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DATA REPOSITORY 

 
The governing equations for HRAM data processing and forward modeling are listed 

below in the order of their appearance in the main text. 
 
REDUCTION TO POLE 
 

The data are reduced to pole using a filter in the Fourier domain. This filter migrates the 
observed field from the observed magnetic inclination and declination, to what the field would 
look like at the magnetic pole. The transfer function of reduction to the magnetic pole can be 
expressed in the form of 
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where f, is the spatial frequency, sgn (f) is the sign of f, j is the imaginary unit. M, N, m and n are 
the direction cosines of the magnetization and of the earth’s magnetic field, respectively (Blakely 
and Cox, 1972). The direction cosines can be expressed by the inclination ܽ and declination b of 
the magnetization, and by the inclination I and declination D of the earth’s magnetic field 

 
ܯ ൌ cos ܽ cosሺܣ െ ܾሻ, ܰ ൌ sin ܽ, 
݉ ൌ	cos ܽ cosሺܣ െ ,ሻܦ ܰ ൌ sin  ሺ2ሻ	ܫ

 
where A is the azimuth of the profile measured clockwise from geographic north. 
 
BUTTERWORTH FILTER 
 

If k, ݇0 and n is the wavenumber, central wavenumber of the filter, and degree of the 
Butterworth filter function, respectively, the filter is simply defined as 
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POWER SPECTRUM ANALYSIS 
 

The Spector and Grant (1970) equation is 
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where F is the Fourier power spectrum, k is wavenumber in cycles km1 or 2 km1, Cm is a 
constant related to units, m is a factor related to magnetization direction, f is a factor related to 
magnetic field direction, 0ܯ	is magnetization, Zt and Zb are the depths to the top and the bottom 
of the ensemble of magnetic sources, and S2 (a, b) is the factor related to horizontal dimensions 
of sources. 
 
HILBERT TRANSFORM 
 

Hilbert transform is defined as a composition of two part acting on the x component and 
one part on the y component and therefore the magnetic vertical and horizontal derivatives as the 
Hilbert transforms of each other (Nabighian, 1984). The generalized relationship can be 
presented as 
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where ሺߦ,  is the horizontal gradient at the	௛ߘ ,is the integration point in the x, y plane	ሻߟ
integration point, and R is the integration point residual. 
 
VERTICAL AND TILT DERIVATIVES 
 

The first order vertical derivative (VDRV) of the magnetic field TMAG-RTP is 
calculated using the z component of the wavenumber and can be shown as follows 
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The tilt derivative (TDRV) or tilt angle is the ratio of the vertical and total horizontal 

(THDRV) derivatives (Miller and Singh, 1994; Verduzco et al., 2004), given by 
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where the THDRV is computed using the first derivatives of the magnetic field in the x and y 
directions, given by 
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VERTICAL FAULT MODELING 
 

The vertical fault is simulated by two semi-infinite horizontal 2D sheets with 50 m offset. 
The vertical fault is modeled by (Telford et al., 1990) 
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where ܭ, 	and ,ݐ 0ܶ are magnetic susceptibility contrast, thickness of the sheets, and total 
geomagnetic intensity in the area, respectively. ܼௗ and ܼ௦ represent the depth to the deeper and 
shallower sheets. The ߝ	and ߚ are the angles related to the dip and strike of the fault plane. The ݎଵ 
and ݎଶ are the distance from the tip of the sheets at the fault plane to the surface where the 
magnetic anomaly ሺܲሻ is calculated. 
 
DIKE MODELING 
 

The dike signature is modeled by a 2D vertical prism using the general equations by 
Hood (1964) and Ram Babu et al. (1986) 
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whereܥ and ߠ are the amplitude coefficient and the index parameter, respectively. X, B, and H 
are the distance of the point of observation from the origin, half-thickness, and depth to the top 
of the dike from the plane of observation. 
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