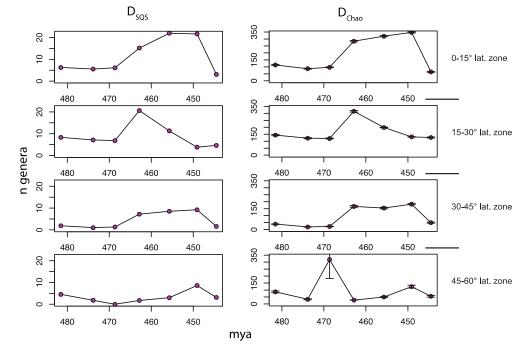
GSA Data Repository 2018029

1	Supplementary information
2	
3	Manuscript: Changes in Latitudinal Diversity Gradient during the Great
4	Ordovician Biodiversification Event
5	
6	Björn Kröger, Finnish Museum of Natural History, PO Box 44, Fi-00014 Helsinki,
7	Finland, bjorn.kroger@helsinki.fi
8	
9	
10	Additional information on Data and Methods
11	PaleoBioDB collection data are attributed lithology and environment classes,
12	which are used herein for estimating the relative number of
13	carbonate/siliciclastic and shallow/deep collections. Carbonate depositional
14	environment are all collections with primarily carbonate lithologies, siliciclastic
15	environments include sandstone and siltstone, as well as e.g. ashes and slates.
16	Shallow environments are all environments from shoreface and lagoonal, to
17	shoal, and deep environments are collection classified as, e.g. offshore, shelf,
18	slope or ramp. For estimation of environmental and lithological heterogeneity I
19	used the PaleoBioDB primary lithology data and environment data on collections
20	and excluded all collections with environment classes "marine indet.",
21	"terrestrial indet." and "not reported. This resulted in 36 classes for the
22	environment and 41 classes for primary lithology and a total of 23862, and
23	18581 classified collections respectively.

24	For comparison of the qualitative variation of occurrence environment and
25	lithology I used the HRel index (Wilcox, 1973). HRel is an index of qualitative
26	variation based on the Shannon entropy (H) and the number of classes (herein,
27	environmental classes), similar to the Shannon evenness of ecology. HRel can be
28	directly compared with the Shannon (or Pielou) evenness (see e.g. Magurran,
29	2004), where ln is used instead of \log_2 for the calculation and the number of
30	classes is represented by the number of species or genera.
31	All estimates presented in this study have been calculated and generated with R
32	statistical software. The HRel statistic was estimated using the Package qualvqr
33	version 0.1.0 (https://cran.r-project.org/web/packages/qualvar/qualvar.pdf).
34	The Shareholder Quorum Subsampling (Alroy, 2010) (herein: D_{SQS}), was
35	calculated using Alroys R function version 3.3
36	(http://bio.mq.edu.au/~jalroy/SQS-3-3.R) and the Shannon Entropy Hill
37	number (Jost, 2007; Chao et al., 2014) (herein D_{Chao}) was calculated using the R
38	Package iNext version 2.0.12 (Hsieh et al., 2016).
39	The capture-mark-recapture approach (CMR) herein was used for diversity
40	estimation. The method was transferred from ecology data to fossil data
41	following suggestions from Liow and Nichols (2010), assuming that each genus
42	is equivalent to a captured and recaptured organism, and that the total genus
43	number is equivalent to the size of the population. A presence-absence matrix
44	was constructed based on the PaleoBioDB genus occurrences for
45	chronostratigraphic stages and Bergström et al. (2009) stage slices. This matrix
46	served for the fitting of an explicit model for diversity estimation with time
47	varying probabilities of survival, sampling/preservation, and origination. In this
48	case I fitted the Jolly-Seber model following the POPAN formulation, also known

- 49 as the "superpopulation approach" (Schwarz and Arnason, 1996) (herein: D_{CMR}).
- 50 The CMR diversity estimates have been calculated with the program MARK
- 51 (<u>http://www.phidot.org/software/mark/</u>) and the R Package RMark version 2.2
- 52 (Laake, 2013). The code is available for download under
- 53 https://doi.org/10.5281/zenodo.197057.
- 54

55 Additional information on Results


56 The different diversity measures applied herein result in principally similar

- 57 trends with most intense diversifications during the Middle Ordovician and in
- low latitudes (Fig. DR1). The diversity trends can be reproduced for subsets of
- 59 different clades, such as brachiopods and mollusks (Fig. DR2). However,
- 60 differences among clades occur. The low latitude diversification of graptolites
- 61 took place earlier (during the Floian) and a strong high latitude diversification
- 62 pulse is apparent in Middle Ordovician graptolites (Fig. DR3). This pattern is in
- 63 general agreement to earlier estimations of graptolite diversity along
- 64 paleolatitudes (Cooper et al. 2004).
- 65 The diversity estimates can be diagrammatically represented as trends per
- 66 latitudinal zone (Fig. 2), and alternatively as gradients across latitudinal zones
- 67 per time interval. Both representations have benefits and drawbacks depending
- on the context. Here, the latter representation is chosen (Fig. DR4) in order to
- 69 emphasize the change in the LDG pattern through time. This change is most
- 70 dramatic from Early to Middle Ordovician.

Although the Ordovician diversity trends over time are generally paralleled by

sampling probabilities with peak values in Late Ordovician (Fig. DR5), the

- 73 individual sampling probability trends per latitudinal zones do not reflect the
- 74 diversity estimates (Fig. DR6).
- 75 The latitudinal changes in diversity over time do not reflect changes in
- 76 environmental heterogeneity (Fig. DR7). Environmental heterogeneity,
- expressed as HRel statistics, herein, is generally not higher in the tropics and no
- 78 significant Middle Ordovician increase in heterogeneity can be detected (Fig.
- 79 DR5).

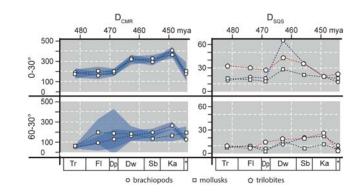
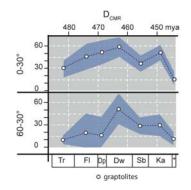


Figure DR1. Ordovician diversity trends of D_{SQS} and D_{Chao} within four

84 paleolatitudinal zones. Note the relatively high degree of similarity between the

85 curves, especially for low latitudes. Note also the high degree of similarity with

 B_{CMR} (compare with Fig. 2). D_{Chao} with 95% confidence intervals.



90 Figure DR2. Subsets of Ordovician diversity trends of D_{SQS} and D_{Chao} for different

91 clades. D_{CMR} with 95% confidence intervals, shaded areas.

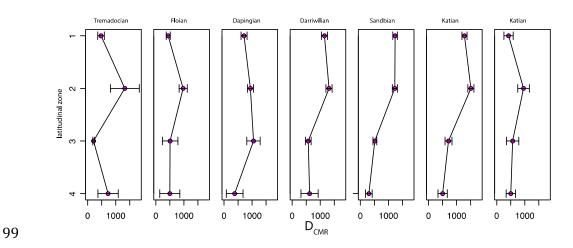
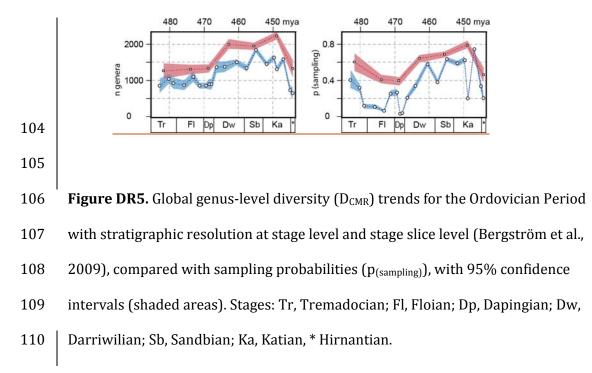
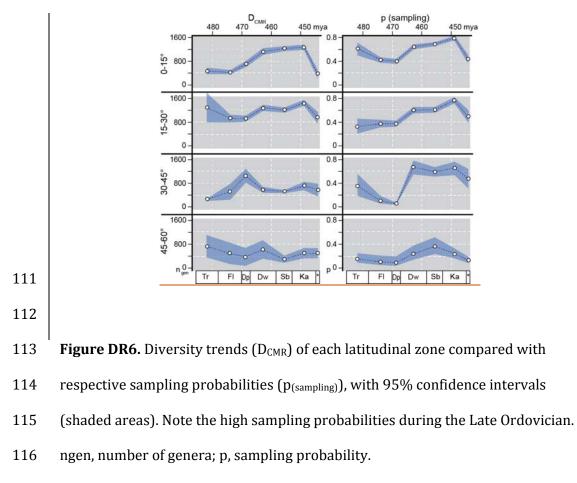
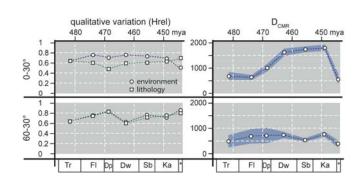
92

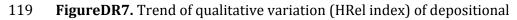
89

93

- 94 Figure DR3. Subsets of Ordovician diversity trends of D_{SQS} for graptolites. D_{CMR}
- 95 with 95% confidence intervals, shaded areas.

96


Figure DR4. Latitudinal diversity gradients (northern and southern hemisphere
combined) for Ordovician chronostratigraphic stages. Latitudinal zones are: 1, 015°; 2, 25-30°; 3, 30-45°; 45-60°. With 95% confidence intervals, shaded areas.

118

120 environment (deep, shallow etc.) and lithology (carbonate, sandstone, etc)

121 compared with diversity trends in two different latitudinal zones. D_{CMR} with 95%

122 confidence intervals, shaded areas.

125

126	References
	nerer enrees

127	Bergström	. S.M., C	lhen. X.,	Gutiérrez-	Marco, I.C	., and Dronov	. A., 2009	. The new

- 128 chronostratigraphic classification of the Ordovician System and its
- 129 relation to major regional series and stages and to ∂ 13C
- 130 chemostratigraphy: Lethaia v. 42, p, 97–107.
- 131 Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., and Ellison,
- 132 A.M., 2014, Rarefaction and extrapolation with Hill numbers: a framework
- 133 for sampling and estimation in species diversity studies: Ecological

134 Society of America, v. 84 (1), 45–67 p.

- 135 Cooper, R.A., Maletz, J., Taylor, L, and Zalasiewicz, J.A., 2004, Graptolites: Patterns
- 136 of diversity across paleolatitued, *in* Webby, B.D., Paris, F., Droser, M., and

137Percival, I., ed., The Great Ordovician Biodiversification Event: New York,

- 138 Columbia University Press, p. 281–293.
- 139 Hsieh, T.C., Ma, K.H., and Chao, A., 2016, iNterpolation and EXTrapolation for
- 140 species diversity. R package version 2.0.12.
- 141 Jost, L., 2007, Partitioning diversity into independent alpha and beta
- 142 components: Ecology, v. 88, p. 2427–2439.
- Laake, J., 2013, RMark: An R interface for analysis of capture-recapture data with
- 144 MARK. Alaska Fisheries Service Processed Report, v. 2013-01, p. 1-25.
- 145 Magurran, A.E., 2004, Measuring biological diversity: Oxford, Blackwell, 256 p.

146	McKinney, F.K., 1990, Classifying and analyszing evolutionary trends, in
147	McNamara, K.J., ed., Evolutionary trends: Tucson, University of Arizona
148	Press, p. 28–58.
149	Novack-Gottshall, P.M., and Miller, A.I., 2003, Comparative geographic and
150	environmental diversity dynamics of gastropods and bivalves during the
151	Ordovician Radiation: Paleobiology v. 29, p, 576–604.
152	Schwarz, C.J., and Arnason, A.N., 1996, A General Methodology for the Analysis of
153	Capture-Recapture Experiments in Open Populations: Biometrics, v. 52, p.
154	873-860.
155	Wilcox, A.R., 1973, Indices of Qualitative Variation and Political Measurement:
156	Western Political Quarterly v. 26, p, 325–343.