1	SUPPLEMENTARY MATERIALS FOR:
2	Pressures of skarn mineralization at Casting Copper, Nevada, based on
3	apatite inclusions in garnet
4	Drew W. Barkoff ¹ , Kyle T. Ashley ^{2†} , and Matthew Steele-MacInnis ^{1*}
5	¹ Dept. of Geosciences, The University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721
6	USA
7	² Jackson School of Geosciences, Department of Geological Sciences, University of Texas
8	at Austin, 2305 Speedway Stop C1160, Austin, TX 78712 USA
9	*Current address: Department of Earth and Atmospheric Sciences, The University of
10	Alberta, Edmonton, Alberta T6G 2E3, Canada. Email: <u>steelema@ualberta.ca</u>
11	† Current address: Department of Geology and Environmental Science, University of
12	Pittsburgh, 4107 O'Hara St., Pittsburgh, PA 15260, USA
13	
14	Supplementary Methods
15	Unpolarized Raman spectra were collected using a Thermo Nikolet Almega
16	microRaman system at the Mike Scott Laboratory for Mineralogy and Crystallography at
17	the University of Arizona. Raman spectra were collected in a back-scattering
18	arrangement. We used a 532 nm excitation laser, with laser power set to ~ 100 mW.
19	Focusing of the excitation laser onto the apatite inclusions was accomplished using a
20	Nikon 10x, long working distance objective on an Olympus BX51 microscope. The
21	spectrometer position was calibrated using the ca. 1100 cm ⁻¹ Raman line of sparry calcite.
22	Raman spectra were analyzed using the PeakFit v.4.11 software package from SYSTAT
23	Software Inc.

Inclusion *P* for fluorapatite inclusions at room *T* were determined through the *P*sensitive frequency shift of the 964 cm⁻¹ band. The equation for the relationship at 25°C, calculated with the experimental data of Schouwink *et al.*, (2010), is

27
$$P(MPa) = \frac{(a * \Delta v^2) + (b * \Delta v)}{1000}$$
 eq. 1

28 where *a* and *b* are regression parameters equal to 7.35 ± 1.88 and 2265 ± 59 , respectively. 29 The Δv term is the difference between the measured peak position of a pressurized 30 inclusion and the reference (0.1 MPa) peak position, at 25°C.

Formation *P* is calculated using the elastic model by Guiraud and Powell, (2006),
with a simple linear-mixing correction for garnet and apatite compositions on the
resultant *P* calculations. The *P-T* conditions that correspond to a particular inclusion *P*(*P*_{inc}) can be determined using

35
$$\frac{V_h(P,T)}{V_h(P_0,T_0)} = \frac{V_i(P_i,T)}{V_i(P_0,T_0)} - \frac{3}{4G}(P_i - P)$$
 eq. 2

where *G* is the shear modulus of the host mineral. Elastic and volumetric parameters for
apatite and garnet end-members are from Ashley *et al.*, (2017) and Holland and Powell,
(2011) respectively. Ashley *et al.*, (2017) provide isomekes diagrams for fluor- chlorand hydroxylapatite inclusions hosted in almandine, pyrope, and andradite.

40

41 Analysis of Uncertainty

The stated instrumental uncertainty on the Thermo Nikolet Almega microRaman system that was used is ± 0.1 cm⁻¹. This uncertainty associated with analysis and peak fitting corresponds to a *P* uncertainty of ± 22 MPa based on a ~22 MPa/0.1 cm⁻¹ shift. To determine the maximum *P* uncertainty associated with the calculation of P_{inc} at room *T* according to the equation of Schouwink et al. (2010), we applied both the 47 maximum and minimum values of the regression parameters to our most pressurized 48 apatite inclusion with the peak position of 965.605 cm⁻¹. This step adds only $\sim \pm 0.04$ 49 MPa uncertainty, thus has little effect on estimating the P_{inc} at ambient *T* (25°C).

50 A linear mixing model was used to determine the physical properties of both our 51 apatite inclusions and host garnet grains, based on the physical properties of their 52 respective end-members. It is difficult to quantify the uncertainty associated with this 53 assumption as it is not a given that the bulk modulus of our specific compositions of 54 apatite and garnet will lie between the bulk modulus values of the mineral's respective 55 end-members. The work regarding the calculation of the bulk moduli for these specific 56 compositions of apatite ($F_{72}OH_{28}$) and garnet ($Adr_{90}Grs_{10}$) has yet to be performed, but 57 would contribute to a more precise elastic model.

The uncertainty associated with the mineral equilibrium *P*-*T* estimates performed by Harris and Einaudi (1982) was not reported. Kohn and Spear (1990) reported that the uncertainty associated with mineral equilibrium thermobarometry under these conditions is typically ca. ± 10 MPa and $\pm 10^{\circ}$ C, which would not significantly affect the *P*- or *T*ranges of our model.

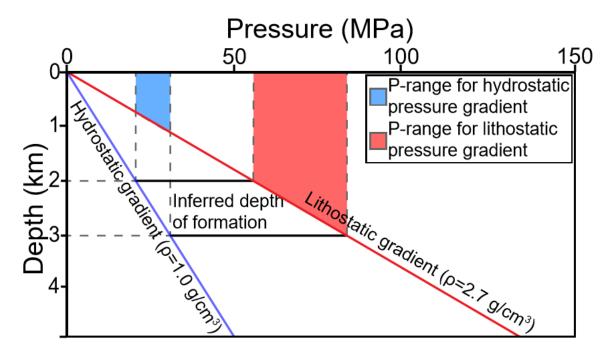


Figure DR1. - Figure detailing the differences in formation *P* as a function of depth
within shallowly emplaced hydrothermal systems. At greater depths, the lithostatic *P*gradient controls the system but due to its shallow formation depth, the Casting Copper
skarn likely formed at *P* between the two extremes represented by each of these *P*gradient end-members.

69

Table DR1. - Normalized major element compositional data of Casting Copper garnets determined using an electron microprobe (EPMA). For consistency, the garnet was treated as an average composition of $Adr_{90}Grs_{10}$. Sensitivity analyses show that the calculated formation *P* differences for the extremes of grossular composition were on the order of ±32 MPa for the extremes of grossular content.

Sample	Si(T)	P(T)	Al(T)	$Fe^{3+}(T)$	$\Sigma(T)$	Al(6)	$Fe^{3+}(6)$	$Mn^{3+}(6)$	$\Sigma(6)$	Ca(8)	$Fe^{2+}(8)$	Mg(8)	$Mn^{2+}(8)$	Na(8)	K(8)	Σ(8)
CC04-01	2.986	0.003	0.011	0.000	3.00	0.054	1.942	0.000	2.00	2.985	0.009	0.002	0.006	0.000	0.000	3.00
CC01-05	2.966	0.002	0.031	0.000	2.99	0.070	1.910	0.003	1.98	3.013	0.000	0.001	0.000	0.001	0.001	3.02
CC01-02	2.965	0.003	0.031	0.000	2.99	0.073	1.910	0.007	1.99	3.009	0.000	0.000	0.000	0.000	0.000	3.01
CC03-01	2.966	0.003	0.031	0.000	3.00	0.087	1.897	0.007	1.99	3.006	0.000	0.001	0.000	0.000	0.001	3.01
CC03-06	2.975	0.003	0.021	0.000	2.99	0.110	1.884	0.000	1.99	2.997	0.006	0.002	0.001	0.000	0.000	3.01
CC01-03	2.985	0.003	0.012	0.000	3.00	0.251	1.740	0.000	1.99	2.995	0.004	0.000	0.007	0.003	0.000	3.01
CC03-05	2.990	0.003	0.007	0.000	3.00	0.222	1.772	0.000	2.00	2.995	0.004	0.002	0.005	0.000	0.000	3.00

CC01-06	2.964	0.003	0.034	0.000	3.00	0.337	1.648	0.005	1.99	3.005	0.000	0.003	0.000	0.002	0.000	3.01
CC01-04	2.963	0.003	0.034	0.000	3.00	0.476	1.519	0.005	2.00	2.997	0.000	0.000	0.000	0.002	0.000	3.00
CC01-07	2.975	0.003	0.022	0.000	3.00	0.696	1.316	0.005	2.02	2.980	0.000	0.000	0.001	0.000	0.000	2.98
75																

76 Table DR2. - Sample ID's with their coordinate locations and sample descriptions.

Sample	Location	Notes
ID	Lat (°N) Long(°W)	
CC01	38°56'44.7" 119°16'24.5"	Several apatite inclusions at depth, suitable for mineral
		inclusion analysis
CC02	38°56'44.7" 119°16'24.5"	Abundant apatite + calcite inclusions, apatite exposed at
		surface, suitable for mineral inclusion analysis
CC03	38°56'44.6" 119°16'23.2"	Abundant apatite + calcite inclusions, two apatites exposed at surface, prevalent zonations in garnet with apatite inclusions across them, suitable for mineral inclusion analysis
CC04	38°56'44.6" 119°16'23.2"	Few inclusions of apatite + hematite, prevalent zonations in garnet, relict calcite grains, not suitable for fluid inclusion analysis
CC05	38°56'44.6" 119°16'23.2"	Prevalent zonations, only one apatite inclusion present near crack, not suitable for mineral inclusion analysis
CC06	38°56'44.9" 119°16'24.9"	No apatite inclusions present, not suitable for mineral
		inclusion analysis
CC07	38°56'44.9" 119°16'24.9"	No apatite inclusions present, not suitable for mineral
		inclusion analysis
CC08	38°56'46.5" 119°16'25.3"	Abundant apatite inclusions at depth and two at the surface, several inclusions located near cracks, contains clusters of apatite inclusions and relict calcite grains, suitable for mineral inclusion analysis
CC09	38°56'46.5" 119°16'25.3"	Few inclusions of apatite + hematite, prevalent zonations in garnet, suitable for mineral inclusion analysis
CC10	38°56'44.4" 119°16'25.5"	Several apatite inclusions, two located near cracks/ sample surface, suitable for mineral inclusion analysis
CC11	38°56'44.4" 119°16'25.5	No apatite inclusions but contains both ilmenite and hematite inclusions, not suitable for mineral inclusion analysis
CC12	38°56'44.4" 119°16'25.5"	No apatite inclusions present, not suitable for mineral inclusion analysis
CC13	38°56'44.4" 119°16'25.5"	Two apatite inclusions, one located near surface, not suitable for mineral inclusion analysis
CC14	38°56'45.2" 119°16'25.5"	Several apatite and hematite inclusions, prevalent zonations, suitable for mineral inclusion analysis
CC15	38°56'45.2" 119°16'25.5"	No apatite inclusions present, not suitable for mineral inclusion analysis
CC16	38°56'45.2" 119°16'25.5"	Several apatite + calcite inclusions, apatites located near cracks/ sample surface, suitable for mineral inclusion analysis

77	Table DR3 Normalized major element compositional data of apatite inclusions
78	contained within Casting Copper garnets determined using an electron microprobe
79	(EPMA). Fluorapatite is the most compressible (lowest bulk modulus) variety of apatite,
80	followed closely by hydroxylapatite; chlorapatite shows a more marked difference in
81	bulk modulus compared to F-OH apatite (e.g., Matsukage et al., 2004) Although there is
82	some variability in composition between apatite inclusions, because there is such a slight
83	difference between the bulk moduli of fluor- and hydroxylapatite, we treated the apatites
84	as an average composition of $F_{72}OH_{28}$ because our results are not much affected by the
85	compressibility of chlorapatite or non-ideal mixing between end-members.

Sample	Ca(A)	$Fe^{2+}(A)$	$\Sigma(A)$	P(T)	Si(T)	S(T)	$\Sigma(T)$	F(H)	Cl(H)	OH(H)	$\Sigma(H)$
CC1-01-05	5.049	0.028	5.077	2.908	0.003	0.003	2.915	0.736	0.031	0.234	1.000
CC1-04-02	5.200	0.013	5.213	2.770	0.009	0.000	2.778	0.957	0.043	0.000	1.000
CC1-02-04	4.991	0.027	5.019	2.965	0.006	0.000	2.971	0.615	0.001	0.384	1.000
CC1-01-01	5.058	0.010	5.068	2.905	0.017	0.001	2.925	0.667	0.023	0.310	1.000
CC1-02-01	5.075	0.019	5.094	2.877	0.020	0.001	2.897	0.721	0.005	0.274	1.000
CC1-03-05	5.017	0.022	5.040	2.947	0.006	0.001	2.956	0.553	0.000	0.447	1.000
CC1-04-01	5.045	0.012	5.057	2.909	0.024	0.001	2.934	0.503	0.005	0.492	1.000
CC1-01-02	5.062	0.019	5.080	2.891	0.018	0.001	2.911	0.806	0.007	0.187	1.000
CC1-01-03	5.059	0.021	5.080	2.889	0.020	0.003	2.912	0.705	0.011	0.285	1.000
CC1-03-02	5.044	0.028	5.072	2.915	0.007	0.002	2.925	0.859	0.001	0.141	1.000
CC1-02-03	5.039	0.025	5.064	2.920	0.005	0.002	2.927	0.724	0.000	0.276	1.000
CC1-01-07	5.076	0.022	5.097	2.882	0.016	0.000	2.898	0.642	0.049	0.309	1.000
CC1-01-04	5.026	0.027	5.052	2.920	0.016	0.001	2.938	0.805	0.066	0.129	1.000
CC1-03-01	5.031	0.020	5.051	2.921	0.018	0.000	2.941	0.642	0.002	0.356	1.000
CC1-03-04	5.027	0.016	5.043	2.927	0.017	0.001	2.945	0.652	0.051	0.298	1.000
CC1-03-03	5.010	0.036	5.046	2.927	0.018	0.001	2.946	0.730	0.001	0.269	1.000
CC1-02-02	5.012	0.021	5.033	2.942	0.018	0.000	2.960	0.866	0.003	0.131	1.000
		•									

86

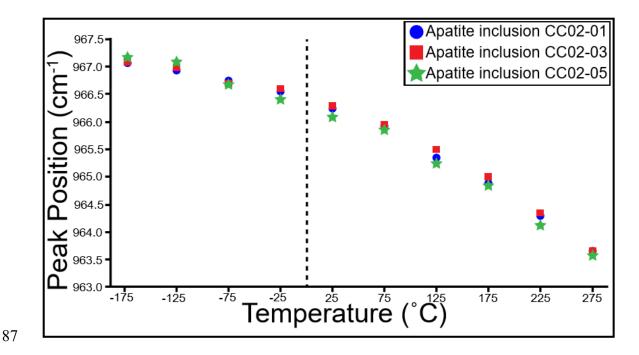


Figure DR2. - Figure detailing the T-dependent wave shift of apatite inclusions at
ambient *P*. As *T* increases, bond lengths increase as well, leading to a lower Raman peak
position.

91

Table DR4. Inclusion IDs and their respective peak positions, Δ peak, P_{inc} at 25°C, P_{form} at 400°C. Uncertainties are based on the standard deviation of measured peak positions (replicates) of a Durango apatite standard. Bolded entries represent samples that are exposed at the sample surface while samples that are located near a crack or the surface and have lost *P* are italicized.– Raman peak position uncertainties determined using standard deviation.– Raman peak position of apatite standard exposed at surface of the garnet containing no internal *P*.

Sample ID	Raman peak position (cm ⁻¹)	Standard peak position (cm ⁻¹)	$(\text{cm}^{-1})^{a}$	P _{inc} @ 25°C (MPa) ^b	P _{inc} uncertainty @ 25 °C (MPa)	$\begin{array}{c} P_{\text{form.}}(a) \\ 400^{\circ}\text{C} \\ (\text{MPa})^{\text{c}} \end{array}$	$\begin{array}{c} P_{form} \\ uncertainty @ \\ 400^{\circ}C (MPa)^{d} \end{array}$
CC01-01	965.919	966.318	399	-89.4	±22	7.0	±22
CC01-02	965.939	966.318	379	-84.9	±22	22.8	±22

CC01-03	965.979	966.318	339	-75.9	±22	54.9	±22
CC01-04	965.869	966.318	449	-100.6	± 22 ± 22	-32.7	± 22
CC02-01	965.885	966.318	433	-97.0	±22 ±22	-20.3	± 22
CC02-02	965.905	966.318	413	-92.5	±22 ±22	-4.4	± 22
CC02-02	966.115	966.318	203	-45.5	±22 ±22	164.2	± 22
CC02-04	965.985	966.318	333	-74.6	±22 ±22	59.4	± 22
CC02 inc-1	966.323	966.318	.005	1.1		57.1	
CC02 inc-2	965.933	966.318	385	-86.2	±22	17.9	±22
CC02 inc-3	966.043	966.318	275	-61.6	±22	105.9	± 22
CC02 inc-4	966.273	966.318	045	-10.1	-22	105.5	
CC02 inc-5	965.883	966.318	435	-97.4	±22	-21.8	±22
CC02 inc-6	966.073	966.318	245	-54.9	± 22 ± 22	130.1	± 22
CC02 inc-7	966.003	966.318	315	-70.6	± 22 ± 22	74.2	± 22
CC03 sur.	966.285	966.318	033	-7.4		/ 1.2	
CC03 sur-2	966.305	966.318	013	-2.9			
CC03-02	965.935	966.318	383	-85.8	±22	19.8	±22
CC03-02	965.905	966.318	413	-92.5	± 22 ± 22	-4.4	± 22
CC03-04	965.945	966.318	373	-83.5	± 22 ± 22	27.7	± 22
CC03-04	966.075	966.318	243	-54.4	± 22 ± 22	132.1	± 22
CC03-06	965.025	966.318	293	-65.6	± 22 ± 22	91.5	± 22 ± 22
CC03-00	966.045	966.318	273	-61.1	± 22 ± 22	107.8	± 22
CC03-07	966.325	966.318	.007	1.6		107.0	
CC08-01 CC08-02	966.245	966.318	073	-16.4			
CC08-02	966.325	966.318	.007	1.6			
CC08-04	965.945	966.318	373	-83.6	±22	27.7	±22
CC08-04	966.035	966.318	283	-63.4	± 22 ± 22	99.5	± 22
CC08-05	965.935	966.318	383	-85.8	± 22 ± 22	19.8	± 22 ± 22
CC08-07	966.025	966.318	293	-65.6	± 22 ± 22	91.5	± 22 ± 22
CC08 inc-1	966.36	966.318	.042	9.4		71.5	
CC08 inc-2	965.99	966.318	328	-73.5	±22	63.8	±22
CC08 inc-3	966.35	966.318	.032	7.2		05.0	
CC09-01	966.203	966.318	115	-25.8			
CC09-02	966.003	966.318	315	-70.6	±22	74.2	±22
CC10-01	966.275	966.318	043	-9.6		,	
CC10-02	966.075	966.318	243	-54.4	±22	132.1	±22
CC10-03	966.365	966.318	.047	-10.5		102.1	
CC10-04	966.033	966.318	285	63.4	±22	98.0	±22
CC13-01	966.008	966.318	310	-69.4	± 22	78.2	± 22
CC13-02	966.298	966.318	002	-4.5			
CC14-01	966.435	966.318	117	26.2			
CC14-02	965.955	966.318	363	-81.3	±22	35.6	±22
CC14-03	966.025	966.318	293	-65.6	±22	91.5	±22
CC14-04	965.985	966.318	333	-74.6	±22	59.4	-22 ±22
CC15-01	966.220	966.318	098	-22.0			
CC16-01	966.024	966.318	294	-65.9	±22	91.0	±22
CC16-02	966.275	966.318	043	-9.6			
	1 2 0 0 . 2 / 0	1 2 2 2 2 2 2 2 2			I	I	1

 99 100 101 102 103 104 105 106 107 	 CC16-03 966.245 966.318073 -16.4 [16.4] CC16-04 966.305 966.318013 -2.9 CC16-05 966.105 966.318213 -47.7 ±22 156.3 ±22 (a) - The difference between the peak position of the apatite standard and the apatite inclusion. (b) - Internal <i>P</i> of inclusions at 25°C calculated from Δ_{peak} using the equation of Comodi et al. 2001 (P_{inc} = (^{Vp}/_{Vo} -1)/β where v_o is the standard peak position, v_o is the inclusion peak position, and β = 0.00462 for apatite. (c) - Formation <i>P</i> of inclusions at 400°C calculated from Δ_{peak} using the elastic model of Guiraud and Powell, (2006). (d) <i>P</i> uncertainty of elastic model based on Raman peak position uncertainties.
108	REFERENCES CITED IN SUPPLEMENTAL FIGURES
109	Ashley, K.T., Barkoff, D.W., and Steele-MacInnis, M., 2017, Barometric constraints
110	based on apatite inclusions in garnet: American Mineralogist, v. 102, DOI:
111	http://dx.doi.org/10.2138/am-2017-5898.
112	Babuska, V., Fiala, J., Kumazawa, M., and Ohno, I., 1978, Elastic properties of garnet
113	solid-solution series: Physics of the Earth and Planetary Interiors, v. 16, p. 157-
114	176, doi:10.1016/0031-9201(78)90086-9.
115	Guiraud, M., Powell, R., 2006, P-V-T relationships and mineral equilibria in inclusions in
116	minerals: Earth and Planetary Science Letters, v. 244, p. 683-694,
117	doi:10.1016/j.epsl.2006.02.021.
118	Holland, T.J.B., and Powell, R., 2011, An improved and extended internally consistent
119	thermodynamic dataset for phases of petrological interest, involving a new
120	equation of state for solids: Journal of Metamorphic Geology, v.29(3), p. 333-383,
121	doi:10.1111/j.1525-1314.2010.00923.x.
122	Kohn, M.J., and Spear, F.S., 1990, Two new geobarometers for garnet amphibolites, with
123	applications to southeastern Vermont: American Mineralogist v. 75, p. 89-96.

124	Matsukage, K.N., Ono, S., Kawamoto, T., and Kikegawa, T., 2004, The compressibility
125	of natural apatite: Physics and Chemistry of Minerals, v. 31(9), p. 580-584,
126	doi:10.1007/s00269-004-0415-x.
127	Robie, R.A., Hemingway, B.S., and Fisher, J.R., 1978, Thermodynamic properties of
128	minerals and related substances at 298.15 K and 1 bar (10/sup 5/pascals) pressure
129	and at higher temperatures: USGS Bulletin – 1452.
130	Schouwink, P., Miletich, R., Ullrich, A., Glasmacher, U. A., Trautmann, C., Neumann,
131	R., and Kohn, B. P., 2010, Ion tracks in apatite at high pressures: the effect of
132	crystallographic track orientation on the elastic properties of fluorapatite under
133	hydrostatic compression: Physics and Chemistry of Minerals, v. 37(6), p. 371-
134	387, doi:10.1007/s00269-009-0340-0.
135	