GSA Data Repository 2018035

Leydet et al., 2018, Opening of glacial Lake Agassiz's eastern outlets by the start of the Younger Dryas cold period: Geology, https://doi.org/10.1130/G39501.1.

1 METHODS

2 Geomorphic setting and field methods. The overall study area encompasses the region 3 surrounding Thunder Bay, Ontario. Four sites were selected based on work that previously 4 defined the eastern outlet channels of the glacial Lake Agassiz drainage basin based on 5 paleotopography and channel presence (Teller et al., 2005; Breckenridge, 2015). We sampled 6 boulders from topographically stable positions on bedrock highs around the North Lake channel, 7 Flatrock Lake channel, and Lake Kaministiquia (Kam) channels (Fig. 2). The Lake Kam region 8 encompasses several sub-outlets that all route through our sampling area (Fig. 2). The Steep 9 Rock moraine separates the North Lake and Flatrock Lake channels; The Brule moraine 10 separates the Flatrock Lake channel from the Lake Kam channels (Fig. 2). We also sampled 11 south of Lake Nipigon behind the Marks moraine (Fig. 2). We purposely sampled on bedrock 12 highs located above outlet channels to avoid areas that may have been disturbed by meltwater. In 13 the case of Lake Kam, we made sure to sample above this proglacial lake that formed at the end 14 of the Younger Dryas when the Laurentide ice sheet deposited the Marks moraine blocking 15 eastward Lake Agassiz basin routing into Lake Superior (Lowell et al., 1999; Teller et al., 2005; 16 Breckenridge, 2015). Our sample locations on bedrock highs minimize possible exhumation of 17 boulders from sediment that can occur on moraines, which would reduce the deglaciation age. 18 By sampling high points on the terrain, we also reduce the potential for snow cover affecting in 19 situ cosmogenic nuclide production, because the areas are windswept (Gosse and Phillips, 2001). 20 Boulder samples have no topographic shielding. Two to four kg of sample were removed using a hammer and chisel on the top surface of the boulder. Latitude, longitude, and elevation were
recorded for each sample (Table DR1).

23 Sample processing and analytical techniques. All samples were prepared at Oregon State 24 University's Cosmogenic Nuclide Laboratory. In order to physically isolate quartz, bulk rock 25 samples were crushed, pulverized, and sieved down to a 250-500 µm fraction. Physical 26 separation continued with magnetic separation of magnetic and non-magnetic minerals. 27 Chemical separation of quartz was performed by frothing the sample using a laurel amine, 28 compressed CO₂, and deionized water solution, followed by etching in dilute HF/HNO₃. Quartz 29 purity was tested at the University of Colorado-Boulder. A known concentration and amount of the low-¹⁰Be OSU-Blue Be carrier was added to each sample (Murray et al., 2012). Samples 30 31 were converted to BeO through dissolution, anion and cation exchange, precipitation, and oxidizing steps. ¹⁰Be/⁹Be ratios were measured by accelerator mass spectrometry (AMS) at 32 33 Purdue University's Rare Isotope Measurement Laboratory (PRIME) against the 07KNSTD standard. Blanks averaged $\sim 1.17 \times 10^{-15}$ ¹⁰Be/⁹Be (n=4). 34

Exposure age calculation. Following Cuzzone et al. (2016) and Ullman et al. (2016), we 35 quantify the time-varying effects of uplift and atmospheric pressure on the ¹⁰Be production rates 36 37 since exposure of our sites. We apply an isostatic surface loading model (Mitrovica et al., 1994) 38 that includes the influence of ice loading, using the ICE-5G reconstruction of ice thickness and 39 its partnering Earth viscosity model, VM2 (Peltier, 2004), ocean loading (Mitrovica and Milne, 40 2003) and variations in Earth rotation (Mitrovica et al., 2005) to estimate changes in altitude for 41 each site. This approach explicitly estimates the true vertical land motion, without the 42 confounding effects of global-mean sea-level rise and the gravitational attraction of the 43 remaining ice sheets.

44 We use output from an atmospheric-ocean general circulation model providing simulated 45 climate at 3 ka time slices from 21 ka to 0 ka (Alder and Hostetler, 2015) to determine the 46 changes in atmospheric pressure (Stone, 2000; Staiger et al., 2007). We linearly interpolate this 47 output between simulations to estimate the change in atmospheric thickness due to the change in 48 surface air pressure using the hypsometric equation (Cuzzone et al., 2016; Ullman et al., 2016). 49 Through this method, we determine the elevation correction for our sites that range from 6 m to 50 15 m. While opposing the uplift correction in direction, this small atmospheric correction does not offset the uplift correction in magnitude. In addition, the atmospheric correction is within the 51 52 accuracy of our site measurement of altitude. Therefore, we exclude the atmospheric correction 53 in our overall sample correction and only account for the topographic uplift in our age estimates.

54 Sample ages were calculated using the CRONUS-Earth Calculator version 2.2 with the 55 Northeast North America (NENA) production rate (Balco et al., 2009) (Table DR1); we use this 56 version as it allows the use of a regional production rate from close to our study area (later 57 versions do not allow the use of regional production rate calibrations). Note that this production 58 rate does not include an uplift or atmospheric correction. Similar to our findings, Balco et al. 59 (2009) deemed atmospheric changes to be minimal following Staiger et al. (2007). Balco et al. 60 (2009) also calculated the effect of including uplift on the production rate in the same manner as 61 we have for our samples and found its effect to be 1.5-2.5%, which is within the uncertainty of 62 the production rate. As such, this uncorrected-production rate is applicable to our uplift-corrected 63 samples. The reason for the difference in uplift effects is that our sample sites are from the interior of the Laurentide ice sheet whereas the production-rate sites are from near the Laurentide 64 65 ice-sheet maximum margin along the eastern seaboard of North America where ice was 66 significantly thinner and covered the sites for a shorter period of time. Several studies have

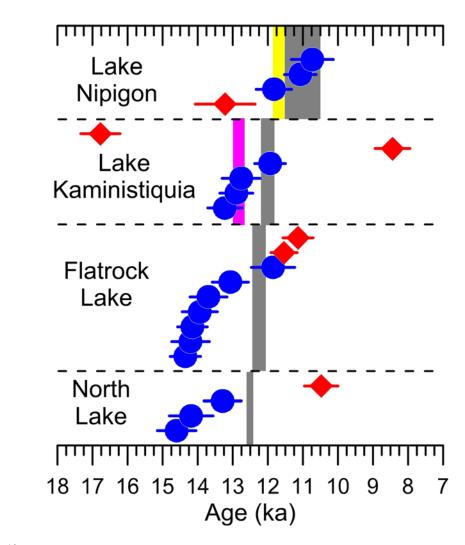
67 shown the NENA production rate to be applicable to our sites where independent age control is 68 available. Ullman et al. (2016) dated the Sakami Moraine in western Quebec that formed upon 69 the opening of Hudson Bay. Only using the NENA production rate with the uplift correction for the Sakami samples does the moraine ¹⁰Be age agree with the independent constraints on the 70 moraine age of ~8.2 ka (Hillaire-Marcel et al., 1981; Barber et al., 1999). Likewise, ¹⁴C age 71 constraints on a Tiedemann Glacier moraine in British Columbia agree with ¹⁰Be ages from the 72 73 moraine using the NENA production rate (Menounos et al., 2013). Thus, the NENA production 74 rate is applicable to our study region that lies in southern Canada between these two independent 75 confirmation sites.

We analyze our data based on the Lal/Stone time-dependent scheme along with the internal uncertainty (Table DR1). Uncertainty in the production rate is 4.8% (Balco et al., 2009). Utilizing other scaling schemes (Balco et al., 2009) or production rates (Lifton et al., 2015) does not alter our conclusions as the ages are within the internal uncertainty of our reported ages (Table DR2).

81 Removal of outliers and calculation of site averages. We find six outliers (with a potential 82 seventh – see text) out of our 23 samples (Fig. DR1). North Lake's outlier (n=1) is a young age (NL-4-15) that disagrees with the minimum-limiting ${}^{14}C$ age of deglaciation of 12.5±0.1 ka 83 84 (Lowell et al., 2009). This sample was also the smallest boulder we sampled. We interpret this 85 young age as reflecting post-depositional movement or exhumation from a thin till cover that 86 used to rest on the bedrock. Flatrock Lake has two samples that are younger than the minimumlimiting ¹⁴C age of deglaciation of 12.3±0.2 ka (Lowell et al., 2009), also reflecting potential 87 88 exhumation. The Lake Kam outliers (n=2) are either too old or too young based on the most 89 basic understanding of Laurentide ice-sheet deglaciation in this region (Teller et al., 2005,

90 Lowell et al., 2009; Breckenridge, 2015). Specifically, the old age is out of stratigraphic order 91 with even the North Lake ages and may contain inheritance. The young age disagrees with the minimum-limiting ${}^{14}C$ age of deglaciation of 12.0 ± 0.2 ka (Lowell et al., 2009) and thus may 92 93 have been exhumed following deposition. In addition, these two ages are statistical outliers based 94 on Grubb's criteria for testing outliers from a normally distributed population (Komsta, 2011); 95 p=0.007827. There is a third potential young outlier, who's inclusion or exclusion does not 96 affect our conclusions (see text). Our site behind the Marks moraine has one old outlier that is 97 out of stratigraphic order with retreat from the Marks moraine post-dating the end of the 98 Younger Dryas (Teller et al., 2005), suggesting that it contains some inheritance. Inclusion of the 99 one old sample results in a mean of 11.7±0.5 ka, which does not change our conclusions. We 100 calculated an arithmetic mean and standard error for each of our study sites as the best estimate 101 for the timing of Laurentide ice-sheet retreat from the outlet (Bevington and Robinson, 2002). 102 We use the standard error of the mean as this is a more conservative assessment our sample 103 uncertainty; the uncertainty from an error-weighted mean (the mean is the same by either 104 approaches) is less than the approach we use. In Figure DR2, we test our removal of outliers with 105 quantile-quantile plots (Ullman et al., 2016) to show the normality of the final samples used to calculate the mean and its uncertainty. 106

107 **REFERENCES CITED**


Alder, J.R., and Hostetler, S.W., 2015, Global climate simulations at 3000-yr intervals for the
 last 21,000 years with the GENMOM coupled atmosphere-ocean model: Climate of the Past,

110 v. 11, p. 449-171.

- 111 Balco, G., Briner, J., Finkel, R.C., Rayburn, J.A., Ridge, J.C., and Schaefer, J.M., 2009, Regional
- beryllium-10 production rate calibration for northeastern North America: QuaternaryGeochronology, v. 4, p. 93-107.
- 114 Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W.,
- Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., and Gagnon, J.-M., 1999, Forcing
- of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes: Nature, v.
 400, p. 344-348.
- Bevington, P., and Robinson, D.K., 2002, Data Reduction and Error Analysis for the Physical
 Sciences, 3rd Ed.: McGraw-Hill, 336 pp.
- 120 Breckenridge, A., 2015, The Tintah-Campbell gap and implications for glacial Lake Agassiz
- drainage during the Younger Dryas cold interval: Quaternary Science Reviews, v. 117, p.
 124-134.
- 123 Cuzzone, J.K., Clark, P.U., Carlson, A.E., Ullman, D.J., Rinterknecht, V.R., Milne, G.A., Pekka,
- 124 J., Wohlfarth, B., Marcott, S.A., and Caffee, M., 2016, Final deglaciation of the Scandinavian
- Ice Sheet and implications for the Holocene global sea-level budget: Earth and Planetary
 Science Letters, v. 448, p. 34-41.
- Gosse, J.C., and Phillips, F.M., 2001, Terrestrial in situ cosmogenic nuclides: theory and
 application: Quaternary Science Reviews, v. 20, p. 1475-1560.
- Hillaire-Marcel, C., Occhietti, S., and Vincent, J.-S., 1981, Sakami moraine, Quebec: A 500-kmlong moraine without climatic control: Geology, v. 9, p. 210-214.
- Komsta, L., 2011, Outliers: Tests for outliers: R package version 0.14, <u>https://CRAN.R-</u>
 project.org/package=outliers.
- 133 Lifton, N., Caffee, M., Finkel, R., Marrero, S., Nishiizumi, K., Phillips, F.M., Goehring, B.,

- Gosse, J., Stone, J., Schaefer, J., Theriault, B., Jull, A.J.T., and Fifield, K., 2015, In situ
 cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake
 Bonneville, Utah, shoreline features: Quaternary Geochronology, v. 26, p. 56-69.
- Lowell T.V., Fisher, T.G., Hajdas, I., Glover, K., Loope, H., and Henry, T., 2009, Radiocarbon
 deglaciation chronology of the Thunder Bay, Ontario area and implications for ice sheet
 retreat patterns: Quaternary Science Reviews, v. 28, p. 1597-1607.
- Lowell T.V., Larson G.J., Hughes J.D., and Denton G.H., 1999, Age verification of the Lake
 Gribben forest bed and the Younger Dryas advance of the Laurentide Ice Sheet: Canadian
- 142 Journal of Earth Science, v. 36, p. 383-393.
- 143 Menounos B., Clague, J.J., Clarke, G.K.C., Marcott, S.A., Osborn, G., Clark, P.U., Tennant, C.,
- 144 and Novak, A.M., 2013, Did rock avalanche deposits modulate the late Holocene advance of
- Tiedemann Glacier, southern Coast Mountains, British Columbia, Canada?: Earth and
 Planetary Science Letters, v. 384, p. 154-164.
- 147 Mitrovica, J.X., and Milne, G.A., 2003, On post-glacial sea level: I General theory: Geophysical
 148 Journal International: v. 154, p. 253-267.
- 149 Mitrovica, J.X., Davis, J.L., and Shapiro, I.I., 1994, A Spectral Formalism for Computing 3-
- 150 Dimensial Deformations Due to Surface Loads: 1. Theory: Journal of Geophysical Research,
- 151 v. 99, p. 7057-7073.
- 152 Mitrovica, J.X., Wahr, J., Matsuyama, I., and Paulson, A., 2005, The rotational stability of the 153 ice-age earth: Geophysical Journal International, v. 161, p. 491-506.
- 154 Murray, D.S., Carlson, A.E., Singer, B.S., Anslow, F.S., He, F., Caffee, M., Marcott, S.A., Liu,
- 155 Z., and Otto-Bliesner, B.L., 2012, Northern Hemisphere forcing of the last deglaciation in
- southern Patagonia: Geology, v. 40, p. 631-634.

- Peltier, W.R., 2004, Global glacial isostasy and the surface of the ice-age earth: The ICE-5G
 (VM2) model and GRACE: Annual Review of Earth and Planetary Sciences, v. 32, p. 111149.
- 160 Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen,
- 161 H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M.,
- Röthlisberger, Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, U., 2006, A new
 Greenland ice core chronology for the last glacial termination: Journal of Geophysical
 Research, v. 111, doi: 10.1029/2005JD006079.
- Staiger, J., Gosse, J., Toracinta, R., Oglesby, B., Fastook, J., and Johnson, J.V., 2007,
 Atmospheric scaling of cosmogenic nuclide production: Climate effect: Journal of
 Geophysical Research, v. 112, doi: 10.1029/2005JB003811.
- Stone, J.O., 2000, Air pressure and cosmogenica isotope production. Journal of Geophysical
 Research, v. 105, p. 23,753-23,759.
- 170 Teller, J. T., Boyd, M., Yang, Z., Kor, P.S.G., and Fard, A.M., 2005, Alternative routing of Lake
- Agassiz overflow during the Younger Dryas: new dates, paleotopography, and a reevaluation: Quaternary Science Reviews, v. 24, p. 1890-1905.
- 173 Ullman, D.J., Carlson, A.E., Hostetler, S.W., Clark, P.U., Cuzzone, J.K., Milne, G.A., Winsor,
- 174 K., and Caffee, M., 2016, Final deglaciation of the Laurentide ice sheet in the early to middle
- 175 Holocene: Quaternary Science Review, v. 152, p. 49-59.

177

Figure DR1. ¹⁰Be ages with outliers denoted by red diamonds. Bars are 1- σ uncertainty. Gray bars are minimum-limiting ¹⁴C age constraints on the outlets (Lowell et al., 2009) used to identify outliers. Purple bar is the start of the Younger Dryas; yellow bar is the end of the Younger Dryas (Rasmussen et al., 2006).



Figure DR2. Exposure age versus theoretical quantile for each of the sample groupings (Ullman et al., 2016). This modified version of a Quantile-Quantile plot includes the internal uncertainty for each of the dates. The black line on each plot shows the expected result for a normal distribution (scaled with the mean and standard deviation of each sample grouping). Solid circles are the ages used to calculate the mean; open diamonds are the excluded outlier samples.

188

189

Table DR1. Cosmogenic Surface Exposure Ages for	the Eastern Outlets by sample site

Sample	Latitude	Longitude	Modern Elevation (m asl)	Corrected Elevation (m) ^d	Thickness (cm)	Quartz (g)	⁹ Be Mass added (g)	$^{10}\text{Be}/^{9}\text{Be}$ ratio (10 ⁻¹⁵)	Internal Uncertainty (10 ⁻¹⁵)	¹⁰ Be (atoms g ⁻¹) ^e	Uncertainty (atoms g ⁻¹)	¹⁰ Be age (ka) ^{b, c}
N	orth Lake Si	ite										
NL-1-15	48.046	-90.045	517	455	3.5	44.1627	0.8751	185.14	6.33	87455	3318	14.6 ± 0.6
NL-3-15	48.052	-90.047	475	413	4	44.8610	0.8746	164.02	5.94	76499	3079	$13.3 \pm 0.$
NL-4-15*	48.056	-90.054	466	404	2	50.3218	0.8784	145.55	6.03	60778	2798	10.5 ± 0.1
NL-5-15	48.056	-90.054	462	400	2	43.6625	0.8729	171.69	6.83	81799	3612	$14.1 \pm 0.$
										Sit	e Mean Age ^a	$14.0 \pm 0.$
	lat Rock Sit											
FR-1-15	48.293	-90.266	490	424	3	40.0132	0.8736	159.91	4.33	83181	2504	$14.2 \pm 0.$
FR-2-15	48.293	-90.266	490	424	2.5	37.6572	0.8780	148.53	4.79	82192	2975	$13.9 \pm 0.$
FR-4-15*	48.292	-90.265	492	426	2.5	35.3228	0.8743	112.23	3.86	65761	2554	$11.1 \pm 0.$
FR-5-15*	48.291	-90.266	495	429	2	51.6664	0.8748	170.14	4.99	68653	2238	$11.5 \pm 0.$
FR-6-15	48.291	-90.266	496	430	3	53.7861	0.8720	218.32	7.39	83877	3184	$14.2 \pm 0.$
FR-7-15	48.291	-90.266	498	432	2	35.3071	0.8663	122.41	5.68	70636	3718	11.9 ± 0.0
FR-8-15	48.285	-90.265	511	445	2	46.8733	0.8775	177.16	6.29	78818	3130	13.1 ± 0.1
FR-9-15	48.284	-90.265	512	446	1.5	35.8776	0.8714	143.63	4.99	83076	3212	13.7 ± 0.1312
FR-11-15	48.284	-90.265	506	440	1	59.3766	0.8677	250.66	6.79	86909	2641	$14.4 \pm 0.$
										Sit	e Mean Age ^a	13.6 ± 0.2
Lake	Kam Outle	t Site										
KM-1-15	48.528	-89.664	494	426	2	52.0606	0.8751	196.62	6.57	78592	2931	$13.2 \pm 0.$
KM-3-15*	48.528	-89.665	484	416	3.5	23.2368	0.8788	55.51	2.86	49169	2919	8.4 ± 0.5
KM-4-15	48.529	-89.667	475	407	3	39.8282	0.8752	143.21	4.74	74941	2756	$12.9 \pm 0.$
KM-5-15	48.527	-89.665	487	419	3	52.0729	0.8643	178.15	5.88	69914	2599	$11.9 \pm 0.$
KM-7-15*	48.527	-89.665	487	419	3	46.9759	0.8801	220.74	6.63	98411	3299	16.8 ± 0.1
KM-9-15	48.522	-89.662	479	411	2	41.8971	0.8757	150.69	5.80	75022	3210	$12.8 \pm 0.$
										Sit	e Mean Age ^a	$12.7 \pm 0.$
	ke Nipigon S											
LN-8-15*	48.704	-88.627	280	213	1	47.2033	0.8639	149.36	8.76	65104	4244	$13.2 \pm 0.$
LN-10-15	48.704	-88.627	282	215	2.5	46.6695	0.8688	121.90	4.52	53995	2227	11.1 ± 0.1
LN-11-15	48.704	-88.628	271	204	3	31.0688	0.8785	76.08	3.86	51464	2915	10.7 ± 0.1
LN-12-15	48.704	-88.628	271	204	4	46.6124	0.8611	129.41	4.92	56275	2432	11.8 ± 0.1
										Si	te Mean Age ^a	11.2 ± 0

* Denotes Outliers excluded from error weighted mean calculation

^a Site mean age calculates using error weighted mean

 $^{\rm b}$ Lal/Stone Time Dependent scaling scheme ages presented from the CRONUS Earth online calculator v. 2.2

^c Ages calculated with standard atmosphere, no shielding, density of 2.65 g cm³, and erosion of 0

^d Elevations are uplift corrected (see text)

^e Be atom concentrations are blank corrected (see text)

		and scaling	<u>g scheme</u>			
	Internal		External	Lal/Stone	External	
Sample	Uncertainty	Lifton (yr)	Uncertainty	(yr)	Uncertainty (yr)	
	(yr)		(yr)	()1)		
North La	ke Site					
NL-1-15	551	14362	890	14559	898	
NL-3-15	503	13125	832	13289	839	
NL-4-15*	453	10349	695	10477	701	
NL-5-15	622	13966	921	14148	930	
Site Mean (ka)		13.8 ± 0.4		14.0 ± 0.4		
Flat Roc	k Site					
FR-1-15	424	13966	802	14163	810	
FR-2-15	473	13748	837	13940	845	
FR-4-15*	405	10994	687	11137	693	
FR-5-15*	374	11403	670	11549	676	
FR-6-15	537	14005	868	14204	876	
FR-7-15	620	11701	841	11851	850	
FR-8-15	486	12893	813	13068	820	
FR-9-15	527	13514	843	13703	851	
FR-11-15	434	14148	815	14352	823	
Site Mean (ka)		13.4 ± 0.3		13.6 ± 0.3		
Lake Kam (Dutlet Site					
KM-1-15	461	13033	802	13222	810	
KM-3-15*	467	8292	638	8445	648	
KM-4-15	472	12751	781	12933	788	
KM-5-15	440	11773	723	11936	730	
KM-7-15*	527	16478	978	16774	991	
KM-9-15	544	12619	821	12798	829	
Site Mean (ka)		12.5 ± 0.3		12.7 ± 0.3		
Lake Nipi	gon Site					
LN-8-15*	856	13014	1062	13241	1078	
LN-10-15	453	10910	698	11096	707	
LN-11-15	564	10546	790	10732	801	
LN-12-15	506	11630	759	11828	769	
Site Mean (ka)		11.0 ± 0.3		11.2 ± 0.3		

 Table DR2. Cosmogenic Surface Exposure Ages by production rate and scaling scheme

* Denotes outliers not included in site mean calculations