1 GSA Data Repository 2018030

2 Precise age of *Bangiomorpha pubescens* dates the origin of eukaryotic photosynthesis
3 Gibson et al.

4

5 SUPPLEMENTAL METHODS

6 Stratigraphy and Sampling

Shale samples were collected from outcrops that lack evidence for secondary
mineralization from hydrothermal activity and weathered regions that may have experienced
alteration were also avoided. Sample sets comprise several 100–200 g samples excavated 10–30
cm from the outcrop surface to target fresh material. Samples were collected along strike from a
narrow stratigraphic range (<10 cm), as well as from a vertical profile (up to 5 m). The most
organic-rich and least visibly-weathered samples were then chosen for digestion and isotopic
analysis.

14 Arctic Bay Formation samples are from Shale Valley (N 72° 45' 04.8" W 83° 50' 39.2"), 15 ca. 180 m above the base of section T1413 (Arctic Bay-Adams Sound formations contact not exposed in this locale) and ca. 170 m below the base of the Ikpiarjuk Formation (Angmaat 16 Formation equivalent; Fig. 1). Victor Bay Formation samples are from sections G1431 at 17 Angmaat Mountain (N 72° 09' 25.9" W 79° 02' 05.5") and MB1501 at Pingo Valley (N 72° 53' 18 48.3" W 81° 24' 45.02"). Both Victor Bay Formation sample sets are from within the same 19 maximum flooding interval indicated by the finest-grained and most organic-rich horizon ca. 25 20 21 m above the contact with the Angmaat Formation.

22

24 Re-Os Geochronology Methods

25 Least-weathered samples from each sample set were selected and trimmed with a diamond-tipped lapidary saw blade to remove any weathered surfaces, then polished with a 26 27 diamond pad to remove any metal contamination. After samples were dried at room temperature, 30-50 g aliquots were crushed to a fine powder (ca. 30 µm) using a SPEX #8506 zirconia 28 ceramic puck and grinding container in a SPEX 8500 shatterbox to homogenize each sample 29 30 (Kendall et al., 2009a). Analyses of Re and Os isotopic abundances and compositions were performed at the University of Alberta's Re-Os Crustal Geochronology Laboratory in the 31 32 Department of Earth and Atmospheric Sciences following methodologies developed by Creaser et al. (2002), Selby and (2003), Kendall et al. (2004), and Cumming et al. (2013). 33 Between 0.2 and 0.5 g of each sample was digested and equilibrated with 8 ml of Cr^{VI}-34 H_2SO_4 along with a known quantity of mixed $^{185}Re + ^{190}Os$ tracer solution (spike) in Carius tubes 35 at 220 °C for 48 hrs. Digestion with Cr^{VI}-H₂SO₄ is known to preferentially liberate hydrogenous 36 37 rather than detrital Re and Os in shale samples, resulting in more accurate and precise isochrons 38 (Selby and Creaser, 2003; Kendall et al., 2004; Rooney et al., 2011). Osmium was isolated and purified by CHCl₃ solvent extraction and micro-distillation using HBr, and Re was purified using 39 (CH₃)₂CO solvent extraction and anion chromatography following protocols outlined by Selby 40 41 and Creaser (2003) and Cumming et al. (2013). These Re and Os fractions were then loaded onto Ni and Pt filaments, respectively (Selby and Creaser, 2003; Selby et al., 2007), for analysis with 42 43 a ThermoScientific TRITON instrument using negative thermal ionization mass spectrometry (NTIMS; Creaser et al., 1991). Re was analyzed via static Faraday collection and Os utilizing 44 45 ion-counting with a secondary electron multiplier in peak-hopping mode.

46 Isochron ages were regressed using the Re and Os isotopic measurements, calculated 2σ

47	uncertainties for ¹⁸⁷ Re/ ¹⁸⁸ Os and ¹⁸⁷ Os/ ¹⁸⁸ Os, and the associated error correlation function (rho)
48	using Isoplot V. 4.15 (Ludwig, 1980; Ludwig, 2011) with a 187 Re decay constant (λ) of 1.666 \times
49	10 ⁻¹¹ year ⁻¹ (Table DR1; Smoliar et al., 1996). A Re standard solution of normal isotopic
50	composition was repeatedly analyzed to monitor long-term mass spectrometry reproducibility,
51	using analysis amounts typical for shale samples (1–4 ng). For this solution, an average value for
52	185 Re/ 187 Re of 0.5973 ± 0.0007 (n = 52; 1 σ) was obtained over the period of analysis, which
53	overlaps the value of 0.5974 (Gramlich et al., 1973). A Johnson-Matthey Os solution is used as
54	an in-house standard for Os, which yielded an average 187 Os/ 188 Os ratio of 0.10683 ± 0.00010 (n
55	= 186; 1 σ) by pulse-counting SEM measurement over the period of analysis, which is identical to
56	values reported elsewhere (Li et al., 2010).

TABLE DR1. Re AND Os ABUNDANCES AND ISOTOPIC COMPOSITIONS

Sample	Formation	Re	±2s	Os	±2s	¹⁸⁷ Re/ ¹⁸⁸ Os	±2s	¹⁸⁷ Os/ ¹⁸⁸ Os	±2s	rho*	0si [†]
		(ppb)		(ppt)							•
T1413-181.1 [§]	Arctic Bay	67.31	0.25	1247.38	8.16	757.68	3.48	14.80	0.06	0.54	1.42
T1413-181.8 [§]	Arctic Bay	21.62	0.08	488.94	3.55	490.77	2.97	10.12	0.05	0.73	1.45
T1413-182.0 [§]	Arctic Bay	22.10	0.09	524.52	4.69	445.38	2.98	9.28	0.07	0.62	1.41
T1413-182.6 [§]	Arctic Bay	48.49	0.18	1082.97	7.36	501.16	2.37	10.27	0.05	0.48	1.41
T1413-184.0 [§]	Arctic Bay	16.76	0.07	404.74	3.11	432.12	2.94	9.07	0.06	0.76	1.43
T1413-185.0	Arctic Bay	50.76	0.19	1145.79	8.71	485.80	2.41	9.91	0.05	0.48	1.33
G1431-26.0b [§]	Victor Bay	0.76	0.01	33.38	0.49	166.36	4.32	4.15	0.10	0.66	1.22
G1431-26.0d [§]	Victor Bay	0.72	0.01	24.25	0.39	246.74	7.93	5.61	0.16	0.84	1.27
G1431-28.1§	Victor Bay	0.94	0.01	32.57	0.48	236.08	5.78	5.46	0.12	0.79	1.31
G1431-28.2	Victor Bay	0.94	0.01	32.79	0.43	229.48	5.36	5.21	0.10	0.83	1.18
MB1501-51.6a [§]	Victor Bay	16.73	0.04	406.59	3.41	416.96	2.52	8.58	0.06	0.75	1.24
MB1501-51.6b [§]	Victor Bay	15.52	0.04	384.67	4.13	403.94	3.25	8.39	0.09	0.69	1.28
MB1501-51.7 [§]	Victor Bay	7.04	0.02	187.46	1.58	355.79	2.82	7.54	0.06	0.86	1.28
MB1501-51.9	Victor Bay	12.89	0.03	316.92	2.33	404.81	2.12	8.29	0.05	0.78	1.17

Note: Total procedural blanks analyzed during this study were 11 ± 3 pg Re and 0.25 ± 0.3 pg Os and 187 Os/ 188 Os of 1.3 ± 0.8 (1 σ , n=5).

*Rho = associated error correlation (Ludwig, 1980).

[†]Os = Initial ¹⁸⁷Os/¹⁸⁸Os isotope composition calculated from λ^{187} Re and isochron ages that utilize all samples (1051 Ma for Arctic Bay samples and 1047 Ma for Victor Bay formations samples; Figure DR4).

§Samples included in the isochrons that utilized a limited stratigraphic range (Fig. 2).

58

Cross-Calibrated Molecular Clock (BEAST2) Methods

59 In lieu of a complete fossil record, molecular clock analyses may be improved by increasing the amount of age data they incorporate. Cross-calibrated analyses leverage relative 60 61 dating information using gene duplication events to increase the accuracy of divergence time 62 estimates (Shih and Matzke, 2013). Molecular clock analyses were run on a concatenated dataset 63 of proteins: AtpA, AtpB, AtpE, AtpF, AtpH, AtpI, Rpl2, Rpl16, Rps3, Rps12, and EfTu, as well 64 as 16S rDNA. To generate the dataset, sequences were aligned using MAFFT (Katoh et al., 2005), then partitioned into the concatenated protein sequences and 16S nucleotide sequences. 65 66 The base set of age calibrations implemented are primarily from on the fossil records of plants 67 and algae and the molecular clock analyses of Smith et al. (2010). A summary of the various constraints used can be found in Table DR2. A uniform prior of 2.4–3.8 billion years ago (Ga) 68 69 was used as a constraint for the last common ancestor. The only constraint that differed between the three analyses was the prior set on the green-red divergence, representing the oldest possible 70 71 node for which *Bangiomorpha pubescens* can provide a direct constraint based on its position 72 either derived within the Bangiales or perhaps as a stem-group red alga (e.g., Butterfield, 2000; 73 Yang et al., 2016). In these analyses (Table 1), three constraints were tested to compare their effect on different interpretations of plastid endosymbiosis: 1) no prior (Run T07; Fig. DR1), 2) a 74 75 prior based on the previously reported age for *Bangiomorpha pubescens* of 1.198 Ga (Run T08; 76 Fig. DR2; Butterfield, 2000), and 3) a prior based on our geochronology data of 1.045 Ga (Run 77 T09; Fig. DR3). As previously described (Shih et al., 2017), molecular clock analyses were 78 estimated with the program BEAST2 (Drummond and Rambaut, 2007) using the CIPRES Science Gateway server (Miller et al., 2010). The CpREV model and the GTR + G model were 79 80 used as the substitution model for the protein and nucleotide datasets, respectively. A lognormal

81	relaxed molecular clock model was implemented. For all analyses, three separate MCMC chains
82	for 40-50 million generations were generated, sampling every 10,000 generations. The initial 20
83	million generations were discarded as burn-in, and maximum clade credibility trees were
84	generated using TreeAnnotator v1.7.5. The analyses and dates of interest are summarized in the
85	main text and Table 1.

TABLE DR2. SUMMARY OF CALIBRATION CONSTRAINTS USED IN THIS STUDY.				
Divergence event	Type of Distribution	Age Constraint		
		(Ga)		
Angiospermae	Normal	0.217 ± 0.040 (1σ)		
Land Plants	Normal	0.477 ± 0.070 (1o)		
Bangiomorpha pubescens	Uniform	1.174–1.222		
"Rise of Oxygen"	Uniform	2.400-3.000		
Last Common Ancestor	Uniform	2.400-3.800		
Note: Angiospermae and land	plant age constraints from	n Smith et al. (2010).		

Figure DR1. Divergence time estimates from T07 cross-calibrated BEAST2 run. All land

89 plant constraints were used; however, no *Bangiomorpha pubescens* constraint was utilized.

90 Abbreviations are summarized in Table DR3.

TABLE DR3. ABBREVIATIONS FOR SPECIES NAMES USED IN FIGURES DR1-3.

Species Name	Clade	Abbreviation
Gloeobacter violaceus PCC 7421	Cyanobacteria	PCC7421
Gloeobacter kilaueensis JS1	Cyanobacteria	GLOJS1
Synechococcus sp. PCC 7336	Cyanobacteria	PCC7336
Synechococcus sp. JA-3-3Ab	Cyanobacteria	JA33A
Pseudanabaena sp. PCC 7367	Cyanobacteria	PCC7367
Pseudanabaena sp. PCC 6802	Cvanobacteria	PCC6802
Svnechococcus sp. PCC 7502	Cvanobacteria	PCC7502
Acarvochloris marina MBIC11017	Cvanobacteria	MB11017
Cvanothece sp. PCC 7425	Cvanobacteria	PCC7425
Thermosynechococcus elongatus BP-1	Cvanobacteria	BP1
Geitlerinema sp. PCC 7407	Cvanobacteria	PCC7407
Leptolynabya sp. PCC 7375	Cvanobacteria	PCC7375
Prochlorothrix hollandica PCC 9006	Cvanobacteria	PCC9006
Synechococcus elongatus PCC 7942	Cvanobacteria	PCC7942
Cvanobium sp. PCC 7001	Cvanobacteria	PCC7001
Cvanobium gracile PCC 6307	Cvanobacteria	PCC6307
Synechococcus sp. WH 5701	Cvanobacteria	WH5701
Synechococcus sp. RS 9916	Cvanobacteria	BS9916
Synechococcus sp. CC 9311	Cvanobacteria	CC9311
Synechococcus sp. 00 3311	Cyanobacteria	WH7805
Synechococcus sp. 81, 107	Cyanobacteria	BI 107
Synechococcus sp. DE 107	Cyanobacteria	CCORDE
Synechococcus sp. UC 9005	Cyanobacteria	VU9005
Brachlaragagua marinua MIT 0212	Cyanobacteria	
Prochlorococcus marinus with 9313	Cyanobacteria	
Prochlorococcus marinus, subsp. marinus CCMP 1375	Cyanobacteria	COMP1375
Prochlorococcus marinus MIT 9211	Cyanobacteria	MIT9211
Prochlorococcus marinus MIT 9312	Cyanobacteria	MI19312
Prochlorococcus marinus MIT 9215	Cyanobacteria	MI19215
Prochlorococcus marinus AS 9601	Cyanobacteria	AS9601
Prochlorococcus marinus, subsp. pastoris CCMP 1986	Cyanobacteria	MED4
Prochiorococcus marinus NATL 2A	Cyanobacteria	NATL2A
Synechococcus sp. HCC307	Cyanobacteria	RCC307
Crinalium epipsammum PCC 9333	Cyanobacteria	PCC9333
Microcoleus sp. PCC 7113	Cyanobacteria	PCC7113
Chroococcidiopsis sp. PCC 6712	Cyanobacteria	PCC6712
Stanieria cyanosphaera PCC 7437	Cyanobacteria	PCC7437
Cyanobacterium stanieri PCC 7202	Cyanobacteria	PCC7202
Synechococcus sp. PCC 7002	Cyanobacteria	PCC7002
Gloeocapsa sp. PCC 73106	Cyanobacteria	PCC73106
Cyanothece sp. PCC 7424	Cyanobacteria	PCC7424
Microcystis aeruginosa NIES-843	Cyanobacteria	NIES843
Pleurocapsa sp. PCC 7327	Cyanobacteria	PCC7327
Synechocystis sp. PCC 6803	Cyanobacteria	PCC6803
Cyanothece sp. PCC 8801	Cyanobacteria	PCC8801
Crocosphaera watsonii WH 8501	Cyanobacteria	PCC8501
Cyanothece sp. ATCC 51142	Cyanobacteria	ATCC51142
Unidentified cyanobacterium UCYN-A	Cyanobacteria	UCYNA
Halothece sp. PCC 7418	Cyanobacteria	PCC7418
Chroococcidiopsis thermalis PCC 7203	Cyanobacteria	PCC7203
Synechocystis sp. PCC 7509	Cyanobacteria	PCC7509
Rivularia sp. PCC 7116	Cyanobacteria	PCC7116
Nostoc punctiforme PCC 73102	Cyanobacteria	PCC73102
Calothrix sp. PCC 7507	Cyanobacteria	PCC7507
Nostoc azollae 0708	Cyanobacteria	az0708
Raphidiopsis brookii D9	Cyanobacteria	RaphD9
Nostoc sp. PCC 7107	Cyanobacteria	PCC7107
Nostoc sp. PCC 7120	Cyanobacteria	PCC7120
Calothrix sp. PCC 6303	Cyanobacteria	PCC6303
Mastigocladopsis repens PCC 10914	Cyanobacteria	PCC10914
unidentified cyanobacterium PCC 7702	Cyanobacteria	PCC7702

TABLE DR3 continued. ABBREVIATIONS FOR SPECIES NAMES USED IN FIGURES DR1-3.

Species Name	Clada	Abbreviation
Fischerella en PCC 9605	Cvanobacteria	PCC0605
Oscillatoria acuminata PCC 6304	Cvanobacteria	PCC6304
Oscillatoria sp. PCC 6506	Cvanobacteria	PCC6506
Microcoleus vacinatus FGP-2	Cvanobacteria	FGP2
Arthrospira maxima CS-328	Cvanobacteria	CS328
Trichodesmium ervtbraeum IMS 101	Cvanobacteria	IMS101
Gloeomargarita lithophora	Cyanobacteria	GLITH
MEL.A1	Melainabacteria	MELA1
MEL.B1	Melainabacteria	MELB1
MEL.B2	Melainabacteria	MELB2
MEL.C1	Melainabacteria	MELC1
MEL.C2	Melainabacteria	MELC2
Rickettsia prowazekii strain, Madrid E	a-proteobacteria	RICPR
Rickettsia typhi strain ATCC VR-144	a-proteobacteria	ATPA BICTY
Caulobacter crescentus strain ATCC 19089	q-proteobacteria	ATPA CAUCE
Agrobacterium tumefaciens strain C58	q-proteobacteria	ATPA AGRTU
Arabidopsis thaliana	Plastid	ARATH
Orvza sativa subsp. Japonica	Plastid	ORYSJ
Zea mavs	Plastid	ZMAYS
Amborella trichopoda	Plastid	AMBTC
Pinus thunberaii	Plastid	PINTH
Cvcas taitungensis	Plastid	CYCTA
Gnetum parvifolium	Plastid	GNETU
Psilotum nudum	Plastid	PSINU
Anthoceros formosae	Plastid	ANTFO
Marchantia polymorpha	Plastid	MARPO
Physcomitrella patens subsp. patens	Plastid	PHYPA
Zvanema circumcarinatum	Plastid	ZYGCR
Staurastrum punctulatum	Plastid	STAPU
Chaetosphaeridium globosum	Plastid	CHAGL
Chara vulgaris	Plastid	CHAVU
Chlamydomonas reinhardtii	Plastid	CHLRE
Chlorella vulgaris	Plastid	CHLVU
Nephroselmis olivacea	Plastid	NEPOL
Euglena gracilis	Plastid	EUGLE
Mesostigma viride	Plastid	MESVI
Chlorokybus atmophyticus	Plastid	CHLAT
Verdigellas peltata	Plastid	VPELT
Cyanophora paradoxa	Plastid	CYAPA
Cyanidioschyzon merolae	Plastid	CYAME
Cyanidium caldarium	Plastid	CYACA
Gracilaria tenuistipitata	Plastid	GRATL
Porphyridium purpureum	Plastid	PORPH
Galdieria sulphuraria	Plastid	GALSU
Thalassiosira pseudonana	Plastid	THAPS
Ectocarpus siliculosus	Plastid	ECTSI
Phaeodactylum tricornutum	Plastid	PHATC
Guillardia theta	Plastid	GUITH
Rhodomonas salina	Plastid	RHDSA
Vaucheria litorea	Plastid	VAULI
Heterosigma akashiwo NIES-293	Plastid	HETAK
Odontella sinensis	Plastid	ODONT
Emiliania huxleyi	Plastid	EMIHU
Paulinella chromatophora	Plastid	PAUCH
Arabidopsis thaliana	Mitochondria	ARATH
Zea mays	Mitochondria	ZMAYS
Oryza sativa	Mitochondria	ORYSJ
Amborella trichopoda	Mitochondria	AMBTC
Physcomitrella patens subsp. patens	Mitochondria	PHYPA

104 SUPPLEMENTAL TEXT

105 Rhenium-Osmium Results

106 Re and Os data from this study (see Table DR1) are within reported concentrations and 107 isotopic ratios of other black shales and do not display evidence for post-depositional disturbance 108 of the Re-Os system. Regression of Arctic Bay Formation samples excluding T1413-181.1 yields 109 a nearly identical age of 1.054 ± 0.041 Ga and confirms that this sample does not 110 disproportionally affect the isochron by "anchoring" its slope. Victor Bay Formation samples are 111 from two correlative stratigraphic sections (G1431 and MB1501). Regression of G1431 Victor 112 Bay Formation samples yield an imprecise Model 3 age of 1.077 ± 0.28 Ga due to an insufficient spread in initial ¹⁸⁷Re/¹⁸⁸Os and too much variation in initial ¹⁸⁷Os/¹⁸⁸Os values (see Table DR1) 113 114 necessary to develop a precise isochron (Selby and Creaser, 2005; Kendall et al., 2009a). 115 Therefore, samples from section MB1501 of the same maximum flooding interval in the lower 116 Victor Bay Formation were also incorporated. Regression of MB1501 samples yielded an 117 imprecise, but indistinguishable to G1431 (within uncertainty), Model 3 age of 0.995 ± 0.320 118 Ga. A sharp transgressive surface directly above the basin-wide Angmaat-Victor Bay 119 unconformity marks a regional flooding event in the Milne Inlet Graben, and offers an 120 unequivocally synchronous datum (Sherman et al., 2001). Sample set G1431 was collected from 121 26-28.1 m above this unconformity, and sample set MB1501 is from a slightly deeper-water, but 122 time-correlative horizon 21.3–21.6 m above this unconformity. Robust stratigraphic evidence for 123 depositional synchronicity and the similarity of their model ages enable regression of these 124 samples as a combined data set to produce a significantly more precise age (Fig. DR4; Geboy et al., 2013). Combining these data sets is further supported by the relative precision and lower 125 126 variance in the composite isochron, as well as its agreement with the Re-Os age for the Arctic

127 Bay Formation reported herein (Fig. 2).

128	Initial ¹⁸⁷ Os/ ¹⁸⁸ Os values for all Arctic Bay and Victor Bay samples range from 1.17–1.45
129	(average modern continental runoff 187 Os/ 188 Os = 1.5; Levasseur et al., 1999), consistent with a
130	highly radiogenic Os flux dominated by evolved, continentally derived sediment and waters (Xu
131	et al., 2009; Cumming et al., 2012; Cumming et al., 2013; Rooney et al., 2014). These data
132	demonstrate that the Borden Basin had minimal communication with the global ocean during
133	deposition of the sampled black shale units from the middle Arctic Bay (Turner and Kamber,
134	2012; Hahn et al., 2015) and lower Victor Bay formations and was strongly influenced
135	chemically by runoff from the surrounding highly-evolved Archean to Paleoproterozoic
136	orthogneiss and metasedimentary successions of the Rae Province (Crocker et al., 1993).
137	However, abundant sulfate evaporite deposits, marine C, S, and Sr isotopic signatures, and
138	evidence for tidal influence indicate that the Borden Basin was connected to a large ocean basin
139	during deposition of the Angmaat Formation and other intervals of carbonate deposition (i.e.
140	upper Victor Bay and Athole Point formations; Kah et al., 1999; Kah et al., 2001). Together
141	these data demonstrate that the Borden Basin was periodically restricted from the open ocean and
142	that the degree of restriction influenced sedimentation patterns, perhaps due to changes in the
143	geochemical stratification of its basin waters. These interpretations may help characterize the
144	environment in which Bangiomorpha pubescens evolved.
145	Precise Re-Os isochrons require samples of the same (or similar) age and with similar

Precise Re-Os isochrons require samples of the same (or similar) age and with similar
initial ¹⁸⁷Os/¹⁸⁸Os (Cohen et al., 1999; Creaser et al., 2002; Cohen, 2004). Sediment in restricted
basins are known to exhibit highly variable ¹⁸⁷Os/¹⁸⁸Os as they are sensitive to short-term
variability in weathering sources and runoff (McArthur et al., 2008; Cumming et al., 2012;
Cumming et al., 2013; Tripathy et al., 2015). Therefore, on the condition that a sufficient spread

150 in 187 Re/ 188 Os is maintained, utilizing samples from a reduced stratigraphic interval, especially 151 from restricted basins, can minimize age uncertainty by limiting the depositional timescale over 152 which samples were deposited and thus stratigraphic variation in initial 187 Os/ 188 Os (Os_i; Xu et 153 al., 2009; Cumming et al., 2012; Xu et al., 2014).

Figure DR4. Re-Os geochronological data and isochron diagrams for all Arctic Bay (A) and
Victor Bay (B) formations samples. Mean square of weighted deviation (MSWD) values
greater than unity (i.e., 1) indicate that geological factors rather than analytical error are
responsible for scatter about the isochron (Mahon, 1996). Data-point error ellipses represent 2σ
uncertainty. Elemental abundances and isotopic compositions are presented in Table DR1.

160 Previous Geochronology from the Bylot Supergroup

161 Pyrite Re-Os geochronology from the carbonate-hosted Nanisivik Pb-Zn deposit 162 (Angmaat Formation equivalent; see Fig. 1) suggest approximately syn-depositional 163 mineralization ca. 1.1 billion years ago (Ga), though the data span 1.151-1.013 Ga (Hnatyshin et 164 al., 2016), which is broadly consistent with depositional ages presented from this study. Turner 165 and Kamber (2012) conducted whole-rock U-Th-Pb analyses of Arctic Bay Formation black shales and calculated an age of 1.092 ± 0.059 Ga from the weighted mean of a ²⁰⁶Pb-²⁰⁷Pb 166 isochron and ²³⁸U-²⁰⁶Pb and ²³²Th-²⁰⁸Pb errorchrons; however, a total of nine outlying samples 167 were excluded in these calculations and stratigraphic heights are not reported. 168 169 Unpublished whole-rock, carbonate Pb-Pb geochronology of Angmaat Formation 170 samples were reported to produce an age of 1.199 ± 0.024 Ga, and combined data from 171 Angmaat, Victor Bay, and Athole Point formations samples an age of 1.204 ± 0.022 Ga (Kah et 172 al., 2001). While these dates were often cited as the age of Bangiomorpha pubescens (ca. 1.2 173 Ga), they are older than and therefore incompatible with the calculated age of the underlying 174 Arctic Bay Formation from Turner and Kamber (2012). Futhermore, Pb-Pb carbonate ages can 175 overestimate depositional ages due to incorporation of basement-derived Pb during diagenesis 176 (i.e., dolomitization), meteoric alteration, and metamorphism (e.g., Babinski et al., 2007). These 177 incongruent ages highlight obstacles associated with the application of whole-rock U-Th-Pb and 178 Pb-Pb geochronology to typical Precambrian samples. The utility of the black shale Re-Os 179 geochronometer for yielding precise and accurate ages of Precambrian sedimentary successions, 180 on the other hand, is corroborated by numerous recent studies (e.g., Selby and Creaser, 2003; 181 Kendall et al., 2009b; Cumming et al., 2013; van Acken et al., 2013; Rooney et al., 2014; 182 Rooney et al., 2015).

183 Age of the Chitrakoot Taxa

184 The Vindhyan Supergroup in central India has long been the center of debate regarding 185 fossil discoveries and their ages (see Ray, 2006 for overview). This up-to 4-km-thick 186 sedimentary succession primarily outcrops in the Son Valley and Rajasthan. The lower Vindhyan 187 Semri Group has largely been studied in the Son Valley region where multiple interbedded 188 volcanic tuffs offer robust U-Pb zircon depositional age constraints of ca. 1.6 Ga (Rasmussen et 189 al., 2002; Ray et al., 2002; Bengtson et al., 2009). These ages are broadly consistent with the 190 occurrence of microfossils such as Grypania (Kumar, 1995) which occur globally in strata of 191 similar ages (Adams et al., 2017).

192 The Chitrakoot Formation occurs as a stratigraphic outlier in the Jankikund-Chitrakoot 193 region to the north of the Son Valley, and is interpreted to record deposition within an isolated 194 sub-basin that was disconnected from the main Vindhyan basin (Bose et al., 2015); however, 195 discontinuous lateral exposure renders robust correlations, even within the Chitrakoot region, tenuous. The Chitrakoot Formation has been dated using whole-rock geochronological 196 197 techniques, with whole-rock Rb-Sr ages from lower glauconitic facies spanning ca. 1.5-1.4 Ga 198 (Kumar et al., 2001), and a whole-rock Pb-Pb age of 1.65 ± 0.089 Ga from the uppermost phosphatic Tirohan Dolomite (Bengtson et al., 2009). While these dates broadly support 199 200 correlation between the Tirohan Dolomite of the Chitrakoot Formation and the Rohtas Limestone 201 of the Semri Group (Bengtson et al., 2017), robust stratigraphic correlations between the 202 Chitrakoot outlier and principal Vindhyan sections in the Son Valley are complicated by 203 inconclusive chemostratigraphic signatures (Ray et al., 2003) and significant lithological and 204 thickness differences between these successions (Chakraborty, 2006). Alternately, if the Tirohan 205 Dolomite is equivalent to the next younger unit that directly overlies the Rohtas Limestone, it

would belong to the upper Vindhyan Kaimur Group which could be as young as ca. 1.07 Ga
(Gregory et al., 2006)—similar to the age of the Angmaat Formation. Thus, the ca. 1.6 Ga age of
the phosphatized fossils from the Tirohan Dolomite is primarily based on the internally
inconsistent dates for the Chitrakoot Formation, and so further corroboration of the anomalously
old age of these fossils requires the application of reliable, high precision geochronology to the
Chitrakoot sections themselves.

212

|--|

214 project. T.M.G., P.M.S., W.W.F., and G.P.H. wrote the manuscript with input from all coauthors.

T.M.G., V.M.C., P.W.C., S.W., M.S.W.H. and G.P.H. executed fieldwork and sample collection.

T.M.G., V.M.C. and R.A.C. carried out Re-Os measurements and data analysis. P.M.S. executed
molecular clock analyses.

218 **REFERENCES CITED:**

- Adams, Z.R., Skidmore, M.L., Mogk, D.W., and Butterfield, N.J., 2017, A Laurentian record of
 the earliest fossil eukaryotes: Geology, v. 45, p. 387–390, doi:10.1130/G38749.1.
- 221 Babinski, M., Vieira, L.C., Trindade, R.I.F., 2007, Direct dating of the Sete Lagoas cap
- 222 carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events:

223 Terra Nova, v. 19, p. 401–406, doi:10.1111/j.1365-3121.2007.00764.x.

- Bengtson, S., Belivanova, V., Rasmussen, B., and Whitehouse, M., 2009, The controversial
- 225 "Cambrian" fossils of the Vindhyan are real but more than a billion years older:
- Proceedings of the National Academy of Sciences, v. 106, p. 7729–7734,
- doi:10.1073/pnas.0812460106.

228	Bengtson, S., Sallstedt, T., Belivanova, V., and Whitehouse, M., 2017, Three-dimensional
229	preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-
230	group red algae: PLoS Biology, v. 15, e2000735, doi:10.1371/journal.pbio.2000735.
231	Bose, P.K., Sarkar, S., Das, N.G., Banerjee, S., Mandal, A., and Chakraborty, N., 2015,
232	Proterozoic Vindhyan Basin: Configuration and evolution: Bose PK, Sarkar S, Das NG,
233	Banerjee S, Mandal A, Chakraborty N. Proterozoic Vindhyan Basin: configuration and
234	evolution: Geological Society, London, Memoirs, v. 43, p. 85-102, doi:10.1144/M43.6.
235	Butterfield, N.J., 2000, Bangiomorpha pubescens n. Gen., n. sp.: Implications for the
236	evolution of sex, multicellularity, and the Mesoproterozoic/ Neoproterozoic radiation of
237	eukaryotes: Paleobiology: Paleobiology, v. 26, p. 386-404, doi:10.1666/0094-
238	8373(2000)026<0386:BPNGNS>2.0.CO;2.
239	Chakraborty, C., 2006, Proterozoic intracontinental basin: The Vindhyan example: Journal of
240	Earth System Science, v. 115, p. 3-22, doi:10.1007/BF02703022.
241	Cohen, A.S., Coe, A.L., Bartlett, J.M., and Hawkesworth, C.J., 1999, Precise Re-Os ages
242	of organic-rich mudrocks and the Os isotope composition of Jurassic seawater: Earth and
243	Planetary Science Letters, v. 167, p. 159-173, doi:10.1016/S0012-821X(99)00026-6.
244	Cohen, A.S., 2004, The rhenium-osmium isotope system: applications to geochronological and
245	palaeoenvironmental problems: Journal of the Geological Society of London, v. 161, p.
246	729–734, doi:10.1144/0016-764903-084.
247	Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J., 1991, Negative thermal ion mass
248	spectrometry of osmium, rhenium and iridium: Geochimica et Cosmochimica Acta, v. 55,
249	p. 397-401, doi:10.1016/0016-7037(91)90427-7.
250	Creaser, R.A., Sannigrahi, P., Chacko, T., and Selby, D., 2002. Further evaluation of the Re-Os

251	geochronometer in organic-rich sedimentary rocks: a test of hydrocarbon maturation
252	effects in the Exshaw Formation, Western Canada Sedimentary Basin: Geochimica et
253	Cosmochimica Acta, v. 66, p. 3441-3452, doi:10.1016/S0016-7037(02)00939-0.
254	Crocker, C.H., Collerson, K.D., Lewry, J.F. and Bickford, M.E., 1992, Sm-Nd, U-Pb and
255	Rb-Sr geochronology and lithostructural relationships in the southwestern Rae
256	province: constraints on crustal assembly in the western Canadian shield: Precambrian
257	Research, v. 61, p. 27-50, doi:10.1016/0301-9268(93)90056-8.
258	Cumming, V.M., Selby, D., and Lillis, P.G., 2012, Re-Os geochronology of the lacustrine
259	Green River Formation: Insights into direct depositional dating of lacustrine successions,
260	Re-Os systematics, and paleocontinental weathering: Earth and Planetary Science Letters,
261	v. 359-360, p. 194–205, doi:10.1016/j.epsl.2012.10.012.
262	Cumming, V.M., Poulton, S.W., Rooney, A.D., and Selby, D., 2013, Anoxia in the terrestrial
263	environment during the late Mesoproterozoic: Geology, v. 41, p. 583-586,
264	doi:10.1130/G34299.1.
265	Drummond, A.J., and Rambaut, A., 2007, BEAST: Bayesian evolutionary analysis by sampling
266	trees: BMC Evolutionary Biology, v. 7, p. 214, doi:10.1186/1471-2148-7-214.
267	Geboy, N.J., Kaufman, A.J., Walker, R.J., Misi, A., de Oliviera, T.F., Miller, K.E., Azmy, K.,
268	Kendall, B., and Poulton, S.W., 2013, Re-Os age constraints and new observations of
269	Proterozoic glacial deposits in the Vazante Group, Brazil: Precambrian Research, v. 238,
270	p. 199–213, doi:10.1016/j.precamres.2013.10.010.
271	Gramlich, J.W., Murphy, T.J., Garner, E.L., and Shields, W.R., 1973, Absolute isotopic
272	abundance ratio and atomic weight of a reference sample of Rhenium: Journal of
273	Research of the National Bureau of Standards, v. 77A, p. 691-698.

274	Gregory, L.C., Meert, J.G., Pradhan, V., Pandit, M.K., Tamrat, E., and Malone, S.J., 2006, A
275	paleomagnetic and geochronologic study of the Majhgawan kimberlite, India:
276	Implications for the age of the Upper Vindhyan Supergroup: Precambrian Research, v.
277	149, p. 65–75, doi:10.1016/j.precamres.2006.05.005.
278	Hahn, K.E., Turner, E.C., Babechuk, M.G., and Kamber, B.S., 2015, Deep-water seep-related
279	carbonate mounds in a Mesoproterozoic alkaline lake, Borden Basin (Nunavut, Canada):
280	Precambrian Research, v. 271, p. 173–197, doi:10.1016/j.precamres.2015.09.025.
281	Hnatyshin, D., Kontak, D.J., Turner, E.C., Creaser, R.A., Morden, R., and Stern, R.A.,
282	2016, Geochronologic (Re–Os) and fluid-chemical constraints on the formation of the
283	Mesoproterozoic-hosted Nanisivik Zn-Pb deposit, Nunavut, Canada: Evidence for early
284	diagenetic, low-temperature conditions of formation: Ore Geology Reviews, v. 79, p.
285	189-217, doi:10.1016/j.oregeorev.2016.05.017.
286	Kah, L.C., Sherman, A.G., Narbonne, G.M., Knoll, A.H., and Kaufman, A.J., 1999, δ 13C
287	stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for
288	regional lithostratigraphic correlations: Canadian Journal of Earth Sciences, v.36, p. 313-
289	332, doi:10.1139/e98-100.
290	Kah, L.C., Lyons, T.W., and Chesley, J.T., 2001, Geochemistry of a 1.2 Ga carbonate-
291	evaporite succession, northern Baffin and Bylot Islands: implications for
292	Mesoproterozoic marine evolution: Precambrian Research, v. 111, p. 1-32,
293	doi:10.1016/S0301-9268(01)00161-9.
294	Katoh, K., Kuma, Ki., Toh, H., and Miyata, T., 2005, MAFFT version 5: Improvement in

295 accuracy of multiple sequence alignment: Nucleic Acids Research, v. 33, p. 511–518,

296 doi:10.1093/nar/gki198.

- Kendall, B.S., Creaser, R.A., Ross, G.M., and Selby, D., 2004. Constraints on the timing of
 Marinoan
- 299 'Snowball Earth' glaciation by 187Re–187Os dating of a Neoproterozoic post-glacial
- 300 black shale in Western Canada: Earth and Planetary Science Letters, v. 222, p. 729–740,
- doi:10.1016/j.epsl.2004.04.004.
- 302 Kendall, B., Creaser, R.A., Gordon, G.W., and Anbar, A.D., 2009a, Re-Os and Mo isotope
- 303 systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang
- 304 Formations, McArthur Basin, northern Australia: Geochimica Cosmochimica Acta, v. 73,
- 305 p. 2534-2558, doi:10.1016/j.gca.2009.02.013.
- 306 Kendall, B., Creaser, R.A., and Selby, D., 2009b, 187Re-187Os geochronology of
- Precambrian organic-rich sedimentary rocks: Geological Society of London Special
 Publications, v. 326, p. 85–107, doi:10.1144/SP326.5.
- 309 Kumar, S., 1995, Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan
- 310 Supergroup), Katni area, central India: Precambrian Research, v. 72, p. 171–184,
- doi:10.1016/0301-9268(94)00085-6.
- Kumar, A., Gopalan, K., and Rajagopalan, G., 2001, Age of the Lower Vindhyan sediments,
 Central India: Current Science–Bangalore, v. 81, p. 806–809.
- Levasseur, S., Birck, J.L., and Allegre, C.J., 1999, The osmium riverine flux and the oceanic
- mass balance of osmium: Earth and Planetary Science Letters, v. 174, p. 7–23,
- doi:10.1016/S0012-821X(99)00259-9.
- Li, J., Liang, X.-R., Xu, J.-F., Suzuki, K., and Dong, Y.-H., 2010, Simplified technique for
- themeasurements of Re-Os isotope by multicollector inductively coupled plasma mass

- 319 spectrometry (MC-ICP-MS): Geochemical Journal, v. 44, p. p. 73-80, doi:
- **320** 10.2343/geochemj.1.0044.
- Ludwig, K. R., 1980, Calculation of uncertainties of U-Pb isotope data: Earth and Planetary
 Science Letters, v. 46, p. 212-220, doi:10.1016/0012-821X(80)90007-2.
- 323 Ludwig, K.R., 2011, Isoplot/Ex, Version 4.15: A geochronological toolkit for Microsoft Excel:
- 324 Geochronology Center Berkeley, v. 4, p.1-70.
- 325 http://www.bgc.org/isoplot_etc/isoplot.html.
- 326 Mahon, K.I., 1996, The new "York" Regression: Application of an improved statistical
- method to geochemistry: International Geology Reviews, v. 38, p. 293–303,
- doi:10.1080/00206819709465336.
- McArthur, J.M., Algeo, T.J., van de Schootbrugge, B., Li, Q., and Howarth, R.J., 2008, Basinal
 restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic
 event: Paleoceanography, v. 23, p. p. 1–22, doi:10.1029/2008PA001607.
- 332 Miller, M.A., Pfeiffer, W., and Schwartz, T., 2010, Creating the CIPRES Science Gateway for
- inference of large phylogenetic trees: In Gateway Computing Environments Workshop
 (GCE), p. 1–8, doi:10.1109/GCE.2010.5676129.
- Rasmussen, B., Bose, P.K., Sarkar, S., Banerjee, S., Fletcher, I.R., and McNaughton, N.J., 2002,
- 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible
- implications for the early evolution of animals: Geology, v. 30, p. 103–106,
- 338 doi:10.1130/0091-7613(2002)030<0103:GUPZAF>2.0.CO;2.
- Ray, J.S., Martin, M.W., Veizer, J., and Bowring, S.A., 2002, U-Pb zircon dating and Sr isotope
- 340 systematics of the Vindhyan Supergroup, India: Geology, v. 30, p. 131–134,
- doi:10.1130/0091-7613(2002)030<0131:UPZDAS>2.0.CO;2.

342	Ray, J.S., Veizer, J., and Davis, W.J., 2003, C, O, Sr and Pb isotope systematics of carbonate
343	sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and
344	implications for global events: Precambrian Research, v. 121, p. 103-140,
345	doi:10.1016/S0301-9268(02)00223-1.
346	Ray, J.S., 2006, Age of the Vindhyan Supergroup: a review of recent findings: Journal of Earth
347	System Science, v. 115, p. 149–160, doi:10.1007/BF02703031.
348	Rooney, A.D., Chew, D.M., and Selby, D., 2011, Re-Os geochronology of the Neoproterozoic-
349	Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for
350	Neoproterozoic stratigraphy, glaciations, and Re-Os systematics: Precambrian Research,
351	v. 185, p. 202–214, doi:10.1016/j.precamres.2011.01.009.
352	Rooney, A.D., Macdonald, F.A., Strauss, J.V., Dudas, F.O., Hallman, C., and Selby, D.,
353	2014, Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian
354	Snowball Earth: Proceedings of the National Academy of Sciences, v. 111, p. 51-56,
355	doi:10.1073/pnas.1317266110.
356	Rooney, A.D., Strauss, J.V., Brandon, A.D., and Macdonald, F.A., 2015, A Cryogenian
357	chronology: Two long-lasting synchronous Neoproterozoic glaciations: Geology, v. 43,
358	p. 459–462, doi:10.1130/G36511.1.
359	Selby, D., and Creaser, R.A., 2003. Re–Os geochronology of organic rich sediments: an
360	evaluation of organic matter analysis methods: Chemical Geology, v. 200, p. 225-240,
361	doi:10.1016/S0009-2541(03)00199-2.
362	Selby, D., and Creaser, R.A., 2005, Direct radiometric dating of the Devonian-Mississippian
363	time-scale boundary using the Re-Os black shale geochronometer: Geology v. 33, p.
364	545-548, doi:10.1130/G21324.1.

365	Selby, D.,	Creaser	, R.A.	Stein.	H.J.	, Markey	, R.J	, and Hannah.	J.L.	, 2007	Assessment of the
			,	,	,	7 /	2	,	,	7	

- 366 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon
- 367 chronometers in magmatic ore systems: Geochimica et Cosmochimica Acta, v. 71, p.
- 368 1999–2013, doi:10.1016/j.gca.2007.01.008.
- 369 Sherman, A.G., Narbonne, G.M., and James, N.P., 2001, Anatomy of a cyclically packaged
- 370 Mesoproterozoic carbonate ramp in northern Canada: Sedimentary Geology, v. 139, p.
- **371** 171–203, doi:10.1016/S0037-0738(00)00168-8.
- 372 Shih, P.M., and Matzke, N.J., 2013, Primary endosymbiosis events date to the later Proterozoic
- 373 with cross-calibrated phylogenetic dating of duplicated ATPase proteins: Proceedings of
- the National Academy of Sciences, v. 110, p. 12355–12360,
- doi:10.1073/pnas.1305813110.
- 376 Shih, P.M., Hemp., J., Ward, L.M., Matzke, N.J., and Fischer, W.W., 2017, Crown group

377 Oxyphotobacteria postdate the rise of oxygen: Geobiology, v. 15, p. 19–20,

- doi:10.1111/gbi.12200.
- 379 Smoliar, M.I., Walker, R.J., and Morgan, J.W., 1996, Re-Os ages of Group IIA, IIIA, IVA and
- 380 IVB iron meteorites: Science, v. 271, p. 1099–1102, doi: 10.1126/science.271.5252.1099.
- Smith, S.A., Beaulieu, J.M., and Donoghue, M.J., 2010, An uncorrelated relaxed-clock analysis
 suggests an earlier origin for flowering plants: Proceedings of the National Academy of
 Sciences, v. 107, p. 5897–5902, doi:10.1073/pnas.1001225107.
- 384 Tripathy, G.R., and Singh, S.K., 2015, Re–Os depositional age for black shales from the Kaimur
- 385 Group, Upper Vindhyan, India: Chemical Geology, v. 4.13, p. 63–72,
- doi:10.1016/j.chemgeo.2015.08.011.
- 387 Turner, E.C., and Kamber, B.S., 2012, Arctic Bay Formation, Borden Basin, Nunavut

388	(Canada): Basin evolution, black shale, and dissolved metal systematics in the
389	Mesoproterozoic ocean: Precambrian Research, v. 208, p. 1-18,
390	doi:10.1016/j.precamres.2012.03.006.
391	van Acken, D., Thomson, D., Rainbird, R.H., and Creaser, R.A., 2013, Constraining the
392	depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW
393	Canada: Rhenium-osmium dating of black shales from the Wynniatt and Boot Inlet
394	Formations: Precambrian Research, v. 236, p. 124–131,
395	doi:10.1016/j.precamres.2013.07.012.
396	Xu, G., Hannah, J.L., Stein, H.J., Bingen, B., Yang, B., Zimmerman, A., Weitschat, W.,
397	Mork A., and Weiss, H., 2009, Re-Os Geochronology of Arctic black shales to
398	evaluate the Anisian-Ladinian boundary and global faunal correlations: Earth and
399	Planetary Science Letters, v. 288, p. 581–587, doi:10.1016/j.epsl.2009.10.022
400	Xu, G., Hannah, J.L., Stein, H.J., Mork A., Vigran, J.O., Bingen, B., Schutt, D.L., and
401	Lundschien, B.A., 2014, Cause of Upper Triassic climate crisis revealed by Re-Os
402	geochemistry of Boreal black shales: Palaeogeography, Palaeoclimatology,
403	Palaeoecology, v. 395, p. 222–232, doi:10.1016/j.palaeo.2013.12.027.
404	Yang, E.C., Boo, S.M., Battacharya, D., Saunders, G.W., Knoll, A.H., Fredericq, S., Graf, L.,
405	and Yoon, H.S., 2016, Divergence time estimates and the evolution of major lineages in
406	the florideophyte red algae: Nature, v. 6, p. 21361, doi:10.1038/srep21361.