Chemical data of locality averages of Ries outer suevite components: whole-rock, matrix, and melt particle

Preparation of suevite samples for geochemical data set:

Whole-rock analysis

Suevite samples from which only lithic and mineral clasts larger than approx. 1 cm have been removed.

Matrix analysis

Preparations as whole-rock but melt particles larger than approx. 1 cm were also removed.

Melt particle separates

3-10 larger melt particles of one suevite sample are mechanically removed and combined to one melt sample.

Analytical methods:

XRF analyses of suevite whole-rock and separated matrix from localities Aumühle and Alte Bürg were carried out by XRF with a BRUKER AXS S8 TIGER instrument at Museum für Naturkunde Berlin (for more informations see Raschke et al., 2013).

Separated melt particle and matrix (marked with *) were analyzed at ALS Geochemistry Canada Ltd. for major elements by ICP-AES, for the trace elements Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb, Zr by ICP-MS, and for the trace elements As, Co, Cu, Li, Ni, Pb, Sc, Zn by ICP-AES.

LA-ICP-MS trace-element analyses were performed at the Institute of Mineralogy and Economic Geology, RWTH Aachen, Germany. The analyses were carried out using a 193 nm ArF excimer laser ablation system (UP193FX, New Wave Research, Inc.) coupled to an ICP-MS system (DRCe Quadrupol-MS, Perkin Elmer). The samples were ablated for 50 s at 4Hz repetition rate with 100 µm crater diameters, the irradiance was set to 0.8 GW/cm2. The reference material NIST 612 was used as an external calibration standard, Si was used as internal standard element for all Si melt analyses.

In-situ chemical analyses of major elements of melt particle were obtained at Museum für Naturkunde Berlin, Germany, using a JEOL Superprobe JXA-8500F electron microprobe (EMP). A cup current of 15 nA with an acceleration potential of 15 keV and an electron beam diameter of 3 µm were used for single spot or profile analyses.

Geochemical data of suevite melt particle (in-situ analyses): locality averages of outer suevite exposures

location	Aumühle	Doosweiher	Otting	Alte Bürg	Aufhausen	Bollstadt	Oberringingen	Zipplingen	d.l.
area	East	East	East	West	West	West	West	West	EMP
n sample	3 1σ	2 1σ	8 1σ	4 1σ	3 1σ	4 1σ	3 1σ	2 1σ	LA-ICP-MS
SiO2 (wt.%	62.74 ± 0.59	63.53 ± 0.86	62.83 ± 1.16	62.39 ± 1.13	62.53 ± 1.16	63.05 ± 1.28	62.75 ± 0.16	63.79 ± 2.32	0.01
TiO2	0.71 ± 0.10	0.87 ± 0.08	0.83 ± 0.05	0.70 ± 0.01	0.75 ± 0.05	0.75 ± 0.03	0.80 ± 0.03	0.78 ± 0.13	0.02
AI2O3	15.65 ± 0.44	16.20 ± 0.56	16.43 ± 0.76	16.82 ± 0.32	16.49 ± 0.56	16.36 ± 0.38	16.68 ± 0.57	16.78 ± 0.86	0.01
Fe2O3	5.68 ± 0.15	5.04 ± 0.32	5.50 ± 0.30	5.17 ± 0.15	5.53 ± 0.40	5.43 ± 0.17	5.62 ± 0.30	5.67 ± 0.74	0.03
MnO	0.11 ± 0.01	0.10 ± 0.01	0.11 ± 0.01	0.09 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01	0.11 ± 0.02	0.02
MgO	3.28 ± 0.31	2.50 ± 0.00	2.74 ± 0.16	2.54 ± 0.11	2.93 ± 0.19	2.94 ± 0.05	3.04 ± 0.36	2.78 ± 0.28	0.01
CaO	4.18 ± 0.31	3.01 ± 0.04	3.67 ± 0.15	4.15 ± 0.22	4.45 ± 0.23	4.16 ± 0.10	4.05 ± 0.49	4.06 ± 0.19	0.01
Na2O	2.16 ± 0.45	2.11 ± 0.07	2.61 ± 0.24	2.61 ± 0.27	3.13 ± 0.39	3.46 ± 0.22	2.56 ± 0.16	3.43 ± 0.18	0.01
K20	4.44 ± 0.51	5.98 ± 0.18	4.37 ± 0.28	4.26 ± 0.67	3.46 ± 0.26	3.39 ± 0.16	4.34 ± 0.07	2.84 ± 0.08	0.01
P2O5	0.26 ± 0.02	0.32 ± 0.07	0.33 ± 0.02	0.28 ± 0.06	0.25 ± 0.05	0.25 ± 0.02	0.26 ± 0.03	0.21 ± 0.07	0.01
Total	99.19 ± 0.36	99.66 ± 0.33	99.42 ± 0.45	99.02 ± 0.61	99.64 ± 0.33	99.91 ± 0.66	99.51 ± 0.32	100.45 ± 0.11	
D = (mmm)	4405 + 057	4400 + 440	4070 + 400	007 . 00	070 + 440	4005 + 07	4000 + 00	050 . 00	
Ba (ppm)	1435 ± 357	1423 ± 113	12/9 ± 108	987 ± 80	970 ± 146	1085 ± 97	1023 ± 20	959 ± 99	3
Ce	90.6 ± 2.8	95.0 ± 0.4	88.1 ± 9.5	70.3 ± 5.5	74.2 ± 4.0	11.3 ± 5.3	70.6 ± 1.0	70.1 ± 0.5	0.4
C0	110 ± 22	14 ± 2	104 ± 10	100 ± 22	114 ± 6	112 ± 2	109 ± 20	112 ± 29	65
	227 + 04	207 ± 67	125 ± 24	127 + 20	00 + 07	06 ± 09	11.9 ± 1.7	12 ± 20	0.6
Cu	23.7 ± 3.4	23.7 ± 0.7	14 + 4	9 + 4	3.5 ± 0.7 17 + 7	31 + 19	nd	10 + 4	0.0
Dv	4 + 1	3 + 1	4 ± 4	5 ± 4 4 + 1	17 ± 1 A + 1	3 + 1	3 + 1	3 + 1	1
Fr	23 + 04	16 + 01	25 + 07	26 + 02	23 + 02	20 + 02	19 + 01	19 + 01	11
Eu	05 + 05	12 + 01	15 + 02	12 + 01	15 + 01	14 + 0.3	13 + 02	13 + 01	0.6
Ga	49 + 6	43 + 2	44 + 5	50 + 12	36 + 4	37 + 7	40 + 5	38 + 1	7
Gd	2 + 2	5 + 1	5 + 1	6 + 1	5 + 1	4 + 1	4 + 1	5 + 1	. 2
Hf	6 + 1	5 + 1	6 + 1	5 + 1	5 + 1	5 + 1	6 + 1	5 + 1	2
Но	0.4 ± 0.4	0.8 + 0.1	1.0 ± 0.1	1.1 ± 0.2	1.0 ± 0.1	0.8 + 0.1	0.9 ± 0.1	0.9 ± 0.1	0.5
La	38.8 ± 3.1	37.1 ± 0.3	38.1 ± 3.8	30.3 ± 2.1	30.0 ± 2.8	32.4 ± 3.1	28.7 ± 1.8	30.2 ± 0.5	0.5
Lu	n.d.	0.4 ± 0.1	0.5 ± 0.1	0.6 ± 0.2	0.7 ± 0.2	0.4 ± 0.1	0.6 ± 0.1	0.5 ± 0.2	0.5
Nb	20 ± 3	17 ± 1	18 ± 2	14 ± 2	13 ± 1	13 ± 1	13 ± 1	12 ± 1	1
Nd	32 ± 2	37 ± 1	37 ± 3	29 ± 1	33 ± 2	32 ± 1	28 ± 1	28 ± 2	2
Ni	27 ± 8	24 ± 13	32 ± 6	28 ± 5	30 ± 4	16 ± 6	19 ± 3	21 ± 8	16
Pb	21.6 ± 8.9	31.3 ± 5.5	21.4 ± 6.2	28.7 ± 2.3	23.0 ± 2.5	22.9 ± 8.0	16.6 ± 6.4	225.5 ± 177.3	0.9
Pr	12.5 ± 0.6	12.6 ± 0.0	12.3 ± 1.2	9.7 ± 0.2	11.2 ± 0.7	10.9 ± 0.7	10.0 ± 0.2	9.9 ± 0.3	0.4
Rb	194 ± 41	261 ± 29	186 ± 19	173 ± 44	128 ± 8	128 ± 22	171 ± 26	117 ± 3	3
Sc	20 ± 7	19 ± 7	17 ± 2	19 ± 1	20 ± 4	19 ± 7	17 ± 2	18 ± 2	15
Sm	3 ± 3	7 ± 1	7 ± 1	6 ± 1	7 ± 1	6 ± 1	6 ± 1	5 ± 0	2
Sr	447 ± 85	243 ± 1	380 ± 33	393 ± 63	337 ± 44	347 ± 50	328 ± 38	385 ± 3	1
Та	0.5 ± 0.5	0.8 ± 0.3	1.0 ± 0.2	1.2 ± 0.3	0.9 ± 0.2	0.9 ± 0.3	0.9 ± 0.1	0.7 ± 0.3	0.6
Tb	0.5 ± 0.5	0.8 ± 0.1	1.0 ± 0.2	1.0 ± 0.2	0.9 ± 0.1	0.8 ± 0.2	0.8 ± 0.2	0.8 ± 0.2	0.5
Th	7.6 ± 7.6	16.8 ± 0.2	17.9 ± 2.8	13.0 ± 1.7	12.6 ± 2.0	13.9 ± 1.1	13.3 ± 0.8	12.0 ± 0.2	0.4
Tm	0.3 ± 0.2	0.3 ± 0.2	0.4 ± 0.1	0.8 ± 0.2	0.5 ± 0.2	n.d.	0.5 ± 0.1	n.d.	0.5
U	5.5 ± 0.2	6.1 ± 0.2	5.6 ± 0.6	3.9 ± 0.7	3.9 ± 0.3	4.4 ± 0.2	4.7 ± 0.1	3.9 ± 0.2	0.3
v	121 ± 25	139 ± 19	134 ± 8	148 ± 6	151 ± 19	137 ± 6	132 ± 6	139 ± 25	6
w	7 ± 1	3 ± 1	4 ± 1	4 ± 1	4 ± 1	3 ± 1	4 ± 1	28 ± 25	2
Y	27 ± 2	20 ± 1	27 ± 3	26 ± 2	26 ± 1	22 ± 3	23 ± 2	25 ± 1	2
Yb	3 ± 1	2 ± 1	2 ± 1	3 ± 1	3 ± 1	3 ± 1	2 ± 1	3 ± 1	2
Zr	191 ± 15	208 ± 7	238 ± 39	190 ± 29	162 ± 63	170 ± 11	194 ± 17	174 ± 35	4

Geochemical data of separated suevite melt particle: locality averages of outer suevite exposures

location	Aumühle	*	Doosweiher	*	Otting	Alte Bürg	*	Aufhausen	Bollstadt *	Oberringingen*	Zipplingen *	d.l.
area	East		East		East	West		West	West	West	West	ICP-AES
n sample	6	1σ	2	1σ	7 10	2	1σ	3 1σ	4 10	3 1σ	2 1σ	ICP-MS
SiO2 (wt.%)	65.23	± 1.35	62.60	± 0.50	61.67 ± 1.	7 58.25	5 ± 1.15	60.70 ± 3.16	62.20 ± 2.	15 62.73 ± 1.70	63.85 ± 1.65	0.01
TiO2	0.74	± 0.08	0.86	± 0.02	0.77 ± 0.	3 0.68	8 ± 0.01	0.63 ± 0.02	0.68 ± 0.	02 0.72 ± 0.06	0.69 ± 0.12	0.01
AI2O3	16.28	± 0.66	16.58	± 0.13	15.38 ± 0.	0 14.35	5 ± 0.45	16.62 ± 1.18	16.30 ± 2.	02 16.10 ± 1.10	15.95 ± 1.05	0.01
Fe2O3	3.33	± 0.84	4.86	± 0.03	4.85 ± 0.	4 4.89	9 ± 0.33	4.65 ± 0.10	4.60 ± 0.	25 4.78 ± 0.17	5.00 ± 0.58	0.01
MnO	0.07	± 0.06	0.11	± 0.03	0.09 ± 0.	1 0.11	± 0.03	0.11 ± 0.02	0.08 ± 0.	00 0.09 ± 0.00	0.10 ± 0.02	0.01
MgO	0.96	± 0.20	2.29	± 0.19	2.47 ± 0.	0 2.21	± 0.03	2.70 ± 0.20	2.43 ± 0.	16 2.74 ± 0.04	2.59 ± 0.19	0.01
CaO	3.27	± 0.45	3.21	± 0.04	4.03 ± 1.	4 7.36	6 ± 1.10	4.53 ± 1.13	4.00 ± 0.	3.62 ± 0.05	3.94 ± 0.18	0.01
Na2O	3.30	± 0.68	2.34	± 0.11	2.57 ± 0.	4 2.88	8 ± 0.00	2.45 ± 0.31	2.98 ± 0.	20 2.63 ± 0.13	3.28 ± 0.15	0.01
K2O	3.24	± 0.50	4.21	± 0.30	3.45 ± 0.	6 2.73	8 ± 0.15	2.33 ± 0.33	2.48 ± 0.	09 2.84 ± 0.25	2.40 ± 0.03	0.01
P205	0.29	± 0.07	0.35	± 0.02	0.33 ± 0.	5 0.25	5 ± 0.04	0.23 ± 0.02	0.32 ± 0.	14 0.26 ± 0.06	0.20 ± 0.06	0.01
LOI	3.03	± 1.10	3.55	± 0.11	4.12 ± 1.	1 5.91	± 0.09	5.41 ± 2.09	3.80 ± 0.	96 3.91 ± 0.29	2.14 ± 0.27	0.01
Total	99.73	± 0.53	100.93	± 0.38	99.73 ± 0.	2 99.60) ± 0.28	100.37 ± 0.16	99.86 ± 0.	51 100.43 ± 0.56	100.12 ± 0.27	
(40				40.14	-		7.4	0.14	0.14	05 . 0	
As (ppm)	1169.0	± 3	1677 5	± 1	10 ± 1	E 0 004 (± 3	/ ± 1	8 ± 1	0 ± 1	20 ± 3	5
ва	1168.0	± 230.3	1677.5	± 102.5	2594.4 ± 24	804.0) ± 139.0	/65.3 ± 88.8	1141.3 ± 14	3.3 1051.7 ± 153.	809.5 ± 28.5	0.5
Ce	/5.1	± 17.7	108.0	± 8.0	93.2 ± 6.	00.0) ± 0.5	61.4 ± 3.5	08.8 ± 5.	10.4 ± 0.0	03.7 ± 2.7	0.5
C0	100	I 0	13	I 1		54	1 1 1	11 I I 62 4 E		12 I I 70 + 9	12 I I 70 + 20	10
Cr Ca	15.01	I 90	19.03	I 0 00	10 T 9	4 0.2	1 9	03 I 3 7 40 + 0.66	05 ± 5	70 ± 0	10 E J 11	0.01
Cs Cu	15.91	± 3.01	10.03	± 2.30	13.77 ± 3.	4 0.3	± 0.01	7.49 ± 0.00	1.11 ± 0. 17 ± 2	12 ± 4	10.05 ± 1.11	0.01
Dv	4.52	⊥ 4 ⊥ 1.46	5 25	+ 0.02	15 ± 0	0 30	1 ± 0 02	10 ± 0 26	17 1 2	12 14	11 + 0.40	0.05
Fr	2.52	+ 0.70	2.82	+ 0.02	$4.37 \pm 0.247 \pm 0.000$	9 2.20	1 + 0.03	2.47 ± 0.30	4.29 ± 0. 2.32 ± 0.	18 2.62 ± 0.30	2.43 + 0.49	0.03
Eu	1.40	+ 0.70	1 77	+ 0.04	1.55 + 0	0 120	+ 0.02	1.26 + 0.12	133 + 0	153 + 0.16	1 33 + 0 15	0.00
Ga	177	+ 13	20.9	+ 0.04	18.1 + 1	17.8	1 + 0.02	191 + 12	19.8 + 1	190 + 09	18.4 + 1.9	0.00
Gd	5.31	+ 1.76	6.95	+ 0.32	5.88 + 0	5 5.06	5 + 0.03	4.98 + 0.38	5.08 + 0	5.61 + 0.71	5.01 ± 0.72	0.05
Hf	5.6	+ 0.6	8.1	+ 0.5	7.0 + 0	5.5	5 + 0.1	5.4 ± 0.4	6.3 + 0	6.4 + 0.3	5.5 ± 0.3	0.2
Но	0.88	+ 0.26	1.02	+ 0.01	0.91 + 0	4 0.81	+ 0.01	0.87 + 0.06	0.86 + 0	0.96 + 0.09	0.88 + 0.13	0.01
La	36.5	± 9.5	54.1	± 3.5	46.4 ± 3.	34.7	± 2.4	32.3 ± 2.4	34.8 ± 3	39.1 ± 3.3	32.7 ± 1.3	0.5
Li	18	± 4	90	± 10	53 ± 7	50) ± 5	57 ± 5	58 ± 4	50 ± 5	60 ± 5	10
Lu	0.37	± 0.10	0.39	± 0.01	0.36 ± 0.	2 0.30) ± 0.01	0.34 ± 0.04	0.35 ± 0.	0.37 ± 0.04	0.35 ± 0.08	0.01
Nb	11.0	± 1.5	14.3	± 0.5	12.5 ± 1.	9.2	2 ± 0.1	9.0 ± 0.2	9.6 ± 0.	6 11.0 ± 0.3	8.8 ± 1.0	0.2
Nd	36.5	± 11.4	48.9	± 2.9	43.4 ± 2.	32.4	± 0.1	30.8 ± 2.4	33.8 ± 2.	38.8 ± 3.9	31.0 ± 2.1	0.1
Ni	23	± 6	46	± 3	25 ± 2	22	± 5	24 ± 1	22 ± 4	35 ± 7	21 ± 6	1
Pb	26	± 17	26	± 1	28 ± 4	26	± 7	31 ± 8	25 ± 5	22 ± 4	61 ± 20	2
Pr	8.91	± 2.74	12.35	± 0.65	10.85 ± 0.	6 7.77	' ± 0.02	7.90 ± 0.55	8.38 ± 0.	9.21 ± 0.71	7.90 ± 0.31	0.03
Rb	155.7	± 20.3	218.0	± 14.0	147.8 ± 20	9 92.8	8 ± 12.8	101.1 ± 7.8	114.1 ± 3.	115.5 ± 12.2	104.0 ± 0.1	0.2
Sc	10	± 1	13	± 1	12 ± 1	15	± 2	12 ± 1	13 ± 1	13 ± 1	14 ± 2	1
Sm	7.24	± 2.43	10.09	± 0.31	8.19 ± 0.	8 6.21	± 0.02	6.23 ± 0.60	6.63 ± 0.	46 7.52 ± 0.64	6.20 ± 0.72	0.03
Sn	16	± 19	3	± 1	5 ± 3	4	± 1	4 ± 1	3 ± 1	3 ± 1	2 ± 1	1
Sr	415.7	± 44.7	467.0	± 55.0	370.7 ± 50	1 375.0) ± 0.1	285.3 ± 17.1	343.0 ± 54	.6 326.7 ± 39.4	327.0 ± 1.0	0.1
Та	0.7	± 0.1	0.9	± 0.1	0.8 ± 0.	0.6	6 ± 0.1	0.6 ± 0.1	0.6 ± 0.	0.7 ± 0.1	0.6 ± 0.1	0.1
Tb	0.77	± 0.23	0.99	± 0.02	0.85 ± 0.	B 0.75	5 ± 0.01	0.74 ± 0.05	0.73 ± 0.	03 0.84 ± 0.06	0.76 ± 0.11	0.01
Th	17.55	± 3.09	24.95	± 1.75	20.73 ± 2.	7 14.30) ± 0.03	13.22 ± 1.55	15.55 ± 1.	23 17.60 ± 1.70	12.23 ± 0.43	0.05
Tm	0.37	± 0.10	0.39	± 0.01	0.36 ± 0.	3 0.34	± 0.01	0.36 ± 0.04	0.34 ± 0.	01 0.36 ± 0.04	0.37 ± 0.05	0.01
U	3.83	± 1.08	5.67	± 0.25	5.65 ± 0.	1 3.87	± 0.03	3.47 ± 0.14	4.32 ± 0.	4.83 ± 0.66	3.90 ± 0.45	0.05
v.	78	± 7	92	± 1	90 ± 5	101	± 4	96 ± 6	95 ± 1	96 ± 7	108 ± 18	5
w	3	± 1	3	± 1	3 ± 1		: ± 1	2 ± 1	3 ± 1	2 ± 1	5 ± 2	1
T NI	26.6	± 6.8	26.7	± 0.5	23.3 ± 1.	23.0) ± 2.4	22.9 ± 1.8	22.3 ± 0.	25.5 ± 2.7	22.7 ± 2.3	0.5
TD 7	2.34	± 0.66	2.67	± 0.15	2.41 ± 0.	4 2.22	± 0.02	2.26 ± 0.19	2.25 ± 0.	03 2.61 ± 0.22	2.31 ± 0.37	0.03
1411			. ///									

Geochemical data of separated suevite matrix: locality averages of outer suevite exposures

location	Aumühlo		Dooswoihor	*	Otting	*	Alto Bürg		Aufbaucan	*	Rollstadt	*	Oberringinge	n*	Zipplingon *	41	41
area	Fact		East		East		West		West		West		West		West		YPE
n samnle	5	1σ	2	1σ	2031	1σ	2	1σ	3	1σ	4	1σ	3	1σ	2	ICP-MS	
n sumple	0	10	2	10		10		10	0	10		10	0	10	2		+
SiO2 (urt 9/1	65	. 1	62.20	+ 0.50	61.26	+ 2 /2	52	+ 1	60.50	. 0.90	61.20	+ 1 20	62.02	+ 0.60	62.55 + 2	5 0.01	1
3102 (WL //	0.78	± 0.02	03.30	± 0.00	0 75	± 2.43	0.58	± 0.01	0.50	± 0.00	01.20	± 1.29	05.93	± 0.09	02.55 ± 2.	1 0.01	0.01
AI2O3	1/ 0	± 0.02	15.00	+ 0.00	13.05	+ 0.62	12.4	+ 0.01	13.47	+ 0.02	13.45	+ 0.00	13.57	+ 0.02	13 75 ± 0.0	5 0.01	0.01
Fe2O3	4.88	+ 0.4	15.00	+ 0.00	10.00	+ 0.02	4 70	+ 0.2	1.46	± 0.20	/ 13	+ 0.03	4.08	+ 0.34	396 ± 0.0	8 0.01	0.05
MnO	4.00	± 0.07	0.12	+ 0.00	0.06	+ 0.02	-1.10	± 0.17	0.11	± 0.22	0.08	+ 0.03	0.06	+ 0.00	0.07 ± 0.0	1 0.01	0.00
MaQ	0.1	± 0.1	1.05	+ 0.03	2.56	+ 0.02	2.0	± 0.1	3.26	± 0.02	2.41	± 0.03	2 35	+ 0.00	2 15 ± 0.0	0.01	0.1
CaO	3.2	+ 0.5	2.57	+ 0.02	3.85	+ 2 20	11.4	+ 0.7	3.20	+ 0.87	3.69	+ 0.96	2.55	+ 0.14	379 + 0.0	0.01	0.1
Na2O	2.6	+ 0.3	2.33	+ 0.01	1 34	+ 0.08	1.4	+ 0.1	1.63	+ 0.05	1.53	+ 0.13	1 90	+ 0.03	2 37 + 0.0	7 0.01	0.1
K20	2.0	+ 0.2	3.64	+ 0.18	2 12	+ 0.14	1.0	+ 0.1	1.00	+ 0.06	1.00	+ 0.11	1 34	+ 0.05	2.67 ± 0.0	8 0.01	0.1
P205	0.2	± 0.2	0.33	+ 0.02	0.30	+ 0.05	0.2	± 0.1	0.21	± 0.00	0.18	+ 0.02	0.18	+ 0.00	0.19 ± 0.	1 0.01	0.1
1 203	0.2	± 0.1	5.37	+ 0.02	8 34	± 0.00	11.8	± 0.1	11 17	± 0.01	10.10	± 0.02	8.81	+ 0.02	8 14 ± 0.0	8 0.01	0.1
Total	99.44	+ 0.15	99.18	+ 0.00	99.63	+ 0.56	99.27	+ 0.12	100.02	+ 0.20	99.62	+ 0.17	99.50	+ 0.66	100.23 ± 0.0	4	0.1
1 otal	00.44	1 0.10	55.10	± 0.27	00.00	1 0.00	00.27	± 0.12	100.02	1 0.20	00.02	1 0.17	00.00	± 0.00	100.20 ± 0.0		
As (nnm)	n 9		0	+ 2	~5		n 9		~5		7	± 3	6	± 1	9 + 1	5	
Ra (ppili)	002	+ 56	1530.0	± 15 0	1100 7	+ 21/ 0	/127	+ 72	578.3	± 127.2	1435.0	+ 232.2	668 7	± 1/1 /	807.0 ± 8.0	0.5	10
Ce	78	+ 6	106.00	+ 0.25	97 49	+ 6.06	59	+ 1	64 40	+ 2 97	66 23	+ 2.68	72.60	+ 271	77 60 + 2	0 0.50	10
Co	13	+ 3	13.0	+ 2 0	10.6	+ 0.7	11	+ 1	10.3	+ 17	11.0	+ 1 2	11.0	+ 0.8	95 + 04	1 0	5
Cr	74	+ 5	75	+ 5	66	+ 11	45	+ 1	67	+ 5	68	+ 8	63	+ 5	55 ± 5	10	5
Cs	na	- 0	14 30	+ 0.75	11 40	+ 0.65	n a	± .	5.69	+ 0.39	7 60	+ 0.63	3 93	+ 0.27	24 15 + 1	5 0.01	Ŭ
Cu	.39	+ 2	14.00	+ 1	27	+ 5	31	+ 8	22	+ 1	21	+ 1	20	+ 1	23 + 2	0.01	15
Dv	na		4 39	+ 0.03	4 27	+ 0.16	n a	- 0	4 56	+ 1 39	3 76	+ 0.18	4 40	+ 0.77	364 ± 03	7 0.05	
Fr	n a		2.34	+ 0.02	2.23	+ 0.03	na		2 74	+ 0.72	2 23	+ 0.15	2.57	+ 0.52	1.97 + 0	5 0.03	6
Eu	n a		1 71	+ 0.02	1 41	+ 0.08	n a		1 47	+ 0.44	1 24	+ 0.06	1.31	+ 0.22	1 14 + 0 0	7 0.03	
Ga	19	+ 1	20.7	+ 0.1	17.6	+ 0.7	15	+ 8	17.6	+ 0.7	17.3	+ 0.6	17.2	+ 0.2	18.6 + 0.4	0.1	15
Gd	n.a.		6.12	+ 0.01	5.43	+ 0.36	n.a.		5.72	+ 1.73	4.74	+ 0.14	5.36	+ 0.92	4.31 ± 0.1	1 0.05	
Hf	n.a.		7.2	+ 0.1	6.4	+ 0.5	n.a.		5.2	+ 0.2	5.3	+ 0.3	5.6	+ 0.4	5.8 + 0.4	0.2	
Но	n.a.		0.83	+ 0.03	0.80	+ 0.01	n.a.		0.94	+ 0.26	0.79	+ 0.06	0.90	+ 0.17	0.72 ± 0.0	6 0.01	
La	38	± 5	52.1	± 0.6	48.0	± 6.2	35	± 5	38.0	± 6.1	32.4	± 1.9	38.2	± 7.3	34.8 ± 0.6	0.5	10
Li	n.a.		40	± 5	35	± 5	n.a.		87	± 5	70	± 7	80	± 5	45 ± 5	10	
Lu	n.a.		0.34	± 0.02	0.32	± 0.01	n.a.		0.41	± 0.11	0.34	± 0.03	0.37	± 0.05	0.28 ± 0.0	3 0.01	
Nb	12	± 1	14.5	± 0.1	13.5	± 0.8	<10		9.0	± 0.7	8.8	± 0.7	9.2	± 0.2	8.8 ± 0.2	0.2	10
Nd	<5		46.9	± 1.0	39.1	± 2.5	<5		36.5	± 9.8	30.9	± 1.8	33.6	± 5.0	29.3 ± 0.3	0.1	5
Ni	41	± 5	31	± 9	30	± 3	29	± 4	25	± 2	21	± 3	20	± 3	19 ± 2	1	
Pb	54	± 4	27	± 1	47	± 4	22	± 8	31	± 3	39	± 4	72	± 8	43 ± 6	2	15
Pr	n.a.		12.20	± 0.20	10.09	± 0.67	n.a.		9.27	± 2.27	7.87	± 0.48	8.73	± 1.18	7.92 ± 0.1	6 0.03	1
Rb	98	± 20	139.0	± 1.5	98.2	± 11.4	49	± 7	46.2	± 1.6	72.4	± 5.8	42.9	± 1.6	145.5 ± 10	0 0.2	5
Sc	17	± 4	11	± 1	14	± 2	15	± 1	12	± 1	12	± 1	11	± 1	11 ± 1	1	5
Sm	n.a.		8.29	± 0.17	7.52	± 0.61	n.a.		6.82	± 2.09	5.64	± 0.32	6.45	± 1.14	5.75 ± 0.1	3 0.03	i.
Sn	n.a.		3	± 1	3	± 1	n.a.		4	± 1	4	± 1	3	± 1	5 ± 1	1	
Sr	315	± 14	415.5	± 5.5	243.1	± 20.6	282	± 2	213.7	± 3.3	255.0	± 24.4	251.3	± 2.9	310.5 ± 22	5 0.1	5
Та	n.a.		0.8	± 0.1	0.9	± 0.1	n.a.		0.5	± 0.1	0.5	± 0.1	0.6	± 0.1	0.6 ± 0.1	0.1	
Tb	n.a.		0.82	± 0.03	0.78	± 0.02	n.a.		0.83	± 0.26	0.67	± 0.04	0.80	± 0.13	0.65 ± 0.0	4 0.01	
Th	15	± 1	23.55	± 1.05	18.74	± 3.05	<15		13.33	± 0.87	13.56	± 0.80	17.72	± 2.69	16.03 ± 1.0	3 0.05	15
Tm	n.a.		0.34	± 0.01	0.33	± 0.01	n.a.		0.38	± 0.11	0.32	± 0.02	0.39	± 0.07	0.31 ± 0.0	3 0.01	
U	n.a.		3.57	± 0.14	4.95	± 0.04	n.a.		3.21	± 0.51	2.65	± 0.22	4.00	± 1.39	3.33 ± 0.3	6 0.05	
v	114	± 7	91	± 2	93	± 5	102	± 5	88	± 3	79	± 7	82	± 5	90 ± 2	5	5
w	n.a.		3	± 1	3	± 1	n.a.		2	± 1	2	± 1	2	± 1	5 ± 1	1	
Y	25.6	± 1.6	24.0	± 0.2	23.3	± 1.3	20.5	± 2.5	28.1	± 7.8	22.3	± 2.2	28.6	± 7.6	19.8 ± 2.1	0.5	10
Yb	n.a.		2.26	± 0.10	2.07	± 0.01	n.a.		2.63	± 0.77	2.19	± 0.15	2.39	± 0.35	1.92 ± 0.1	7 0.03	
Zn	104	± 12	83	± 11	76	± 3	75	± 3	83	± 1	98	± 7	109	± 7	71 ± 4	2	. 15
Zr	195	± 5	281	± 7	229	± 25	145	± 4	197	± 7	199	± 9	220	± 20	236 ± 12	2	. 10

Geochemical data of suevite whole-rock: locality averages of outer suevite exposures

location	Aumühle		Doosweiher		Otting		Alte Bürg		Aufhausen		Bollstadt		Oberringing	en	Zipplingen		d.l.
area	East		East		East		West		West		West		West		West		XRF
n sample	7	1σ	2	1σ	12	1σ	4	1σ	4	1σ	5	1σ	3	1σ	2	1σ	
SiO2 (wt.%)	65	± 1	64	± 1	62	± 3	53	± 3	60	± 4	64	± 1	65	± 1	61	± 1	1
TiO2	0.78	± 0.03	0.85	± 0.01	0.80	± 0.03	0.60	± 0.05	0.64	± 0.03	0.63	± 0.03	0.66	± 0.01	0.63	± 0.01	0.01
AI2O3	15.1	± 0.5	15.6	± 0.1	14.2	± 0.7	12.7	± 0.8	13.5	± 0.8	14.3	± 0.3	14.3	± 0.1	14.4	± 0.3	0.5
Fe2O3	4.15	± 0.68	5.16	± 0.43	5.04	± 0.29	4.42	± 0.34	4.93	± 0.23	4.53	± 0.32	4.91	± 0.22	4.57	± 0.05	0.05
MnO	0.1	± 0.1	0.1	± 0.1	0.1	± 0.1	0.1	± 0.1	0.1	± 0.1	0.1	± 0.1	0.1	± 0.1	0.1	± 0.1	0.1
MgO	0.9	± 0.1	1.1	± 0.1	2.5	± 0.3	1.9	± 0.1	3.4	± 0.2	2.4	± 0.1	2.6	± 0.1	2.2	± 0.1	0.1
CaO	3.5	± 1.2	2.8	± 0.1	4.4	± 2.4	11.0	± 1.9	5.9	± 2.8	3.5	± 0.4	3.1	± 0.1	5.1	± 1.2	0.1
Na2O	2.5	± 0.2	2.6	± 0.1	1.5	± 0.2	1.8	± 0.2	2.0	± 0.1	1.7	± 0.3	2.1	± 0.1	2.5	± 0.1	0.1
K2O	2.8	± 0.4	4.0	± 0.3	2.4	± 0.2	1.4	± 0.1	1.5	± 0.2	1.6	± 0.2	1.5	± 0.1	2.8	± 0.1	0.1
P2O5	0.2	± 0.1	0.3	± 0.1	0.3	± 0.1	0.2	± 0.1	0.2	± 0.1	0.2	± 0.1	0.2	± 0.1	0.2	± 0.1	0.1
LOI	4.4	± 0.5	3.1	± 0.2	6.5	± 1.8	11.8	± 1.8	6.8	± 1.9	6.3	± 0.6	4.9	± 0.1	6.0	± 0.7	0.1
Total	98.55	± 1.96	99.59	± 0.06	97.14	± 2.94	94.06	± 5.66	99.41	± 0.26	99.45	± 0.31	99.47	± 0.58	99.56	± 0.28	
Ba (ppm)	997	± 243	1451	± 34	1120	± 171	614	± 273	829	± 496	1367	± 467	964	± 316	695	± 8	10
Ce	76	± 6	112	± 4	99	± 6	62	± 4	67	± 4	69	± 6	78	± 8	77	± 2	10
Co	12	± 6	13	± 4	10	± 1	9	± 1	9	± 2	9	± 1	11	± 1	9	± 1	5
Cr	72	± 6	52	± 3	57	± 3	45	± 3	53	± 3	45	± 3	51	± 3	41	± 5	5
Cu	34	± 2	29	± 1	29	± 2	30	± 2	28	± 1	27	± 1	29	± 1	31	± 2	15
Ga	19	± 1	20	± 8	18	± 1	17	± 1	16	± 1	16	± 1	17	± 1	18	± 1	15
La	37	± 3	50	± 2	48	± 6	27	± 4	40	± 6	36	± 11	35	± 1	43	± 6	10
Nb	11	± 5	14	± 5	14	± 1	<10		10	± 5	10	± 5	11	± 1	<10		10
Ni	38	± 6	34	± 7	33	± 3	24	± 4	26	± 2	26	± 4	30	± 4	25	± 3	5
Pb	47	± 2	24	± 6	46	± 6	21	± 1	30	± 3	44	± 13	58	± 12	42	± 3	15
Rb	111	± 15	136	± 1	102	± 8	58	± 5	51	± 7	63	± 15	63	± 36	124	± 5	5
Sc	17	± 1	15	± 2	15	± 1	16	± 1	16	± 2	16	± 1	15	± 2	14	± 2	5
Sr	317	± 10	408	± 5	247	± 18	332	± 99	217	± 21	218	± 23	245	± 14	291	± 21	5
Th	15	± 8	17	± 2	18	± 2	<15		<15		<15		16	± 8	<15		15
v	113	± 13	85	± 1	88	± 2	101	± 2	86	± 2	74	± 3	80	± 1	84	± 3	5
Y	25	± 2	27	± 3	25	± 1	21	± 2	26	± 2	26	± 7	24	± 2	22	± 2	10
Zn	116	± 29	83	± 15	74	± 5	70	± 7	77	± 5	90	± 3	85	± 13	70	± 1	15
Zr	200	± 5	237	± 6	223	± 11	147	± 11	171	± 6	177	± 9	191	± 10	174	± 2	10

n.a.= not analyzed

Ce and Zr whole-rock vs. suevite components diagrams

The composition of suevite melts (two methods) and matrix component is plotted vs. the whole-rock composition. For drill cores Nördlingen FBN 73 and Enkingen SUBO 18 (data from Reimold et al., 2013) only whole-rock data are plotted.

Outer suevite

- O melt (laser ablation ICP-MS)
- O separated melt (XRF/ICP-MS)
- separated matrix (XRF)
- eastern area
- 🛆 🌔 western area

Crater suevite (drill cores)

- $\Delta~$ Nördlingen FBN 73 suevite whole rock bottom and top part* (XRF)
- Enkingen SUBO 18 suevite whole rock bottom and top part (XRF)
 - * subdivision after Pohl et al. (1977), and Stöffler (1977)

a) top diagram: Ce (suevite whole-rock) vs. Ce (suevite components)

bottom diagram: data grouped in western (blue) and eastern (red) part of Ries impact crater structure b) top diagram: Zr (suevite whole-rock) vs. Zr (suevite components) bottom diagram: data grouped in western (blue) and eastern (red) part of Ries impact crater structure

Melt particles, matrix, and whole-rock data of outer suevite exhibit similar 'immobile' trace element composition at each individual location with an overall positive Ce and Zr correlation. Drill core data (triangle, square) follow the same compositional trend as the other suevite locations.

Th-Nb diagram

Th-Nb diagram of Ries target rock (gray field, top right shortened), suevite whole-rock (solid line), and impact melt (dashed lines). Blue dots show average outer suevite whole-rock of each locality in the western area; red dots are average outer suevite whole-rock of locality in the eastern area; red triangle shows average impact melt rock at Polsingen with numbering from Figure 1. Open squares and circles represent the chemical trend from bottom (average) to top (average) of suevite whole-rock of both drill cores, with subdivision as shown in Figure 2 and numbering of localities as shown in Figure 1A. B: Detail of A; sample localities as in Figure 1A. Th and Nb contents localites 1-4 below detection limit (b.d.l.; Th <15 ppm, Nb <10 ppm, XRF).

Crater suevite Co+Cr+Cu+Ni vs. depth diagram

It is known from drill core FBN 73, that the footwall lithologies in the West get more mafic with increasing depth (Bayerisches Geologisches Landesamt 1974); so, with progressive ejection more mafic rocks get incorporated into the currents, the Co+Cr+Cu+Ni values increase. The crater suevite of the drill core Nördlingen (location 10 in Figure 1a) gets more mafic with increasing depth. In addition the data of the drill core Enkingen (Reimold et al., 2013) are shown.

The suevite of the drill core Enkingen (location 11 in Figure 1a) gets less mafic with increasing depth. Question mark at Enkingen location: Drilling ends before contact to crystalline basement is reached.

Chemical data of drill core Nördlingen FBN 73

Preparation of suevite samples for whole-rock geochemical data set:

Suevite samples from which only lithic and mineral clasts larger than approx. 1 cm have been removed.

Analytical methods:

Drill core Nördlingen FBN 73 crater suevite whole-rock analyses were carried out by XRF with a BRUKER AXS S8 TIGER instrument at Museum für Naturkunde Berlin (for more informations see Raschke et al., 2013).

The data listed in table DR3 1-3 are averages of two consecutive FBN 73 samples, because they are more representative. The sample numbers consist of the drill hole name (FBN 73) and the depth (in m) in the drill core profile (e.g., FBN 73 331,40). Thus the average value represents the average composition of two samples in a specific section of the drill core.

All drill core FBN 73 data are available online (Siegert et al., 2017).

FBN73 FBN73 FRN73 FRN73 FRN73 331.40 337.30 341.85 347.00 352.00 Sample 340.55 FBN 73 [m] 332.40 343.20 350.58 357.00 melt-rich suevite melt-rich suevite melt-rich suevite melt-rich suevite melt-rich suevite 1σ average 331.90 1σ 338.93 1σ 342.53 348.79 1σ 354.50 1σ d.L SiO2 (wt.%) 62 ± 1 59 ± 1 62 ± 2 61 ± 1 61 ± 1 0.01 TiO2 0.75 ± 0.04 0.76 ± 0.03 0.68 ± 0.08 0.69 ± 0.01 0.72 ± 0.04 AI2O3 14.6 ± 0.1 14.0 ± 0.1 13.9 ± 0.3 13.9 ± 0.1 14.2 ± 0.1 0.5 Fe2O3 5.57 ± 0.02 5.37 ± 0.12 5.21 ± 0.49 4.94 ± 0.18 5.06 ± 0.42 0.05 0.1 ± 0.1 0.1 ± 0.1 0.1 MnO 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 MgO 3.1 ± 0.2 3.1 ± 0.2 2.8 ± 0.3 2.7 ± 0.1 2.7 ± 0.3 0.1 CaO 2.3 ± 0.2 3.9 ± 0.2 3.0 ± 0.2 4.3 ± 0.5 3.6 ± 0.2 0.1 Na2O 4.2 ± 0.2 4.0 ± 0.2 4.2 ± 0.2 4.0 ± 0.1 4.3 ± 0.1 0.1 K20 2.9 ± 0.1 2.8 ± 0.5 3.0 ± 0.2 2.8 ± 0.1 3.1 ± 0.1 01 P205 0.2 ± 0.1 01 LOI 3.7 ± 0.3 6.1 ± 1.3 4.5 ± 0.4 5.3 ± 0.4 4.6 ± 0.3 0.1 Total 99.46 ± 0.08 99.48 ± 0.29 99.28 ± 0.07 99.54 ± 0.14 99.42 ± 0.09 Ba (ppm) 982 ± 214 859 ± 170 697 ± 57 634 ± 43 653 ± 27 10 Ce 76 ± 5 78 ± 5 73 ± 11 68 ± 6 74 ± 4 10 Co 11 ± 1 12 ± 1 11 ± 2 10 ± 3 10 ± 3 5 Cr 46 ± 2 45 ± 8 45 ± 8 43 ± 2 45 ± 1 5 Cu 29 ± 1 30 ± 1 29 ± 2 28 ± 1 31 ± 1 15 17 ± 1 Ga 18 ± 1 17 ± 1 17 ± 1 18 ± 8 15 37 ± 5 32 ± 3 30 ± 1 35 ± 2 36 ± 4 10 La Mo <10 <10 10 <10 <10 <10 Nb 10 ± 5 <10 10 ± 5 10 <10 11 ± 5 Ni 26 ± 1 25 ± 1 26 ± 2 24 ± 1 25 ± 1 5 Pb 45 ± 6 48 ± 7 57 ± 2 64 ± 5 62 ± 5 15 Rb 96 ± 1 100 ± 9 102 ± 1 99 ± 3 105 ± 3 5 Sc 17 ± 1 15 ± 3 19 ± 2 15 ± 1 16 ± 1 5 5 Sr 444 ± 121 369 ± 9 294 ± 7 302 ± 16 296 ± 14 Th <15 <15 <15 <15 <15 15 U <10 10 <10 <10 <10 <10 102 ± 2 v 106 ± 2 106 ± 6 101 ± 8 101 ± 2 5 Y 21 ± 1 20 ± 3 23 ± 2 20 ± 1 22 ± 5 10 Zn 70 ± 2 72 ± 2 74 ± 8 72 ± 2 73 ± 2 15 185 ± 3 182 ± 12 177 ± 4 175 ± 9 183 ± 12 10 Zr FBN73 FBN73 FBN73 FBN73 FBN73 Sample 362.67 370.63 374.70 378.50 383.64 FBN 73 [m] 384.<u>35</u> 368.30 372.00 377.50 379.00 melt-rich suevite melt-rich suevite melt-rich suevite melt-rich suevite melt-rich suevite 365.49 371.32 376.10 378.75 384.00 d.l average 1σ 1σ 1σ 1σ 1σ SiO2 (wt.%) 61 ± 1 59 ± 1 61 ± 1 60 ± 1 60 ± 1 TiO2 0.74 ± 0.02 0.79 ± 0.06 0.69 ± 0.02 0.69 ± 0.03 0.72 ± 0.02 0.01 14.5 ± 0.4 AI2O3 14.5 ± 0.3 14.4 ± 0.2 14.6 ± 0.1 14.6 ± 0.3 0.5 Fe2O3 5.32 ± 0.01 5.84 ± 0.38 4.93 ± 0.01 5.23 ± 0.07 5.18 ± 0.30 0.05 0.1 ± 0.1 0.1 ± 0.1 MnO 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 MgO 2.9 ± 0.1 3.3 ± 0.2 2.7 ± 0.1 2.6 ± 0.1 0.1 2.8 ± 0.1 CaO 3.4 ± 0.1 3.4 ± 0.1 3.6 ± 0.2 3.4 ± 0.1 4.0 ± 0.3 01 Na2O 4.5 ± 0.1 4.6 ± 0.1 4.8 ± 0.3 4.3 ± 0.3 4.2 ± 0.1 0.1 **K2O** 2.9 ± 0.1 2.6 ± 0.2 2.8 ± 0.1 2.6 ± 0.1 3.0 ± 0.1 0.1 P2O5 0.2 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.1 LOI 4.2 ± 0.1 5.1 ± 0.5 4.3 ± 0.1 5.7 ± 1.5 4.5 ± 0.9 0.1 Total 99.66 ± 0.12 99.28 ± 0.15 99.74 ± 0.18 99.40 ± 0.06 99.23 ± 0.09 Ba (ppm) 622 ± 1 829 ± 170 604 ± 7 1140 ± 478 992 ± 416 10 77 ± 5 80 ± 12 79 ± 4 77 ± 5 82 ± 2 10 Ce Co 12 ± 2 12 ± 3 11 ± 1 11 ± 1 11 ± 1 5 37 ± 4 Cr 46 ± 3 62 ± 14 55 ± 15 47 ± 2 5 32 ± 3 32 ± 1 27 ± 2 31 ± 1 30 ± 1 15 Cu Ga 19 + 119 + 817 + 119 ± 1 18 + 115 La 42 ± 4 40 ± 5 35 ± 6 35 ± 2 36 ± 2 10 Mo <10 <10 <10 <10 <10 10 Nb <10 11 ± 1 <10 10 ± 5 <10 10 27 ± 1 Ni 26 ± 2 29 ± 2 27 ± 7 26 ± 2 5 Pb 45 ± 1 29 ± 2 36 ± 10 35 ± 8 37 ± 14 15 Rb 102 ± 1 103 ± 4 101 ± 4 93 ± 8 96 ± 5 5 17 ± 1 17 ± 2 Sc 19 ± 1 20 ± 3 16 ± 2 5 618 ± 338 Sr 283 ± 3 311 ± 13 283 ± 4 552 ± 272 5 Th <15 <15 <15 <15 <15 15 u <10 <10 <10 <10 <10 10 97 ± 1 ٧ 109 ± 4 115 ± 8 102 ± 2 99 ± 7 5 Υ 23 ± 1 24 ± 1 22 ± 1 20 ± 5 22 ± 1 10 71 ± 1 72 ± 4 70 ± 5 Zn 68 ± 2 70 ± 2 15 10 Zr 178 ± 2 186 ± 11 171 ± 13 171 ± 11 187 ± 7

Geochemical data of drill core Nördlingen FBN 73 crater suevite

FRN73 FBN73 FBN73 FRN73 FRN73 386.50 400.33 416.55 436.00 441.60 Sample 417.50 FBN 73 [m] 398.75 403.47 437.40 445.50 melt-rich suevite melt-rich suevite melt-rich suevite melt-rich suevite melt-rich suevite 1σ average 392.63 1σ 401.90 1σ 417.03 436.70 1σ 443.55 1σ d.L SiO2 (wt.%) 58 ± 2 62 ± 1 63 ± 3 60 ± 1 59 ± 1 0.01 TiO2 0.77 ± 0.08 0.74 ± 0.02 0.59 ± 0.20 0.75 ± 0.01 0.80 ± 0.06 AI2O3 14.7 ± 0.3 15.0 ± 0.3 13.8 ± 2.2 15.5 ± 0.3 14.9 ± 0.1 0.5 Fe2O3 6.07 ± 1.31 5.39 ± 0.08 4.91 ± 0.24 5.51 ± 0.23 6.45 ± 0.27 0.05 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 MnO 0.1 ± 0.1 0.1 ± 0.1 MgO 3.2 ± 0.8 2.8 ± 0.1 2.3 ± 0.5 3.1 ± 0.1 4.0 ± 0.2 0.1 CaO 4.1 ± 0.1 4.3 ± 0.2 4.3 ± 1.3 3.0 ± 0.1 0.1 2.7 ± 0.1 Na2O 4.8 ± 0.4 3.8 ± 0.3 4.4 ± 0.9 5.5 ± 0.2 4.9 ± 0.2 0.1 K20 3.2 ± 0.2 2.7 ± 0.1 2.2 ± 0.3 2.6 ± 0.1 2.3 ± 0.2 01 P205 0.2 ± 0.1 0.3 ± 0.1 0.1 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 01 LOI 4.1 ± 0.1 3.0 ± 0.1 3.9 ± 0.2 4.0 ± 0.2 3.8 ± 0.3 0.1 Total 99.24 ± 0.02 99.74 ± 0.39 100.08 ± 0.25 99.41 ± 0.12 99.91 ± 0.02 Ba (ppm) 752 ± 171 861 ± 7 713 ± 86 708 ± 3 773 ± 142 10 Ce 78 ± 7 73 ± 5 78 ± 11 93 ± 2 72 ± 14 10 Co 10 ± 3 12 ± 1 9 ± 4 12 ± 1 14 ± 3 5 Cr 40 ± 4 40 ± 4 28 ± 25 45 ± 2 60 ± 8 5 Cu 30 ± 3 33 ± 8 35 ± 5 31 ± 2 32 ± 1 15 Ga 18 ± 2 18 ± 8 18 ± 8 19 ± 1 19 ± 8 15 37 ± 5 48 ± 2 33 ± 1 36 ± 7 39 ± 8 10 La Mo <10 <10 10 <10 <10 <10 Nb 10 ± 5 <10 10 ± 5 10 ± 5 11 ± 5 10 Ni 24 ± 2 22 ± 3 18 ± 8 24 ± 1 32 ± 3 5 Pb 47 ± 5 65 ± 5 21 ± 3 22 ± 2 24 ± 3 15 Rb 97 ± 10 99 ± 2 76 ± 16 95 ± 7 105 ± 7 5 Sc 17 ± 1 18 ± 1 13 ± 5 16 ± 2 22 ± 3 5 5 Sr 281 ± 7 344 ± 7 304 ± 37 330 ± 10 350 ± 80 Th <15 <15 <15 <15 15 <15 U 10 <10 <10 <10 <10 <10 87 ± 28 104 ± 5 v 5 105 ± 11 112 ± 3 131 ± 7 Y 21 ± 1 22 ± 5 21 ± 5 22 ± 1 24 ± 1 10 Zn 70 ± 1 69 ± 2 60 ± 17 67 ± 1 76 ± 4 15 191 ± 1 181 ± 4 208 ± 11 206 ± 12 179 ± 19 10 Zr FBN73 FBN73 FBN73 FBN73 FBN73 Sample 457.00 467.00 475.54 477.70 492.15 FBN 73 [m] 483.58 500.00 462.00 467.80 477.00 melt-rich suevite melt-rich suevite melt-rich suevite melt-rich suevite melt-rich suevite 459.50 467.40 476.27 480.64 496.08 d.l average 1σ 1σ 1σ 1σ 1σ SiO2 (wt.%) 61 ± 1 61 ± 1 60 ± 1 60 ± 1 60 ± 1 TiO2 0.69 ± 0.02 0.72 ± 0.02 0.73 ± 0.03 0.70 ± 0.05 0.82 ± 0.03 0.01 AI2O3 14.8 ± 0.5 14.8 ± 0.2 14.9 ± 0.1 15.1 ± 0.3 15.1 ± 0.1 0.5 Fe2O3 5.33 ± 0.22 5.41 ± 0.10 6.07 ± 0.56 5.49 ± 0.86 6.08 ± 0.03 0.05 MnO 0.1 ± 0.1 0.1 MgO 3.1 ± 0.1 3.6 ± 0.6 3.3 ± 0.8 3.4 ± 0.1 0.1 3.1 ± 0.1 CaO 2.9 ± 0.1 3.2 ± 0.1 3.7 ± 0.3 3.9 ± 0.1 3.6 ± 0.2 01 Na2O 4.9 ± 0.1 4.9 ± 0.1 4.9 ± 0.1 5.0 ± 0.2 5.1 ± 0.3 0.1 **K2O** 2.7 ± 0.1 2.7 ± 0.1 2.6 ± 0.1 2.4 ± 0.1 2.3 ± 0.1 0.1 P2O5 0.2 ± 0.1 0.1 LOI 3.8 ± 0.9 3.1 ± 0.4 2.3 ± 0.4 3.5 ± 1.0 3.4 ± 0.5 0.1 Total 99.56 ± 0.28 99.51 ± 0.13 99.38 ± 0.07 100.00 ± 0.13 99.71 ± 0.01 Ba (ppm) 684 ± 70 725 ± 5 626 ± 40 768 ± 171 845 ± 74 10 69 ± 2 76 ± 3 71 ± 11 64 ± 4 76 ± 14 10 Ce Co 11 ± 3 11 ± 1 13 ± 2 12 ± 3 14 ± 3 5 39 ± 2 Cr 45 ± 1 56 ± 14 50 ± 18 51 ± 2 5 28 ± 2 34 ± 3 32 ± 5 63 ± 27 15 Cu 31 ± 2 Ga 18 + 818 + 118 + 819 + 115 18 + 8 27 ± 5 La 30 ± 4 42 ± 5 28 ± 3 33 ± 5 10 Mo <10 <10 <10 <10 <10 10 Nb <10 <10 10 ± 5 <10 10 ± 5 10 25 ± 1 Ni 23 ± 3 30 ± 6 27 ± 7 29 ± 2 5 Pb 20 ± 1 21 ± 1 18 ± 2 22 ± 7 19 ± 8 15 82 ± 1 Rb 98 ± 5 95 ± 2 91 ± 5 85 ± 2 5 20 ± 2 20 ± 3 Sc 18 ± 3 19 ± 2 21 ± 1 5 Sr 276 ± 1 276 ± 1 269 ± 9 274 ± 14 284 ± 19 5 Th <15 <15 <15 <15 <15 15 u <10 <10 <10 <10 <10 10 ٧ 106 ± 3 102 ± 1 126 ± 11 116 ± 22 124 ± 2 5 Υ 21 ± 5 21 ± 5 22 ± 1 19 ± 1 23 ± 2 10 65 ± 2 73 ± 1 Zn 67 ± 1 66 ± 8 63 ± 1 15 176 ± 2 10 Zr 162 ± 2 159 ± 18 157 ± 16 180 ± 14

Geochemical data of drill core Nördlingen FBN 73 crater suevite

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
FBN 73 [m]505.40524.30536.75546.56571.50averagemelt-rich suevite 503.70melt-rich suevite 524.30melt-por suevite 534.40melt-por suevite 546.13melt-por suevite 569.75melt-por suevite 569.75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Interfector subviceInterfector subviceSign colspan="4">Sign colspan="4"Interfector subviceSign colspan="4"Interfector subviceInterfector subviceInterfector subviceInterfector subvice <th< th=""></th<>
average503.7010524,30534.4010546.1310569.751001.SiO2 (wt.%) 62 ± 2 59 63 ± 2 61 ± 1 59 ± 1 11TiO2 0.66 ± 0.08 0.72 0.64 ± 0.05 0.76 ± 0.01 0.68 ± 0.04 0.01 Al203 14.4 ± 0.4 14.9 15.0 ± 0.1 14.9 ± 0.2 14.8 ± 0.4 0.5 Fe2O3 5.50 ± 1.15 5.62 5.21 ± 0.52 5.57 ± 0.08 6.68 ± 0.20 0.05 MnO 0.1 ± 0.1 0.1 0.1 ± 0.1 MgO 2.7 ± 0.7 3.0 2.5 ± 0.4 2.6 ± 0.1 4.1 ± 0.4 0.1 CaO 3.4 ± 0.1 3.4 3.3 ± 0.4 3.9 ± 0.1 5.0 ± 0.1 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.4 ± 0.1 2.0 ± 0.1 0.1 ± 0.1 0.1 P2O5 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 LOI 2.5 ± 0.3 4.1 2.6 ± 0.5 3.4 ± 0.5 3.2 ± 0.1 0.1 Total 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 5 </th
SiO2 (wt.%) 62 ± 2 59 63 ± 2 61 ± 1 59 ± 1 1 TiO2 0.66 ± 0.08 0.72 0.64 ± 0.05 0.76 ± 0.01 0.68 ± 0.04 0.01 Al2O3 14.4 ± 0.4 14.9 15.0 ± 0.1 14.9 ± 0.2 14.8 ± 0.4 0.55 Fe2O3 5.50 ± 1.15 5.62 5.21 ± 0.52 5.57 ± 0.08 6.68 ± 0.20 0.05 MnO 0.1 ± 0.1 0.1 0.1 ± 0.1 MgO 2.7 ± 0.7 3.0 2.5 ± 0.4 2.6 ± 0.1 4.1 ± 0.4 0.1 CaO 3.4 ± 0.1 3.4 3.3 ± 0.4 3.9 ± 0.1 5.0 ± 0.1 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.4 ± 0.1 2.0 ± 0.1 0.1 ± 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.4 ± 0.1 2.0 ± 0.1 0.1 Na2O 3.0 ± 0.9 2.0 3.1 ± 0.3 3.4 ± 0.1 2.0 ± 0.1 0.1 Na2O 4.6 ± 0.7 9.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 Na2O 4.6 ± 0.7 9.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 Na2O 4.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 Co 0.2 ± 0.1 </th
SiO2 (wt.%) 62 ± 2 59 63 ± 2 61 ± 1 59 ± 1 1 TiO2 0.66 ± 0.08 0.72 0.64 ± 0.05 0.76 ± 0.01 0.68 ± 0.04 0.01 Al2O3 14.4 ± 0.4 14.9 15.0 ± 0.1 14.9 ± 0.2 14.8 ± 0.4 0.51 Fe2O3 5.50 ± 1.15 5.62 5.21 ± 0.52 5.57 ± 0.08 6.68 ± 0.20 0.05 Mn0 0.1 ± 0.1 Mg0 2.7 ± 0.7 3.0 2.5 ± 0.4 2.6 ± 0.1 4.1 ± 0.4 0.1 CaO 3.4 ± 0.1 3.4 3.3 ± 0.4 3.9 ± 0.1 5.0 ± 0.1 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.4 ± 0.1 2.0 ± 0.1 0.1 ± 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 P2O5 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 Di 2.5 ± 0.3 4.1 2.6 ± 0.5 3.4 ± 0.5 3.2 ± 0.1 0.1 Total 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 55 Cu 30 ± 7 31 27 ± 1 3
TiO2 0.66 ± 0.08 0.72 0.64 ± 0.05 0.76 ± 0.01 0.68 ± 0.04 0.01 Al2O3 14.4 ± 0.4 14.9 15.0 ± 0.1 14.9 ± 0.2 14.8 ± 0.4 0.51 Fe2O3 5.50 ± 1.15 5.62 5.21 ± 0.52 5.57 ± 0.08 6.68 ± 0.20 0.055 MnO 0.1 ± 0.1 Mg0 2.7 ± 0.7 3.0 2.5 ± 0.4 2.6 ± 0.1 4.1 ± 0.4 0.1 CaO 3.4 ± 0.1 3.4 3.3 ± 0.4 3.9 ± 0.1 5.0 ± 0.1 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 K2O 3.0 ± 0.9 2.0 3.1 ± 0.3 3.4 ± 0.1 2.0 ± 0.1 0.1 P2O5 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 L0I 2.5 ± 0.3 4.1 2.6 ± 0.5 3.4 ± 0.5 3.2 ± 0.1 0.1 Dial 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 15 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 5 Cu 30 ± 7 31 27 ± 1 3
Al2O3 14.4 ± 0.4 14.9 15.0 ± 0.1 14.9 ± 0.2 14.8 ± 0.4 0.5 Fe2O3 5.50 ± 1.15 5.62 5.21 ± 0.52 5.57 ± 0.08 6.68 ± 0.20 0.05 MnO 0.1 ± 0.1 MgO 2.7 ± 0.7 3.0 2.5 ± 0.4 2.6 ± 0.1 4.1 ± 0.4 0.1 CaO 3.4 ± 0.1 3.4 3.3 ± 0.4 3.9 ± 0.1 5.0 ± 0.1 0.1 ± 0.4 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 K2O 3.0 ± 0.9 2.0 3.1 ± 0.3 3.4 ± 0.1 2.0 ± 0.1 0.1 P2O5 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 L0I 2.5 ± 0.3 4.1 2.6 ± 0.5 3.4 ± 0.5 3.2 ± 0.1 0.1 D1 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 99.54 ± 0.01 Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 5 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 Ga 18 ± 8 18 20 ± 1 <
Fe2O3 5.50 ± 1.15 5.62 5.21 ± 0.52 5.57 ± 0.08 6.68 ± 0.20 0.05 MnO 0.1 ± 0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
MgO 2.7 ± 0.7 3.0 2.5 ± 0.4 2.6 ± 0.1 4.1 ± 0.4 0.1 CaO 3.4 ± 0.1 3.4 3.3 ± 0.4 3.9 ± 0.1 5.0 ± 0.1 0.1 Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 K2O 3.0 ± 0.9 2.0 3.1 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 P2O5 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 LOI 2.5 ± 0.3 4.1 2.6 ± 0.5 3.4 ± 0.1 2.0 ± 0.1 0.1 Total 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 55 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 55 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Nb <10 <10 <10 <10 <10 <10 <10 10 Nb <10 <10 <10 <10 <10 <10 <10 21 ± 4 20 ± 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Na2O 4.6 ± 0.7 5.9 3.9 ± 0.3 3.6 ± 0.2 3.8 ± 0.2 0.1 K2O 3.0 ± 0.9 2.0 3.1 ± 0.3 3.4 ± 0.1 2.0 ± 0.1 0.1 P2O5 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 LOI 2.5 ± 0.3 4.1 2.6 ± 0.5 3.4 ± 0.5 3.2 ± 0.1 0.1 Total 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 5 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 5 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Nb <10 <10 <10 <10 <10 10 Nb <10 <10 <10 <10 10 Nb <10 <10 <10 21 ± 4 20 ± 2
K20 3.0 ± 0.9 2.0 3.1 ± 0.3 3.4 ± 0.1 2.0 ± 0.1 0.1 P205 0.2 ± 0.1 0.2 0.2 ± 0.1 $0.1 \pm 0.2 \pm 0.1$ $0.1 \pm 0.2 \pm 0.1$ 0.1 ± 0.1 LOI 2.5 ± 0.3 4.1 2.6 ± 0.5 3.4 ± 0.5 3.2 ± 0.1 0.1 Total 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 9 ± 2 16 ± 1 5 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Nb<10
P205 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 LOI 2.5 ± 0.3 4.1 2.6 ± 0.5 3.4 ± 0.5 3.2 ± 0.1 0.1 Total 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 0.1 Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 5 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 5 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Nb <10 <10 <10 <10 <10 10 Nb <10 <10 <10 <10 10 10
LOI 2.5 ± 0.3 4.1 2.6 ± 0.5 3.4 ± 0.5 3.2 ± 0.1 0.1 Total 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 0.1 Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 55 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 55 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Nb <10 <10 <10 <10 <10 <10 10 10 Nb <10 <10 <10 <10 <10 <10 <10 10
Total 99.34 ± 0.24 99.03 99.58 ± 0.05 99.36 ± 0.24 99.54 ± 0.01 Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 55 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 55 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Mo <10 <10 <10 <10 <10 10 Nb <10 <10 <10 <10 10 10 Nb $=10$ <10 <10 <10 10 10
Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 100 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 100 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 55 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 55 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Mo <10 <10 <10 <10 <10 <10 10 Nb <10 <10 <10 <10 <10 <10 10 Ni 19 ± 5 27 16 ± 2 21 ± 1 28 ± 3 55 Pb 21 ± 4 21 ± 4 20 ± 2 25 ± 8 15
Ba (ppm) 782 ± 161 738 1065 ± 305 1384 ± 120 483 ± 10 10 Ce 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 55 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 55 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Mo <10 <10 <10 <10 <10 <10 10 Nb <10 <10 <10 <10 <10 <10 10 Ni 19 ± 5 27 16 ± 2 21 ± 1 28 ± 3 55 Pb 21 ± 4 21 ± 4 20 ± 4 20 ± 2 25 ± 8 15
Centre 62 ± 4 76 66 ± 9 72 ± 2 48 ± 4 10 Co 10 ± 2 11 10 ± 2 9 ± 2 16 ± 1 55 Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 55 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Nb <10 <10 <10 <10 <10 10 Nb <10 <10 <10 <10 <10 10 Ni 19 ± 5 27 16 ± 2 21 ± 1 28 ± 3 15 Pb 21 ± 4 21 ± 4 21 ± 4 20 ± 1 21 ± 4 20 ± 5 27
Cr 29 ± 12 48 21 ± 10 26 ± 2 69 ± 18 55 Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Mo <10 <10 <10 <10 <10 <10 10 10 Nb <10 <10 <10 <10 <10 <10 10 10 15 Pb 21 ± 4 21 27 16 ± 2 21 ± 1 28 ± 3 55
Cu 30 ± 7 31 27 ± 1 30 ± 4 35 ± 2 15 Ga 18 ± 8 18 20 ± 1 20 ± 1 17 ± 1 15 La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Mo <10 <10 <10 <10 <10 <10 10 Nb <10 <10 <10 <10 <10 <10 10 Ni 19 ± 5 27 16 ± 2 21 ± 1 28 ± 3 55 Pb 21 ± 4 21 21 ± 4 20 ± 2 25 ± 8 15
Ga18 ± 8 1820 ± 1 20 ± 1 17 ± 1 15La31 ± 12 3627 ± 13 31 ± 2 23 ± 6 10Mo<10<10<10<10<1010Nb<10<10<10<10<1010Ni19 ± 5 2716 ± 2 21 ± 1 28 ± 3 55Pb21 ± 4 2121 ± 4 20 ± 2 25 ± 8 15
La 31 ± 12 36 27 ± 13 31 ± 2 23 ± 6 10 Mo <10 <10 <10 <10 <10 <10 10 Nb <10 <10 <10 <10 <10 <10 10 Ni 19 ± 5 27 16 ± 2 21 ± 1 28 ± 3 5 Pb 21 ± 4 21 ± 4 21 ± 4 20 ± 2 25 ± 8 15
Mo <10
Nb <10
Ni 19 ± 5 27 16 ± 2 21 ± 1 28 ± 3 5 Pb 21 ± 4 21 21 ± 4 20 ± 2 25 ± 8 15
Ph 21 ± 4 21 21 ± 4 20 ± 2 25 ± 8 15
Rb 105 ± 34 73 147 ± 15 195 ± 8 82 ± 1 5
Sc 20 ± 3 21 22 ± 1 19 ± 1 25 ± 3 5
Sr 282 ± 17 258 301 ± 2 301 ± 2 297 ± 14 5
Th 15 ± 8 <15 <15 <15 <15 15
U <10 <10 <10 <10 10
V 99 ± 29 108 103 ± 15 109 ± 12 156 ± 4 5
Y 20 ± 4 21 24 ± 3 22 ± 1 21 ± 3 10
Zn 62 ± 8 71 73 ± 5 80 ± 10 73 ± 7 15
Zr 170 ± 17 181 162 ± 14 152 ± 6 149 ± 19 10

Geochemical data of drill core Nördlingen FBN 73 crater suevite

	FBN73	FBN73	FBN73	600.50	
Sample	581.60	589.00	596.00	601.50	
FBN 73 [m]	586.50	590.10	598.20	601.90	
	melt-poor suevite	melt-poor suevite	melt-poor suevite	melt-poor suevite	
average	584.05 1σ	589.55 1σ	597.10 1σ	601.30 1σ	d.l.
avolugo	001100 10	000.00 10	001110 10	10	u
SiO2 (wt %)	57 + 2	57 + 2	58 + 1	58 + 2	1
TiO2	0.68 ± 0.01	0.67 ± 0.01	0.67 ± 0.01	0.74 ± 0.07	0.01
AI2O3	14.8 ± 0.2	14.8 ± 0.1	15.0 ± 0.1	14.6 ± 0.3	0.5
Fe2O3	7.53 ± 0.79	7.57 ± 0.96	6.57 ± 0.15	6.26 ± 0.08	0.05
MnO	0.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	0.1
MqO	4.8 ± 0.7	4.9 ± 1.0	3.6 ± 0.1	3.7 ± 0.2	0.1
CaO	5.8 ± 0.2	6.1 ± 0.8	5.0 ± 0.1	5.6 ± 0.7	0.1
Na2O	3.8 ± 0.2	4.0 ± 0.2	4.2 ± 0.1	3.0 ± 0.6	0.1
K2O	1.6 ± 0.1	1.3 ± 0.4	2.1 ± 0.1	3.3 ± 0.9	0.1
P2O5	0.1 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	0.3 ± 0.1	0.1
LOI	3.9 ± 0.6	2.4 ± 0.3	3.8 ± 0.4	4.2 ± 1.0	0.1
Total	99.65 ± 0.16	99.31 ± 0.02	99.39 ± 0.08	99.77 ± 0.32	
Ba (ppm)	450 ± 46	415 ± 167	1073 ± 491	2149 ± 308	10
Ce	40 ± 6	33 ± 7	50 ± 4	62 ± 11	10
Co	18 ± 2	20 ± 4	14 ± 1	15 ± 1	5
Cr	176 ± 113	100 ± 47	52 ± 3	62 ± 20	5
Cu	37 ± 1	40 ± 4	42 ± 6	46 ± 5	15
Ga	16 ± 1	16 ± 8	18 ± 1	17 ± 1	15
La	15 ± 5	16 ± 5	15 ± 4	17 ± 4	10
Мо	<10	<10	<10	<10	10
Nb	<10	<10	<10	<10	10
Ni	49 ± 19	37 ± 9	28 ± 1	31 ± 5	5
Pb			17 ± 8	44 ± 8	15
Rb	71 ± 1	61 ± 25	110 ± 24	154 ± 53	5
Sc	29 ± 4	31 ± 7	23 ± 1	20 ± 2	5
Sr	276 ± 24	277 ± 12	290 ± 3	296 ± 6	5
Th	<15	<15	<15	<15	15
U	<10	<10	<10	<10	10
V	179 ± 14	173 ± 28	141 ± 2	138 ± 9	5
Y	22 ± 2	21 ± 1	20 ± 1	19 ± 1	10
Zn	70 ± 8	66 ± 2	74 ± 5	130 ± 84	15
Zr	113 ± 27	115 ± 26	145 ± 5	149 ± 27	10

Ries impact target lithologies

a) sample locations of target lithologies grouped in western (blue) and eastern (red) area of the Ries structure, b) Ce and Zr histograms of Ries impact target lithologies divided in western and eastern area. Target rock fragments show in average lower Ce and Zr values at western suevite locations than at eastern sites. Data from Matthes et al. (1977), Siebenschock et al. (1998), Reimold et al. (2013), and this study (Schmitt et al., 2017).

Photo locations figure 1

- b: very poorly sorted outer suevite, quarry Otting
- c: very poorly sorted, massive lapilli-tuff from Adeje ignimbrite of Cañadas volcano, Tenerife
- d: elutriation pipe in outer suevite, quarry Aumühle
- e: elutriation pipe in the Zaragoza ignimbrite, central Mexico (Carrasco-Nuñez and Branney, 2005)
- f: fine-grained basal layer of outer suevite with low-angle cross-lamination and a sharp basal contact, quarry Otting
- g: cross-laminated base in the Campanian ignimbrite, Italy (see fig. 6.14 of Branney and Kokelaar, 2002)

References

Bayerisches Geologisches Landesamt (ed.), 1974. Die Forschungsbohrung Nördlingen 1973: Geologica Bavarica 72, 98 p.

Branney, M. J., and Kokelaar, P., 2002, Pyroclastic density currents and the sedimentation of ignimbrites Geological Society of London Memoir 27, 150 p.

Carrasco-Nuñez, G., and Branney, M. J., 2005, Progressive assembly of a massive layer of ignimbrite with a normal-to-reverse compositional zoning: The Zaragoza ignimbrite of central Mexico: Bulletin of Volcanology, v. 68, p. 3-20, doi:10.1007/s00445-005-0416-8.

Matthes, S., Richter, P., and Stettner, G., 1977, Petrographische und geochemische Untersuchung ultramafischer und mafischer Einschaltungen im Profil der Forschungsbohrung Nördlingen 1973: Geologica Bavarica, v. 75, p. 231-253.

Pohl, J., Stöffler, D., Gall, H., and Ernstson, K., 1977, The Ries impact crater, in Roddy, D. J., Pepin, R. O., and Merrill, R. B., eds., Impact and Explosion Cratering: New York, Pergamon Press, p. 343 404.

Raschke, U., Reimold, W. U., and Schmitt, R. T. 2013, Petrography and geochemistry of the impactites and volcanic bedrock of the ICDP drill core D1c from Lake El'gygytgyn, NE Russia: Meteoritics and Planetary Science, v. 48, pp. 1251-1286.

Reimold, W. U., McDonald, I., Schmitt, R.-T., Hansen, B., Jacob, J., and Koeberl, C., 2013, Geochemical studies of the SUBO 18 (Enkingen) drill core and other impact breccias from the Ries crater, Germany: Meteoritics & Planetary Science, v. 48, no. 9, p. 1531-1571, doi:10.1111/maps.12175.

Schmitt, R.-T., Hecht, L., Stöffler, D., Siegert, S., 2017, Geochemical data of crystalline target lithologies of the Ries impact crater, Germany, GFZ Data Services, doi:http://doi.org/10.5880/fidgeo.2017.001.

Siebenschock, M., Schmitt, R.-T., and Stöffler, D., 1998, Untersuchungen an einem diamantführenden Gneisfragment aus dem Suevit von Seelbronn, Nördlinger Ries: Geo-Berlin ´98, Gemeinsame Jahrestagung DGG, DMG, GGW & Pal. Ges., PF 8.23-03, p. 172-173.

Siegert, S., Hecht, L., and Schmitt, R.-T., 2017, Geochemical data of melt-bearing impact breccia (suevite) from the research drill core FBN 73 of the Ries impact crater, Germany, GFZ Data Services, doi:http://doi.org/10.5880/fidgeo.2017.002.

Stöffler, D., 1977, Research drilling, Nördlingen 1973: Polymict breccias, crater basement, and cratering model of the Ries impact structure: Geologica Bavarica, v. 75, p. 443-458.