Lehmann, J., Schulmann, K., Lexa, O., Závada, P., Štípská, P., Hasalová, P., Belyanin, G., and Corsini, M., 2017, Detachment folding of partially molten crust in accretionary orogens: A new magma-enhanced vertical mass and heat transfer mechanism: Lithosphere, doi:10.1130/L670.1.

GSA Data Repository Item 2017331

APPENDIX A: ANALYTICAL METHODS FOR ⁴⁰Ar/³⁹Ar AGE DETERMINATION

Mineral separates of white mica, biotite and hornblende were obtained after crushing and handpicking of single grains under a binocular microscope. The minerals were repeatedly cleaned ultrasonically in distilled water and subsequently wrapped in aluminum foils.

The crystals analyzed at Geoazur laboratory (University of Nice Sophia Antipolis) from samples *M680A*, *M717A* and *M635B* were co-irradiated for 30 h in the nuclear reactor at McMaster University in Hamilton (Canada) in position 5c, along with Hb3gr hornblende monitor (1073.6 \pm 5.4 Ma, Jourdan et al., 2006). The total neutron flux density during irradiation was 8.8E18 neutron cm⁻² with a maximum flux gradient estimated at 0.2 % in the volume where the samples were included. Back in Nice, single grains of amphibole and biotite were heated with a CO₂ Synrad laser, and the extracted gas was purified in a stainless and glass extraction line using two Al–Zr getters (working at 400 °C and ambient temperature respectively) and a liquid nitrogen cold trap. Isotopic measurements were performed with a VG3600 mass spectrometer and a Daly-photomultiplier system. Blank measurements were obtained before and after every three sample run. The correction factors for interfering isotopes correspond to (³⁹Ar/³⁷Ar)Ca = (7.30 ± 0.28) × 10⁴; (³⁶Ar/³⁷Ar)Ca = (2.82 ± 0.03) × 10⁴ and (⁴⁰Ar/³⁹Ar)K = (2.97 ± 0.06) × 10². Mass discrimination values range from 1.00474 to 1.00738 ± 1 % (1σ) per dalton (atomic mass unit).

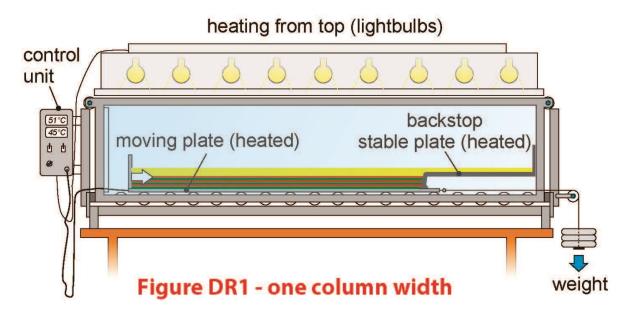
The three samples *M776B* (biotites), *M776B-1* and *M776B-2* (white micas) analyzed at SPECTRUM (University of Johannesburg), were vacuum sealed in a ca. 15 cm-long silica glass tube with a 1 cm outer diameter along with other samples and monitors and then irradiated at the NTP radioisotopes SAFARI1 nuclear reactor at Pelindaba, South

Africa, for 20 hours in position B2W with the reactor running at 20 MW. Two 0.2 mg aliquots of each sample were analyzed by stepwise heating, using a defocused beam from a continuous Nd-YAG 1064 nm laser and a MAP 215-50 noble gas mass spectrometer. Signals were measured on a Johnston focused-flow electron multiplier providing excellent linearity in analogue mode. The Fish Canyon sanidine (28.31 \pm 0.04 Ma) and Hb3gr amphibole (1080.40 \pm 1.10 Ma) (Renne et al., 2010), as well as McClure Mountain amphibole (523.00 \pm 1.00 Ma) (Schoene and Bowring, 2006) standards, were used as monitors, yielding within uncertainty limits, identical J-values. A slight flux gradient was monitored and taken into account by placing standards at the bottom and top of the irradiation package. The value for the ⁴⁰K decay constant derived by Renne et al. (2010) was utilized. Measurement control and data reduction was carried out using an in-house software suite that includes full error propagation by Monte Carlo procedures. Uncertainties are shown at the 95 % (2 σ) confidence level.

The criteria for defining plateau ages were as follows: (i) a plateau age should contain at least 70 % of the total released ³⁹Ar, (ii) there should be at least three successive steps in the plateau, and (iii) the integrated age of the plateau should agree with each apparent age of the plateau within a 2σ error confidence interval.

TABLE 1A: SUMMARY OF ⁴⁰ Ar/ ³⁹ Ar GEOCHRONOLOGY DATA FROM GEOAZUR LABORATORY (UNIVERSITY OF NICE	- SOPHIA-ANTIPOLIS)	
--	---------------------	--

			TADLE				AI GEOCHK		-0010		DAZUR LABORATORT (U	JNIVERSITTO		JENIA-AN	,						
Temp [°C]	⁴⁰ Ar/ ³⁹ Ar	±	1σ	³⁷ Ar/ ³⁹ Ar	±	1σ	³⁶ Ar / ³⁹ Ar	±	1σ	Ca/K			⁴⁰ Ar* (%)	³⁹ Ar _K (%)	⁴⁰ Ar*/ ³⁹ Ar _K	±	1σ	Age (Ma)	±	2σ	Include
ent k468) [45.2	3187°N, 9	97.989	959°E]																		
7			-																		
381	-23.90) ±	60.73	- 248.94	±	776.72	0.73	±	3.03				1091.30	0.00	-220.72	±	766.39	0.00	±	16349.88	no
451	10.55	±	0.13	0.45	±	0.44	0.00	±	0.0	1			98.99	3.52	10.45	±	0.77	335.85	±	45.22	yes
476	10.89	±	0.11	-0.07	±	0.04	0.00	±	0.0	1			100.30	35.12	10.92	±	0.14	349.79	±	7.91	yes
485	10.58	±	0.11	-0.18	±	0.09	0.00	±	0.0	1			103.18	14.13	10.91	±	0.18	349.52	±	10.67	yes
502	10.22	±	0.13	-0.41	±	0.24	0.00	±	0.0	1			107.77	4.70	11.01	±	0.43	352.43	±	24.93	yes
525	10.43	±	0.11	-0.39	±	0.10	0.00	±	0.0	1			105.67	11.00	11.02	±	0.29	352.57	±	16.87	yes
585	10.53	±	0.11	-0.07	±	0.05	0.00	±	0.0	1			101.08	20.37	10.65	±	0.16	341.74	±	9.20	yes
655	10.72	±	0.11	-0.15	±	0.18	0.00	±	0.0	1			98.06	5.94	10.51	±	0.27	337.69	±	15.96	yes
753	10.90	±	0.15	-0.32	±	0.71	-0.01	±	0.0	1			122.66	1.82	13.36	±	1.45	419.45	±	81.27	yes
Fusion	11.82	±	0.15	-0.70	±	0.28	0.00	±	0.0	1			103.85	3.39	12.27	±	0.90	388.61	±	51.44	yes
ent k470) [45.2	3685°N,																				
7																					
613	12.56	±	0.14	0.18	±	0.09	0.00	±	0.0				88.89	3.31	11.17	±	0.29	356.84	±	16.63	yes
649	11.02	±	0.11	0.10	±	0.10	0.00	±	0.0	1			98.95	2.46	10.90	±	0.25	349.15	±	14.75	yes
693	10.90	±	0.11	0.05	±	0.01	0.00	±	0.0	1			100.31	45.39	10.94	±	0.11	350.11	±	6.49	yes
715	10.95	±	0.11	0.06	±	0.02	0.00	±	0.0	1			101.36	15.62	11.10	±	0.12	354.96	±	7.15	yes
735	10.91	±	0.11	0.00	±	0.03	0.00	±	0.0	1			101.18	11.61	11.04	±	0.13	353.08	±	7.65	yes
765	10.90	±	0.11	0.02	±	0.02	0.00	±	0.0	1			101.40	10.09	11.05	±	0.13	353.44	±	7.46	ye
820			0.12	0.21	±	0.08							102.35	3.92			0.20	359.94	±	11.40	ves
	nent k470) [45.2 7 381 451 476 485 502 525 585 655 753 Fusion nent k470) [45.2 7 613 649 693 715 735 735 735 735	All	$\frac{1 \text{ cmp } [°C] \qquad {}^{39}\text{Ar} \qquad \pm \\ \frac{39}{\text{Ar}} \qquad \pm \\ \frac{39}{\text{Ar}} \qquad \pm \\ \frac{381}{2} \qquad -23.90 \qquad \pm \\ \frac{451}{2} \qquad 10.55 \qquad \pm \\ \frac{451}{2} \qquad 10.55 \qquad \pm \\ \frac{476}{2} \qquad 10.22 \qquad \pm \\ \frac{525}{202} \qquad 10.22 \qquad \pm $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \frac{4^{3}A_{1}'}{28^{3}A_{1}'} \pm 1\sigma & \frac{3^{2}A_{1}'}{88^{3}A_{1}'} \pm 1\sigma & \frac{3^{2}A_{1}'}{88^{3}A_{1}'} \pm 1\sigma & Ca/K & \frac{4^{3}A_{1}'}{(\%)} & \frac{4^{3}A_{1}'}{(\%)} & \frac{4^{3}A_{1}'}{88^{3}A_{1}'} \pm 1\sigma & Age \\ (\%) & (\%) & (\%) & \frac{4^{3}A_{1}'}{88^{3}A_{1}'} \pm 1\sigma & Age \\ (\%) & (\%) & \frac{4^{3}A_{1}'}{88^{3}A_{1}'} \pm 1\sigma & Age \\ (\%) & (\%) & (\%) & \frac{4^{3}A_{1}'}{88^{3}A_{1}'} \pm 1\sigma & Age \\ (\%) & (\%) & \frac{4^{3}A_{1}'}{88^{3}A_{1}'} \pm 1\sigma & Age \\ (\%) & (\%) & \frac{4^{3}A_{1}'}{88^{3}A_{1}'} \pm 1\sigma & Age \\ (Ma) & \pm 2\sigma \\ ($									


= 0.015/209 ± 0.000076 4472.4 680 13.08 ± 0.21 1.35 ± 1.31 0.03 ± 0.01 4472.4 680 13.08 ± 0.21 0.00 ± 0.00 4472.4 160 ± 0.03 ± 0.01 5.01 ± 0.00 ± 0.00 4472.4 160 ± 0.03 ± 0.01 5.01 ± 0.02 ± 0.01 ± 0.00 4472.4 160 ± 0.02 ± 0.01 5.01 ± 0.02 ± 0.00 ± 0.00 4473.6 ± 0.01 5.01 ± 0.02 ± 0.01 ± 0.00 ± 0.00 4473.6 ± 0.01 5.01 ± 0.02 ± 0.01 ± 0.00 ± 0.00 4473.6 ± 0.01 5.01 ± 0.01 ± 0.01 ± 0.00 ± 0.00 4473.6 ± 0.01 5.01 ± 0.01 ± 0.00 ± 0.00 4473.6 ± 0.01 ± 0.00 ± 0.00 ± 0.00 4473.6 ± 0.00 ± 0.00 ± 0.00 ± 0.00 4473.6 ± 0.000 ± 0.00	K470-8	Fusion	11.46	±	0.12	0.13	±	0.03	0.00) ±	0.	00						99.13	7.33	11.36	±	0.14	362.30	±	8.37	yes
1.5 serter = 0.0195294 0.000070 K77.2-4 1202 1153 ± 0.014 136 ± 1.73 0.00 ± 0.07 K77.2-4 1202 1153 ± 0.014 136 ± 1.73 0.00 ± 0.07 K77.2-4 1202 1153 ± 0.116 ± 0.014 136 ± 0.12 0.000 ± 0.00 K77.2-5 10000 1153 ± 0.014 120 ± 0.020 ± 0.000 K77.2-5 10000 1153 ± 0.014 120 ± 0.012 12000 1153 ± 0.000 1100 1100 1100 1100 1100 1100 1	Amphibole M635B (experime	ent k473) [45.26	824°N.																							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	98.1497°E]		- ,																							
K473-3 K473-4	$J = 0.0195259 \pm 0.0000976$	6																								
K473-4 K475-4 1200 10.0 11.0 0 0 0.00 <td></td> <td>no</td>																										no
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																										no
Kr2-6 Pulon 0.00 * 0.00																										
TABLE 18: SUMMARY OF "And" a GOCHRONOLOGY DATA FROM SPECITUM (UNIVERSITY OF JOHANNESSURG)" in an intermed wind wind in a straight of the st																					±					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	K473-6	Fusion	10.98	±	0.11															11.05	±	0.12	353.35	±	6.90	yes
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						TABL	E 1B:	SUMMARY (OF ⁴⁰ Ar/ ³⁹ /	Ar GE	OCHRO	ONOLOGY DAT	ra fr	ROM SPEC	FRUM (UN	IVER	SITY OF J	OHANNES	BURG) ^a							
The mean MY78b-1 (45.23 MBYN. 001'E1 = 0.000112	Step number	temperature	⁴⁰ Ar/ ³⁹ Ar	±	1σ	³⁷ Ar/ ³⁹ Ar	±	1σ	³⁶ Ar/ ³⁹ Ar	±	1σ	Ca/K	±	1σ	CI/K	±	1σ			⁴⁰ Ar*/ ³⁹ Ar	±	1σ		±	2σ	Included
3.001°E] 0.00176 ± 0.00012 0.0017 ± 0.001 0.0017 ± 0.001 0.0017 ± 0.001 0.0017 ± 0.001 0.0007 ± 0.0007 0.001 ± 0.0007 0.003 ± 0.0007	White mice M776B-1 [45-23	()																()	()				()			
= 0.00168 ± 0.00012	•	000 N,																								
6617 6.1 5.56 .																										
6611_8_1_9.563. 565 ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< <		500				-						_		-	-				0.01	-132 02	-	141 70	0.00	+	3060 12	no
6619.6.19.79A 630 0.1449 # 0.0068 0.2745 # 0.0019 1.54 25.65 # 0.34 344.74 # 8.17 yes 6622.6.1 1.024A 25.05 # 0.34 344.74 # 8.17 yes 6622.6.1 1.024A 825 0.035 0.0017 2.0005 0.0022 5.77 21.08 2.57.7 21.08 # 0.15 3.012 yes 6623.6.1 0.157.4 0.062 0.077 2.08 2.57.8 # 0.018 # 0.0022 5.24 2.58.1 # 0.51 344.34 # 1.28.9 yes 6627.6.1 0.1064 1.0002 0.0077 # 0.0002 1.61 # 0.002 1.61 2.55.8 # 0.01 # 3.92 yes 6628.6.1 1.05A 0.006 # 0.0005 0.0012 # 0.0002 1.62 2.52.8 # 0.17 3.43.81 # 3.53 yes 6628.6.1 1.05A 0.006 #								-				-			- 0 2082	+										
BEB2 6.1 0.0044 a 0.0024 0.0063 a 0.0007 2.88 2.33 5.82 a 5.31 S5.41 yes 6632 6.1 0.037 a 0.0015 0.0021 0.0012 5.0019 a 0.0022 5.77 25.08 a 0.15 347.63 a 3.31 yes 6632 6.1 0.037 a 0.0017 0.0041 a 0.002 7.77 25.08 a 0.01 344.48 a 2.89 yes 6632 6.1 1.056A 0.0007 a 0.0013 0.0015 a 0.002 2.17 2.57 a 0.01 344.48 a 2.89 yes 6632 6.1 1.056A 1000 a 0.0012 a 0.0012 a 0.002 3.91 25.68 a 0.13 343.61 a 3.33 yes 6633 6.1 1.446 1.0016 0.0017<						0 1 / / 0	+	9900.0				0.27/5	-													
6622.6.1 10.03A 760 0.0117 ± 0.0015 0.0035 0.0016 ± 0.0002 6.15 26.29 ± 0.11 30.06 ± 3.31 yes 6623.6.1 1.03A 890 0.0021 ± 0.0017 0.0015 ± 0.0002 5.24 25.81 ± 0.51 344.34 ± 1.28 yes 6625.6.1 1.05A 1.05A 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0007 ± 0.0002 2.57 ± 0.011 ± 2.53 ± 0.011 ± 0.0015 ± 0.0002 ± 0.0015 ± 0.0002 ± 0																										
6623.6.1 0.035 * 0.001 0.0066 * 0.002 5.77 26.08 * 0.15 347.53 * 3.91 yes 6622.6.1 0.037 * 0.0007 * 0.0002 5.24 25.81 * 0.15 347.53 * 3.91 yes 6622.6.1 0.0303 * 0.0007 * 0.0002 1.745 25.81 * 0.10 346.46 * 2.289 yes 6622.6.1 1.056A 0.0007 * 0.0003 * 0.0002 7.18 25.87 * 0.08 346.46 * 2.289 yes 6623.6.1 1.056A 0.0007 * 0.0007 0.0011 * 0.0002 7.28 25.67 * 0.13 343.91 yes 6632.6.1 1.1126A 1280 0.0074 * 0.0085 * 0.0015 * 0.0002 3.31 26.66 * 1.13 343.91 yes 463.4 1.115A 1.400 1.401 yes 1.401 yes 1																										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																										
6625 0.1056 * 0.0007 * 0.0003 * 0.0003 * 0.0003 * 0.0003 * 0.0002 26.17 * 25.87 * 0.003 * 0.001 * 0.0002 26.17 * 25.87 * 0.003 * 0.001 * 0.0002 26.17 * 25.87 * 0.003 * 0.001 * 0.0002 26.17 * 25.87 * 0.013 * 0.0002 7.28 * 25.88 * 0.017 * 0.001 * 2.93 * yes 6623.6 1.11.05 A 1105 O 0.0005 * 0.0006 * 0.0018 * 0.0002 3.91 * 25.86 * 0.013 * 3.33.81 * 3.53 * yes 6633.6 1.11.12A 1280 0.001 * 0.0001 * 0.0002 3.91 * 0.0003 0.12 * 0.0003 1.02 * 25.67 * 0.04 * 0.017 * yes 6633.6 1.11.40 1345 0.0015 * 0.0001 * 0.0003 0.014 * 0.0003 0.017 * 0.0003 0.017 * 0.0003 0.017 * 0.0003 0.017 * 0.0003 0.017 * 0.0003 0.017 * 0.0003 0.017 * 0.0003 0.017 * 0.0017 * 0.0017 * 0.0003 * 0.0001 * 0.0001 * 0.0001 * 0.0001 * 0.0003 * 0.0001 * 0.0003 * 0.0001 * 0.0003 * <																										
6627_6_1_1068A 1020 0.0007 ± 0.0007 ± 0.0007 ± 0.0002 26.17 25.87 ± 0.08 34.41 3.32 yes 6628_6_1_10.95A 1150 0.0006 ± 0.0005 ± 0.0002 1.62 25.52 ± 0.11 34.01 ± 3.33 yes 6638_6_1_11.95A 1255 0.0006 ± 0.0005 0.0012 0.0015 ± 0.0002 3.91 25.66 ± 0.13 34.61 ± 3.33 yes 6638_6_1_11.40A 1245 0.0015 ± 0.0012 0.017 ± 0.0002 3.91 25.66 ± 0.13 34.864 ± 11.75 yes 6633_6_1_11.50A 1400 0.015 ± 0.0081 ± 0.0017 ± 0.0003 0.02 2.5.4 ± 0.17 yes 11.76 yes 11.76 10.77 11.76 10.001 ± 0.001 7.97 2.5.4 ± 0.43 32.7 ± 11.77 n0.7 10.023 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td></td<>																										,
6628_6_1_10.81A 1065 0.0014 0.0005 ± 0.0007 0.0015 ± 0.0002 7.28 25.58 ± 0.17 341.41 ± 3.29 yes 6632.6_1_11.10A 1215 0.0006 ± 0.0006 0.0011 ± 0.0002 0.002 9.39 25.76 ± 0.13 343.61 ± 3.33 yes 6633.6_1_11.40A 1245 0.0015 ± 0.0022 0.0015 ± 0.0002 9.39 25.76 ± 0.43 43.64 ± 11.55 yes 663.6.1 11.56A 0.0021 ± 0.0023 1.02 25.76 ± 0.44 340.24 ± 11.55 yes 563.6.1 1.50 24.54 ± 0.43 34.64 ± 11.75 yes 563.6.1 1.50 24.54 ± 0.43 34.04 ± 11.75 yes 563.6.1 7.76 50.0 - - - 0.0023 ± 0.0001 7.72 25.70 ± 0.43 32.94 ± 3.71 yes																										
6629_6_1_70.95A 1150 0.0006 \$\$\$\$\$\$0.00012 \$\$\$\$\$\$0.0009 0.0015 \$																										
6630_6_1_11.10A 1215 0.0006 ± 0.0011 ± 0.0012 0.0015 ± 0.0002 3.91 25.76 ± 0.13 343.61 ± 3.53 yes 6633_6_1_11.40A 1345 0.0015 ± 0.0005 0.0028 ± 0.0016 ± 0.0003 1.02 25.76 ± 0.49 343.64 ± 11.95 6633_6_1_11.40A 1345 0.0015 ± 0.0016 ± 0.0016 ± 0.0003 1.02 25.76 ± 0.49 343.64 ± 11.95 yes ihim mics M778B_2[45.23885N; 98.661*E] = - - - 0.0083 ± 0.0005 1.50 24.54 ± 0.48 328.72 ± 11.79 no 7632.6_1_776B_9.35A 500 - - - 0.0083 ± 0.0001 7.97 25.70 ± 0.15 342.94 ± 3.71 yes 7632.6_1_776B_9.35A 500 - - - 0.0006 ± 0.0001 7.97 25.70 <td></td> <td>,</td>																										,
6832 6_1 1125A 1200 0.0047 ± 0.0018 0.0025 0.0015 ± 0.0002 3.91 25.86 ± 0.15 34.364 ± 11.95 6633 6_1 11.15A 1400 0.0129 ± 0.0081 0.0245 ± 0.017 ± 0.0003 0.07 25.48 ± 0.44 340.64 ± 11.95 yes c633 6_1 11.55A 1400 0.0128 ± 0.0015 ± 0.0003 0.07 ± 0.003 0.07 25.48 ± 0.44 340.20 ± 11.79 yes c1632 6_1 7683 6_1 7683 0.0077 0.0063 ± 0.0001 7.97 25.70 ± 0.15 342.44 ± 3.71 yes c1633 6_1 7683 6_1 7683 0.0031 ± 0.0002 ± 0.0001 7.97 25.70 ± 0.15 342.44 ± 3.71 yes c1634 6_1 764 0.0022																										
6633 6.1 1140A 1345 0.0015 ± 0.0081 0.0028 ± 0.0180 0.0017 ± 0.0003 0.97 25.48 ± 0.44 343.64 ± 11.95 yes mbm mics MT785.2 11.555 0.0017 ± 0.0003 0.97 25.48 ± 0.44 340.64 ± 10.79 yes = 0.008155 ± 0.0015 0.0015 0.0003 1.50 24.54 ± 0.44 340.20 ± 10.79 yes = 0.008155 ± 0.0005 1.50 24.54 ± 0.48 328.72 ± 11.79 no 7633.6 1.7768.9.95A 560 0.0024 ± 0.0032 0.0064 0.0016 ± 0.0001 7.36 25.76 ± 0.48 328.72 ± 11.79 no 7.76 7.97 2.570 ± 0.15 37.46 ± 3.90 yes 7.65 1.61 7.68 1.61 7.68 1.61 7.68 1.61 7.68																										
6634 61 11.55A 1400 0.012 ± 0.0081 0.0245 ± 0.017 ± 0.003 0.97 25.48 ± 0.44 340.20 ± 10.79 yes *hite mica M776B.2 [45,23685*N, 98.061*E] = - - - 0.0083 ± 0.0005 1.0005 1.50 24.54 ± 0.48 326.72 ± 11.79 no 7632.6 [.776B.9.977A 500 - - - - 0.0063 ± 0.0001 7.97 25.70 ± 0.15 347.46 ± 3.90 yes 7634.6 [.776B.9.977A 600 0.0024 ± 0.0032 0.0064 ± 0.0001 7.97 25.70 ± 0.15 347.46 ± 3.90 yes 7634.6 [.776B.10.28A 680 0.0031 ± 0.0022 0.0024 0.0016 ± 0.0001 7.02 25.33 ± 0.61 324.04 ± 2.89 yes 7634.6 [.776B.10.47A 740 0.00121 ± 0.0022 0.0048																										
The mice M776B-2 [45.23685*N, 98.061*E] = 0.008155 ± 0.000012 7633_6_1_776B_9.95A 560 0.0028 ± 0.0037 0.0053 ± 0.0001 7.97 25.70 ± 0.15 342.94 ± 3.71 yes 7633_6_1_776B_9.95A 560 0.0028 ± 0.0037 0.0053 ± 0.0001 7.97 25.70 ± 0.15 342.94 ± 3.71 yes 7634_6_1_776B_10.29A 680 0.0031 ± 0.0028 0.0046 ± 0.0060 0.0011 7.96 26.88 ± 0.15 347.46 ± 3.90 yes 7633_6_1_776B_10.29A 680 0.0031 ± 0.0028 0.0048 ± 0.0001 7.96 26.83 ± 0.16 342.05 ± 4.28 yes 7633_6_1_776B_10.81A 860 - - - 0.0016 ± 0.0001 9.70 26.23 ± 0.09 349.33 ± 2.69 yes 7634_6_1_776B_10.81A 860 - - - 0.0023 ± 0.0006 3.01 27.32 ± 0.61 362.49 ± 31.99 yes 7641_6_1_776B_10.81A 860 - - -																										
= 0.008155 ± 0.00012 - - - 0.0083 ± 0.0005 1.50 24.54 ± 0.48 328.72 ± 11.79 no 7632 6_1.776B_9.95A 560 0.0028 ± 0.0037 0.0053 ± 0.0001 7.97 25.70 ± 0.15 342.94 ± 3.71 yes 7634 6_1.776B_10.29A 680 0.0024 ± 0.0028 0.0064 0.0016 ± 0.0001 7.96 25.63 ± 0.15 342.94 ± 3.71 yes 7636.6 1.776B_10.29A 680 0.0013 ± 0.0028 0.0064 0.0016 ± 0.0001 7.02 25.63 ± 0.15 342.94 ± 3.89 yes 7633.6 1.776B_10.47A 740 0.0015 ± 0.0022 0.0024 ± 0.0016 ± 0.0016 4.73 27.32 ± 0.61 362.49 ± 13.99 yes 7641.6 1.776B	0004_0_1_11.30A	1400				0.0123	±	0.0001				0.0243	<u>+</u>	0.0100	0.0017	±	0.0005		0.37	20.40	-	0.44	540.20	±	10.73	yes
= 0.008155 ± 0.00012 - - - 0.0083 ± 0.0005 1.50 24.54 ± 0.48 328.72 ± 11.79 no 7632 6_1.776B_9.95A 560 0.0028 ± 0.0037 0.0053 ± 0.0001 7.97 25.70 ± 0.15 342.94 ± 3.71 yes 7634 6_1.776B_10.29A 680 0.0024 ± 0.0028 0.0064 0.0016 ± 0.0001 7.96 25.63 ± 0.15 342.94 ± 3.71 yes 7636.6 1.776B_10.29A 680 0.0013 ± 0.0028 0.0064 0.0016 ± 0.0001 7.02 25.63 ± 0.15 342.94 ± 3.89 yes 7633.6 1.776B_10.47A 740 0.0015 ± 0.0022 0.0024 ± 0.0016 ± 0.0016 4.73 27.32 ± 0.61 362.49 ± 13.99 yes 7641.6 1.776B	White mica M776B-2 [45.23	685°N, 98.061°E	=1																							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$J = 0.008155 \pm 0.000012$,																								
7633 6.1 7768 9.95A 560 0.0024 ± 0.0037 0.0053 ± 0.0010 7.97 25.0 ± 0.15 342.94 ± 3.71 yes 7634 6.1 7768 0.0024 ± 0.0032 0.0046 ± 0.0010 ± 0.0011 7.97 25.08 ± 0.15 342.94 ± 3.71 yes 7634 6.1 7768 0.0024 ± 0.0020 0.0016 ± 0.0001 7.97 25.08 ± 0.15 342.94 ± 3.90 yes 7637 6.1 7768 0.0474 740 0.0015 ± 0.0022 0.0024 ± 0.0016 ± 0.0001 9.70 26.23 ± 0.015 337.90 ± 2.69 yes 7637.65 1.16 342.04 ± 1.39 yes 7637.65 ± 0.016 ± 0.0001 1.261 26.07 ± 0.08 37.34 ± 2.49 yes 7642.61 7768_11.133A 1040 - </td <td></td> <td>500</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>0.0083</td> <td>±</td> <td>0.0005</td> <td></td> <td>1.50</td> <td>24.54</td> <td>±</td> <td>0.48</td> <td>328.72</td> <td>±</td> <td>11.79</td> <td>no</td>		500				-		-				-		-	0.0083	±	0.0005		1.50	24.54	±	0.48	328.72	±	11.79	no
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.0028	±	0.0037				0.0053	±	0.0070												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7634_6_1_776B_10.12A																									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7637_6_1_776B_10.47A																									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7638_6_1_776B_10.64A	800				-		-				-		-	0.0016				3.04	25.29	±	1.15	337.90	±		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7639_6_1_776B_10.81A					-		-				-		-												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7641 6 1 776B 10.99A					0.0021	±	0.0022				0.0040	±	0.0041												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7642_6_1_776B_11.16A																									
$7644_{-0}^{-1}_{-776B_{-11.51A}}$ 11000.0005 ±0.00310.0010 ±0.00580.0016 ±0.00017.5125.43 ±0.12339.56 ±3.30yes $7646_{-0}^{-1}_{-776B_{-11.68A}}$ 11600.0015 ±0.00013.3325.62 ±0.20341.93 ±5.27yes $7647_{-0}^{-1}_{-776B_{-12.03A}}$ 12200.0014 ±0.00014.0325.91 ±0.18345.45 ±4.85yes $7648_{-0}^{-1}_{-776B_{-12.03A}}$ 12800.0014 ±0.00017.1526.42 ±0.13351.62 ±3.60yes $7649_{-0}^{-1}_{-776B_{-12.20A}}$ 13400.0014 ±0.00014.0526.08 ±0.21347.53 ±5.55yes $7651_{-0}^{-1}_{-776B_{-12.40A}}$ 14000.1297 ±0.03940.2457 ±0.07500.0008 ±0.00040.7620.12 ±0.80273.80 ±20.60noioite M776B [45.23685^h, 98.061°E]=0.02770.0107 ±0.00270.0107 ±0.00121.4523.23 ±0.55312.83 ±14.34no $6636_{-7}_{-1}_{-1}_{-1}_{-9.60A}$ 5650.0179 ±0.00220.0340 ±0.00540.0080 ±0.00997.6624.57 ±0.15329.32 ±3.69yes	7643 6 1 776B 11.33A					-		-				-		-												
7646 = 1 776B 11.68A11600.0015 \pm 0.00013.3325.62 \pm 0.20341.93 \pm 5.27yes7647 = 1 776B 11.85A12200.0014 \pm 0.00014.0325.91 \pm 0.18345.45 \pm 4.85yes7648 = 1 776B 12.03A12800.0014 \pm 0.00017.1526.42 \pm 0.13351.62 \pm 3.60yes7649 = 1 776B 12.20A13400.0014 \pm 0.00017.1526.42 \pm 0.13351.62 \pm 3.60yes7651 = 6 1 776B 12.20A13400.0014 \pm 0.00014.0526.08 \pm 0.21347.53 \pm 5.55yes7651 = 6 1 776B 12.20A14000.1297 \pm 0.03940.2457 \pm 0.00040.7620.12 \pm 0.80273.80 \pm 20.60noioite M776B [45.23685*N, 98.061°E]=0.01750.0008 \pm 0.0040.7620.12 \pm 0.80273.80 \pm 20.60no6636 7 1 B 19.50A5000.0499 \pm 0.00980.0946 \pm 0.02070.0107 \pm 0.00121.4523.23 \pm 0.55312.83 \pm 14.34no6637 7 1 B 9.60A5650.0179 \pm 0.00220.0340 \pm						0.0005		0.0031				0.0010	±	0.0058												
$7647_{-6}_{-1}^{-776B}_{-12.03A}$ 1220 0.0014 \pm 0.0001 4.03 25.91 \pm 0.18 345.45 \pm 4.85 yes $7648_{-6}_{-1}^{-776B}_{-12.03A}$ 1280 0.0014 \pm 0.0001 7.15 26.42 \pm 0.13 351.62 \pm 3.60 yes $7649_{-6}_{-1}^{-776B}_{-12.20A}$ 1340 0.0014 \pm 0.0001 4.05 26.08 \pm 0.21 347.53 \pm 5.55 yes $7651_{-6}_{-1}^{-776B}_{-12.20A}$ 1400 0.1297 \pm 0.0394 0.2457 \pm 0.0014 \pm 0.0004 0.76 20.12 \pm 0.80 273.80 \pm 20.60 noioite M776B [45.23685^n, 98.061°E]= 0.0046 \pm 0.0277 0.0107 \pm 0.0012 1.45 23.23 \pm 0.55 312.83 \pm 14.34 no $6637_{-71}_{-8}_{-9.60A}$ 565 0.0179 \pm 0.0022 0.0340 \pm 0.009 \pm 0.055 312.83 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td>						-	_	-				-	-	-												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-		-				-		-												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-		-				-		-												
7651_6_1_776B_12.40A 1400 0.1297 ± 0.0394 0.2457 ± 0.0750 0.008 ± 0.004 0.76 20.12 ± 0.80 273.80 ± 20.60 no ioitie M776B [45.23685°N, 98.061°E] = 0.008160 ± 0.000012 -						-		-				-		-												,
ioite M776B [45.23685°N, 98.061°E] = 0.008160 ± 0.000012 6636_7_1_Bt_9.50A 500 0.0499 ± 0.0098 0.0946 ± 0.0207 0.0107 ± 0.0012 1.45 23.23 ± 0.55 312.83 ± 14.34 no 6637_7_1_Bt_9.60A 565 0.0179 ± 0.0022 0.0340 ± 0.0054 0.0080 ± 0.0009 7.66 24.57 ± 0.15 329.32 ± 3.69 yes	7651_6_1_776B_12.40A					0.1297	±	0.0394				0.2457	±	0.0750												
= 0.008160 ± 0.000012 6636_7_1_Bt_9.50A 500 0.0499 ± 0.0098 0.0946 ± 0.0207 0.0107 ± 0.0012 1.45 23.23 ± 0.55 312.83 ± 14.34 no 6637_7_1_Bt_9.60A 565 0.0179 ± 0.0022 0.0340 ± 0.0054 0.0009 7.66 24.57 ± 0.15 329.32 ± 3.69 yes							_						_			-					_			_	0	
6636_7_1_Bt_9.50A 500 0.0499 ± 0.0098 0.0946 ± 0.0207 0.0107 ± 0.0012 1.45 23.23 ± 0.55 312.83 ± 14.34 no 6637_7_1_Bt_9.60A 565 0.0179 ± 0.0022 0.0340 ± 0.0054 0.0009 7.66 24.57 ± 0.15 329.32 ± 3.69 yes																										
6637_7_1_Bt_9.60A 565 0.0179 ± 0.0022 0.0340 ± 0.0054 0.0080 ± 0.0009 7.66 24.57 ± 0.15 329.32 ± 3.69 yes		500				0 0499	+	0 0098				0 0946	+	0 0207	0 0107	+	0.0012		1 45	23.23	+	0.55	312.83	+	14 34	no
	0000_/_1_DL_0./0A	000				0.0024	-	0.0022				0.0040	-	0.0040	0.0075	-	0.0000		(.+)	27.14	-	0.17	001.02	-	4.50	y03

6639_7_1_Bt_9.80A	695	0.0015	±	0.0012	0.0028	±	0.0022	0.0073	±	0.0008	11.29	25.00	±	0.10	334.50	±	2.71	yes
6641_7_1_Bt_9.90A	760	-		-	-		-	0.0074	±	0.0008	10.82	25.01	±	0.07	334.66	±	2.39	yes
6642_7_1_Bt_10.00A	825	0.0006	±	0.0011	0.0011	±	0.0020	0.0071	±	0.0008	13.57	24.94	±	0.08	333.76	±	2.39	yes
6643_7_1_Bt_10.10A	890	0.0014	±	0.0015	0.0026	±	0.0028	0.0069	±	0.0008	7.72	24.99	±	0.12	334.48	±	3.25	yes
6644_7_1_Bt_10.20A	955	0.0026	±	0.0018	0.0049	±	0.0034	0.0073	±	0.0008	8.69	25.16	±	0.14	336.46	±	3.98	yes
6646_7_1_Bt_10.30A	1020	-		-	-		-	0.0072	±	0.0008	7.23	25.25	±	0.12	337.58	±	3.34	yes
6647_7_1_Bt_10.40A	1085	-		-	-		-	0.0074	±	0.0008	3.97	25.08	±	0.27	335.56	±	6.83	yes
6648_7_1_Bt_10.50A	1150	-		-	-		-	0.0074	±	0.0008	7.16	24.91	±	0.54	333.49	±	13.85	yes
6649_7_1_Bt_10.70A	1215	-		-	-		-	0.0075	±	0.0008	9.80	25.18	±	0.13	336.74	±	3.44	yes
6651_7_1_Bt_10.90A	1280	-		-	-		-	0.0073	±	0.0009	1.23	24.25	±	0.69	325.36	±	16.70	yes
6652_7_1_Bt_11.10A	1345	-		-	-		-	0.0046	±	0.0010	0.52	18.44	±	1.79	252.65	±	46.12	no
6653_7_1_Bt_11.70A	1400	0.0150	±	0.0126	0.0284	±	0.0240	0.0084	±	0.0012	1.49	23.62	±	0.90	317.62	±	22.41	no
^a Step temperatures optically est	timated.																	

APPENDIX B: ANALOGUE MODELLING OF CRUSTAL-SCALE DETACHMENT FOLDS

Experimental setup

The analogue modelling apparatus consists of two heating plates confined between two glass panes (1.5 cm thick), a top heat source (several lightbulbs in a row mounted in a steel sheet case), a track of several rotating cylinders over which one of the plates moves laterally between the glass panes and a control unit that allows adjustment of the heating temperature of both plates and the light/heat intensity of the top heat source (Fig. DR1).

Figure DR1. Scheme of the analogue modelling apparatus used for modelling of the crustal-scale detachment folds. Long (movable) plate is one m-long. Both, the moving plate and the backstop can be heated homogenously along their entire length at a temperature adjusted at the control unit. Heating from the top prevented heat loss from the model and maintained a stable temperature gradient across the model.

During the experiment, the long plate (pro-wedge part of the orogen) is moved against the backstop of the stable plate (retro-wedge) by a force of a weight attached to the steel rope pulling the long plate (Fig. DR1). A vertical wall (10 cm high) terminates the long plate and is aimed at supporting the superposed layers that are being deformed by shortening of the multilayer against the backstop. The backstop consists of two segments – a ramp and a plateau. The angle of the ramp and the plateau is adjustable. For the experiment described below, a 4 cm high ramp was inclined at 65° towards the long plate and the plateau was horizontal. Insulating plates (polystyrene) cover the glass panes in order to prevent heat loss before the experimental run.

Analogue materials and experimental preparation

For upper brittle crust, we have used fine-grained, pure quartz sand (grain size 0.017 mm), typically used in crustal-scale physical models (e.g. Sokoutis et al., 2005). The sand is characterized by a density of 1460 kg.m⁻³, a static friction angle of 32.47° and cohesion of 95.36 Pa. Partially molten middle to lower crust was simulated by a commercial macrocrystalline paraffin wax with a density of 810 kg.m⁻³ and a melting temperature of 52°C (Paramo 50-52, manufactured in Czech Republic).

The viscosity of the wax was measured using the VT550 Haake viscometer with coaxial cylinders (MV 1 cylinder) in a temperature range of 44°C to 52°C. The wax is characterized by Newtonian rheology from 46°C to 52°C and dynamic viscosity ranging from 2.03 mPa.s at 46°C to 0.46 mPa.s at 52°C (Table DR2). At lower temperatures (<44°C), the wax solidified, and viscosity measurements were beyond the technical limits of the instrument used. Therefore, for temperatures of the paraffin around 34-44°C, we consider effective viscosities measured by Rossetti et al. (1999) using the uniaxial compression tests on a similar paraffin wax at the same homologous temperatures (T/Tm, where Tm is the melting point; see Table DR2). Commercial paraffin measured by Rossetti et al. (1999) displayed only a 2°C higher melting point than our wax, and non-Newtonian rheology of solid paraffin at lower temperatures (T/Tm < 0.7) that ranged between 10^5 to 10^8 Pa.s (Table DR2).

4 38	44 4	l6 48	50	52
Pa.s 10⁵Pa.s	6.84 2.	03 0.85	0.53	0.46
				Pa.s 10°Pa.s 6.84 2.03 0.85 0.53 05-8 Pa.s are adopted from Rossetti et al. (1999) and are linked to the same hore 1000 million 1000 million 1000 million

Before the experimental run, a stack of 6 colored wax layers (each 0.5 cm-thick) was placed on the movable heating plate. Sidewalls of the wax multilayer were sprayed with a silicon oil to provide a free-slip surface along the vertical glass panes. In the next stage, the wax multilayer was pre-heated from bottom to top to make sure it is soft and gained enough heat. A horizontal layer of warm sand was then superposed on the moving plate (3 cm-thick) and the stable plate (2 cm-thick) in order to avoid cooling down of the wax. One marker of dark sand was included in the sand layer. The multilayer was then heated to adjust a constant temperature gradient in the column; 52 °C at the base and 45 °C

at the top of the sand layer. The stable plate was pre-heated at a moderate temperature of 45 °C to prevent cooling of the wax at the backstop interface.

In our approach, we attempted to mimic the temperature-dependent viscosity variation with depth in the ductile layer using the heated paraffin wax. Accordingly, the rheological profile from the bottom of the wax layer to the interface with the overlying sand can be divided into three sub-layers: i) completely molten wax with Newtonian rheology and low viscosity of 0.46 mPa.s (Table DR2), ii) mushy, partly crystallized, but still molten wax (6.84 mPa.s at 44° C), and iii) non-Newtonian viscosity of plastic wax in temperature range of $34-44^{\circ}$ C defining the stiffest layer in the wax multilayer. Since for this latter stiffest layer, the viscosity could not have been measured using the coaxial cylinder viscometer, we consider viscosity values of a similar paraffin wax measured by Rossetti et al. (1999) at the same homologous temperatures that ranged between 10^5 to 10^8 Pa.s (Table DR2).

For the purpose of the scaling analysis of the experiment with respect to nature, we considered the viscosities of the partly crystallized mushy wax at 44°C with viscosity of 6.84 mPa.s measured by the coaxial cylinder viscometer (Table DR2). This mushy wax in our experiment reflects the migmatitic interlayer between the brittle superstructure of the Chandman dome and the molten to partially molten lower crustal infrastructure. For evaluation of the impact of the gravitational forces on the folding dynamics (using equation 18 of Duretz et al. 2011, see Appendix C), we consider the viscosity of the stiffest layer in the entire multilayer of 10^5 Pa.s (solid, but pseudoplastic paraffin wax at T/T_m ~ 0.7-0.8; Rossetti et al., 1999).

Scaling relationships

The model was scaled according to the principles of geometric and dynamic-rheological similarity (Hubbert, 1937; Weijermars and Schmeling, 1986; Sokoutis et al., 2005). The geometric similarity is constrained by the scaling ratio $l^* = 2 \times 10^{-6}$ with respect to the 30 km original crustal thickness of the Chandman dome. The accuracy of the dynamic scaling was tested by calculating the non-dimensional numbers given by ratios between the forces acting on the models (Ramberg, 1981). We calculated the ratio between the gravitational and viscous stresses (Ramberg number, R_m ; Weijermars and Schmeling, 1986; Sokoutis et al., 2005):

$$R_m = \frac{gravitational\,stress}{viscous\,stress} = \frac{\rho_d g h_d}{\eta \dot{\varepsilon}} = \frac{\rho_d g h_d^2}{\eta V}$$

where ρ_d and h_d are the density and thickness of the ductile layer (paraffin wax), respectively, g is the gravity acceleration (g = 9.81 m.s⁻²), η is the viscosity of the ductile layer and \mathbf{k} is the strain rate given by the ratio between the mean velocity of convergence V and the thickness of the ductile layer h_d . Scaling of the brittle deformation was achieved by

calculating the ratio between the gravitational stress and cohesive strength (R_s; Ramberg, 1981; Sokoutis et al., 2005):

```
R_{S} = \frac{gravitational stress}{cohesive strength} = \frac{\rho_{b}gh_{b}}{\tau_{c}}
```

where ρ_b and h_b are the density and thickness of the brittle layer, respectively, g is the gravity acceleration and τ_c the cohesive strength of the brittle layer. For a correctly, dynamically scaled model, the R_m and R_s calculated for both, the model and the original (Chandman dome), respectively, should be similar (Table DR3), within the same order of magnitude.

		Upper crust in the exper		(wax	Lower crus					
	ρ _ь (kg.m⁻³)	h₀ (m)	τ _c (Pa)	ρ _d (kg.m ⁻³)	h _d (m)	η (Pa.s)	g (m.s ⁻²)	V (m.s ⁻¹)	R _m	R_s
Model	<u></u> 1460	0.03	` 95 [´]	`810 ´	0.03	6.8 × 10 ⁻³	`9.81 [´]	8 × 10 ⁻⁵	13069243	5
Nature	2650	1.5×10^{4}	6×10^{7}	2750	1.5×10^{4}	1×10^{14}	9.81	6.3 × 10 ⁻¹⁰	95710775	6

TABLE DR3. SCALING PARAMETERS FOR BRITTLE AND DUCTILE DEFORMATION OF THE EXPERIMENT.	
SYMBOLS ARE DEFINED IN THE TEXT	

The scaling analysis (Table DR3) compares the viscosities (η) of the partially crystallized wax measured at 44°C (6.84 mPa.s, Table DR2) and a migmatite, for which the viscosity

is indirectly estimated from the viscosity of a suspension of a hydrous granite (hydrous rhyolitic melt containing ~2 wt.%, Giordano et al., 2008) of ~ 10^7 Pa.s and 60-80 vol.% of crystals that increases the effective viscosity of the crystal-free melt 6-7 orders of magnitude to maximum ~ 10^{14} Pa.s (Costa et al., 2009). This scaling analysis (Table DR3) shows comparable values of both the R_m and R_s of the experiment and natural original, respectively. Alternatively, for the dynamic scaling analysis of the ductile layer, we can consider the viscosity of the completely molten wax (0.46 mPa.s at 52°C) as an equivalent to the granite melt of ~ 10^8 Pa.s (containing 1.5 wt.% water, corresponding to the 5.15 mol.% water of migmatite sample M109P72 of Broussolle et al., 2015) with 40-50 vol.% crystals that will render effective viscosity of the melt+crystal suspension of ~ 10^{13} Pa.s (Giordano et al., 2004, 2008; Costa et al., 2009). Calculating the R_m with the latter values for the experiment and original (nature, Chandman dome), will give again values within the same order of magnitude.

In summary, we can suggest that the rheological stratification of the sand and the wax fairly well mimics the rheological stratification before the folding of the Chandman dome. The partially molten wax implements a viscosity gradient from the completely molten layer at the bottom of the lower crust to a partially molten layer close to the interface between the weak lower crust and brittle upper crust. The scaling analysis also shows that the rheological properties, dimensions and timescales are within reasonable ranges to consider the experiment in terms of close dynamic similarity with the folding of the Chandman dome.

APPENDIX C: CALCULATION OF DIAPIRIC VELOCITY AND BACKGROUND VELOCITY

In order to constrain potential contribution of the diapiric forces to the formation of the detachment fold in the analogue model, we use equation 18 of Duretz et al. (2011). The vertical velocity linked to formation of a Rayleigh-Taylor instability (V_{RT}) is expressed against the density ratio between the layers ($\delta\rho$), the gravity (g), the height of the initial perturbation of the interface (A), the thickness of the crust (H_{crust}), the viscosity of the stiffest layer (η_{MC}) and the background strain rate (\dot{e}_{BG}).

$$V_{RT} \propto rac{\delta
ho g H_{crust}}{\eta_{MC}} imes A imes \dot{\mathbf{e}}_{BG}$$

The viscosity of the stiffest layer (η_{MC}) is 10⁵ Pa.s (following measurements of Rosettti et al. 1999, see Appendix B), the initial perturbation of the interface A is chosen at 0.003 m, corresponding to 10% of the total wax thickness, background strain-rate is ((L_t - L_0)/ L_0)/dt = ((0.6-0.96)/(0.96)/(4500) = -8.333305 × 10⁻⁵ s⁻¹.

The background velocity is defined as total shortening of the box divided by total time of experiment.

According to these calculations, the rate of box shortening is ~30 million time faster than diapiric rate.

APPENDIX D: ANALYTICAL SOLUTION DESCRIBING GEOMETRICAL EVOLUTION OF THE DETACHMENT FOLD

Knowing *H*, *h*, *C_h*, *LZW* and θ , the initial length of limbs (*L*₀) and fold crest width (*C*) can be written as follows (see figure 13 for explanation of the different symbols):

 $L_0 = LZW / sin(\theta)$

 $C = C_h + 2 \times (H-h)/tan(\theta)$

Note that the initial width of the detachment fold is given as $W_0 = C + 2 \times L_0$.

With increasing displacement *D*, the area/volume of fold core (*A*) is a function of fold amplitude (*a*), inner fold crest width (C_h), length of fold limb (L_D) and its angle (α):

$$L_D = LZW / \sin(\pi - \theta - \alpha)$$
$$a = L_D \times sin(\alpha)$$
$$i = L_D \times cos(\alpha)$$
$$A = a \times (i + Ch)$$

The corresponding displacement is $D = 2 \times (L_0 - i)$.

Assuming that there is not volume change within the folded layer, the evolution of area/volume of the fold core *A* in respect to either the limb angle (α) or displacement (shortening %) is not balanced with the displaced layer area/volume *S* = *D* * *h*. The actual difference between *A* and *S* reflects the potential to mass transfer into or out of the fold core. See text for details.

REFERENCES CITED

- Broussolle, A., Štípská, P., Lehmann, J., Schulmann, K., Hacker, B. R., Holder, R., Kylander-Clark, A. R. C., Hanžl, P., Racek, M., Hasalová, P., Lexa, O., Hrdličková, K., and Buriánek, D., 2015, P–T–t–D record of crustal-scale horizontal flow and magma-assisted doming in the SW Mongolian Altai: Journal of Metamorphic Geology, v. 33, no. 4, p. 359–383, doi:10.1111/jmg.12124.
- Costa, A., Caricchi, L., and Bagdassarov, N., 2009, A model for the rheology of particle-bearing suspensions and partially molten rocks: Geochemistry, Geophysics, Geosystems, v. 10, no. 3, doi:10.1029/2008GC002138.
- Dingwell, D.B., Hess, K.U., and Romano, C., 1998, Viscosity data for hydrous peraluminous granitic melts: Comparison with a metaluminous model: American Mineralogist, v. 83, no. 3-4, p. 236–239, doi:10.2138/am-1998-3-406.
- Duretz, T., Kaus, B. J. P., Schulmann, K., Gapais, D., and Kermarrec, J. J., 2011, Indentation as an extrusion mechanism of lower crustal rocks: Insight from analogue and numerical modelling, application to the Eastern Bohemian Massif: Lithos, v. 124, no. 1–2, p. 158–168, doi:10.1016/j.lithos.2010.10.013.
- Giordano, D., Romano, C., Papale, P., and Dingwell, D. B., 2004, The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites: Chemical Geology, v. 213, no. 1–3, p. 49–61, doi:10.1016/j.chemgeo.2004.08.032
- Giordano, D., Russell, J.K., and Dingwell, D.B., 2008, Viscosity of magmatic liquids: A model: Earth and Planetary Science Letters, v. 271, no. 1-4, p. 123–134, doi:10.1016/j.epsl.2008.03.038.

- Hubbert, M. K., 1937, Theory of scale models as applied to the study of geologic structures: Geological Society of America Bulletin, v. 48, no. 10, p. 1459–1519, doi:10.1130/gsab-48-1459.
- Jourdan, F., Verati, C., and Féraud, G., 2006, Intercalibration of the Hb3gr ⁴⁰Ar/³⁹Ar dating standard: Chemical Geology, v. 231, no. 3, p. 177–189, doi:10.1016/j.chemgeo.2006.01.027.
- Ramberg, H., 1981, Gravity, deformation and the Earth's crust: 2nd Edition, New York, Academic Press.
- Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R., 2010, Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for ⁴⁰Ar/³⁹Ar geochronology: Geochimica et Cosmochimica Acta, v. 74, no. 18, p. 5349–5367, doi:10.1016/j.gca.2010.06.017.
- Rossetti, F., Ranalli, G., Faccenna, C., 1999. Rheological properties of paraffine as an analogue material for viscous crustal deformation: Journal of Structural Geology v. 21, no. 4, p. 413–417, doi:10.1016/S0191-8141(99)00040-1.
- Schoene, B., and Bowring, S., 2006, U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the ⁴⁰Ar/³⁹Ar standard MMhb: Contributions to Mineralogy and Petrology, v. 151, no. 5, p. 615–630, doi:10.1007/s00410-006-0077-4.
- Sokoutis, D., Burg, J.P., Bonini, M., Corti, G., and Cloetingh, S., 2005, Lithospheric-scale structures from the perspective of analogue continental collision: Tectonophysics, v. 406, no. 1-2, p. 1–15, doi:10.1016/j.tecto.2005.05.025.
- Weijermars, R., and Schmeling, H., 1986, Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity): Physics of the Earth and Planetary Interiors, v. 43, no. 4, p. 316–330, doi:10.1016/0031-9201(86)90021-X.