44.4 -0.094 

500 0 0.491 161.86 88.68 32.17 44.4 -0.078 

 

 

STRESS WITHIN AND AROUND THE INCLUSION 

For a spherical inclusion included in an infinite host, the analytical models (Zhang, 1998; Angel et 

al., 2015a) predict that: (i) in the portions of the host far away from the inclusion the stress is 

hydrostatic, homogeneous, and equal to the external pressure; (ii) in the host close to the inclusion 

the stress is deviatoric even if the pressure (defined as the negative of the average of the three 

normal stresses) remains equal to the external pressure; (iii) in the inclusion the stress is 

homogeneous and hydrostatic. 

With FEM the complete stress distribution within and around an inclusion for any geometry is 

obtained, solving for each component of the stress tensor at any given position within the model. As 

an example, here we show the stress distribution calculated for a quartz (soft) and a diamond (stiff) 

inclusion with prismatic shape and aspect ratio 1:5:5 included in a pyrope host. In fig. DR2 is 

reported the stress distribution along two different sections that cut the model from the center of the 

system (i.e. the center of both the host and the inclusion) along the shortest (x-axis) and longest (y-

axis) directions of the inclusion. 

As could be expected, in the portion of the host that are not perturbed by the presence of the 

inclusion the stress is still homogeneous and hydrostatic. Closer to the inclusion the stress in the 



host becomes deviatoric, and the amount of differential stress developed in the host is different 

along the two geometrically non-equivalent directions (x- and y-axes). It should be noted that here 

the pressure is not constant and deviates from the external pressure. 

 

Figure DR2. Stress distribution inside and around a prismatic inclusion with aspect ratio 1:5:5. 
The shaded area represents the inclusion. Two cases are reported: A) quartz included in pyrope 
(soft inclusion in stiffer host); B) diamond included in pyrope (stiff inclusion in softer host). For 
both, a section along the shorter inclusion axis  (x-axis of the model) and along one of the two 
geometrically equivalent longer inclusion axis  (y-axis of the model) are shown. The stresses 



Our results also show that, even when the elastic properties are isotropic, non-spherical inclusions 

always develop deviatoric stresses. For a quartz inclusion in garnet with a residual pressure 

(negative of the mean normal stress) of 0.3 GPa and with an aspect ratio of 1:5:5, the differential 

stress (σmax-σmin) within the inclusion can reach up to 0.22 GPa for an ellipsoid, and 0.28 GPa for a 

prism (see Fig. DR2). 

The pressure, defined as the negative of the mean normal stress, is homogeneous in ellipsoids but in 

prisms a gradient is developed, with the “pressure” changing by 5% percent from the center of the 

inclusion to its surface on the longest axis (Fig. DR2 and DR3). Fig. DR2 shows that for the same 

shape of the inclusion under the same Pinc (0.3 GPa), a stiff inclusion in a softer host, such as 

diamond included in pyrope, develops a much larger differential stress (0.37 GPa) and pressure 

change (22%).  

 

Figure DR3. Pressure distribution calculated in 1/8 of a 
quartz inclusion (aspect ratio of 1:5:5) in pyrope. 

 

 

calculated with MARC/Mentat (solid lines) and Abaqus (dashed lines) always agree within 0.3%. 
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