
Methods 

Drill core MAL05-1B was collected from the central basin of Lake Malawi in 2005 (Fig. 1; 

11º18’S, 34º26’E; 592m water depth). Further details of the core site and age model are provided in 

Scholz et al. (2011a; 2011b), Lyons et al. (2011), Lyons et al. (2015), and Ivory et al. (2016). This study 

focuses on a 53-meter core section (61-114 mblf).   

All samples were processed using standard methods, with the addition of Lycopodium spores 

(Faegri and Iverson, 1989) and were sieved at 10 microns.  Samples were taken every ~30 cm, with a 

target temporal resolution of ~300 years.  Pollen samples were taken at the same depths as those for 

particle size and clay mineralogy and were processed following the standard methods of Faegri and 

Iverson (1989).  More details about sample preparation and pollen identification can be found in Ivory et 

al. (2012).  Vegetation groupings presented in this study are based on biomes of White (1983) as well as 

prior pollen studies within the watershed by Debusk (1994) and Vincens et al. (2007).  Between 300-500 

grains were counted per sample, with the exception of the six uppermost samples, which range from 17-

149 grains/sample due to extremely low pollen concentrations.  227 pollen taxa and five freshwater algae 

were identified using the African Pollen Database and atlases of pollen morphology (Maley, 1970; 

Bonnefille, 1971a, 1971b; Bonnefille and Riollet, 1980).  Pollen percentages were calculated against a 

sum of all pollen and spores less undeterminable grains, aquatics (Cyperaceae, Typha, Nymphaea, 

Polygonum senegalense-type, Ottelia, Laurembergia) and undifferentiated bryophytes, which were 

calculated separately (Fig. 4).  Pollen diagrams were drawn using Tilia (Grimm, 1990), and zonation was 

determined by constrained cluster analysis using CONISS (Grimm, 1987).  The percentage values 

presented in the results section are average percentages for a subzone unless otherwise specified.  Pollen 

nomenclature follows Vincens et al. (2007a), and pollen taxa assemblages described here are based on 

biomes outlined by Vincens et al. (2006) for East African vegetation and used in previous studies in this 

watershed (Vincens et al. 2007b; Ivory et al., 2012).  Tropical seasonal forest is the total of Moraceae, 

Macaranga-type, Celtis, and Trema-type orientalis, and afromontane is Podocarpus, Olea, Ericaceae 
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undifferentiated, Myrica, Juniperus-type, Faurea-type, and Ilex mitis.  Miombo woodland is only 

represented by Brachystegia and Uapaca in summary figures as this is the highest-dispersing, most 

indicative taxon in this vegetation type.   

               

Particle size analysis (sand: >4-62.5 µm; silt: 3.9-62.5 µm; clay: < 3.9 µm), was conducted on the 

terrigenous fraction of the core MAL05-1B samples using a Malvern laser-diffraction particle size 

analyzer coupled to a Hydro 2000S dispersion bench at the University of Arizona. Absorption and 

obscuration, the two most important variables for particle size analysis by laser-diffraction (Sperazza et 

al., 2004), produced low residual values on the Mastersizer when optimized at ~0.6 and 15-20%, 

respectively (Ivory et al., 2014).  Samples were stirred at 3425 rpm and sonicated at 85% for 1 minute 

prior to and during measurements.  To avoid flocculation of clays, individual aliquots of sediment were 

suspended in a dilute solution of sodium hexametaphosphate and placed on a wrist-action shaker for 

several days prior to the analysis. Each sample was measured four times, and we present our data as the 

average of these measurements. Prior to analysis, sediment sub-samples were subject to chemical 

digestions in order to remove organic matter, biogenic silica, and carbonate, following the methodology 

detailed in Ivory et al. (2014). Visual examination of smear slides confirmed the removal of biogenic 

components, and we estimate that refractory biochemical materials highly-resistant to chemical attack 

constituted <2.0% of the sub-samples.  

 

Detrital clay minerals in lake sediments provide evidence for the alteration of watershed parent 

lithologies by physical (disintegration) and chemical (compositional alteration) weathering processes.  

Quantitative mineralogy was determined using powder x-ray diffraction (XRD) and the computer 

program RockJock v.11 (Eberl, 2003). Samples were micronized using a McCrone mill, spiked with a 

corundum standard, then scanned from 5-65 degrees 2Θ (0.02 degree step) with a Scintag X-1 XRD 

system at the USGS in Denver.  Diffraction patterns were input into RockJock, which determines the 

weight percent of pre-selected minerals using a peak fitting routine and a library of mineral standard 



 

patterns (including amorphous or poorly crystalline components common in lake sediments, such as 

kerogen and diatoms).  Assuming minimal deviation from standard patterns and proper sample 

preparation, the measurement error ascribed to RockJock is + 5%.  RockJock has been applied with 

success in a number of Quaternary environments, as well as in Reynolds Cup competitions for 

quantitative mineralogy (Eberl, 2003). Because clay minerals are a focus of this study, we also assessed 

several samples from each parasequence in the MAL05-1B using qualitative XRD methods (Moore and 

Reynolds, 1989). Oriented mounts were prepared using the modified filter-peel method of Pollastro 

(1982), and clay minerals were identified using the guidelines of Hillier (2002). This step also served to 

validate RockJock inputs.  In our interpretation of clay mineralogy, we used the ratio of kaolinite to 

smectite (K/S) as a proxy for chemical weathering intensity, which has been used in similar studies in 

Africa (Pastouret et al., 1978; Lézine et al,. 2005).  Kaolinite is produced by leaching in tropical regions 

marked by high rainfall (Birkeland, 1984).  Smectite is typical of tropical semi-arid regions and points to 

increased rainfall seasonality, as it frequently forms during the dry season from the concentration of 

chemical elements transported to downstream areas by runoff (Chamley, 1989; Weaver, 1989).  We 

interpret elevated percentages of micas (illite plus chlorite) to reflect soil formation strongly influenced by 

physical weathering processes (Thiry, 2000). Our interpretations follow the findings on modern clay 

mineral distribution and environmental gradients presented in Kalindekafe et al. (1996).    

 

 

Lithofacies 

Modern sedimentary studies of Lake Malawi (Scott et al., 1991; Ellis et al., 2015) have 

demonstrated that strong contrasts exist among sediments deposited in profundal versus littoral 

environments, which are attributed to water depth, thermo-and oxycline position, light penetration, and 

hydrodynamic energy. Thus, due to variability in lake level, tectonics, or landscape evolution (Bohacs et 

al., 2001; Carroll et al., 2006), we describe lacustrine lithofacies that stack into meter-to-dekameter scale 



 

parasequences. These parasequences reflect time transgressive Waltherian successions that juxtapose 

deposits of laterally-adjacent depositional environments vertically. 

Lithofacies characteristic of profundal environments (deposited when the core site was situated in 

deep water and inferred to reflect lake level highstand) included laminated to massive black silty clays or 

silty diatom oozes. By contrast, lithofacies diagnostic of littoral environments (shallow water, associated 

with lake level lowstand) included laminated to massive, tan calcareous muds with variable silt content. 

Ostracodes were present in most littoral deposits, and mollusk shell hash was encountered near the top of 

parasequence two (P2); both attested to the presence of an oxygenated benthic environment.  Although 

evidence of lake floor desiccation was absent, the massive, mottled clayey silts atop parasequence three 

(P3) (~61-64 m.b.l.f) represent deposition during a megadrought that impacted much of Africa (Scholz et 

al., 2007; McGlue et al., 2008).  Thickness patterns among the parasequences are similar (~15 m each), 

with profundal intervals about twice as thick as littoral intervals. 

Compelling evidence for gravity flow processes affecting the core site exists at different intervals 

in the record.  Thin (3-12 cm) sandy or silty event beds with sharp bases were present in profundal 

deposits within P2 (Supplemental Figure DR1).  We interpret these features as waning flow deposits of 

low-concentration turbidity currents, approximately equivalent to Bouma Tc, Td and Te beds in marine 

settings.  Such features have been encountered previously in Lake Malawi strata and are known to 

produce minor erosion of the lake floor (Johnson and Ng’ang’a, 1990; Barry et al., 2002).  A much 

thicker (~128 cm) gravity flow deposit was encountered near the base of P3.  This deposit consisted of 

massively-bedded clayey sand with weak normal grading and a sharp basal contact. Above this contact, 

abundant outsized clasts of blue mud float within the sandy matrix; the long axes of many of these clasts 

are oriented sub-vertically. We interpret this feature to have been deposited by a debris flow. Sandy 

debrites have previously been documented in Lake Malawi within deepwater basin-plain fill facies 

(Soreghan et al., 1999; Wells et al., 1999). Alternatively, the deposit may represent a turbidite 

(approximately equivalent to a Bouma Ta) of unusual thickness.   



 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement 

by the U.S. Government. 
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SUPPLEMENTARY FIGURES 

 
Supplementary Figure DR1.   
Stratigraphy of the Lake Malawi scientific drill core 1B, ~61-114 meters below low floor. The section  
 
consists of three parasequences (P1-P3); each parasequence is comprised of lithofacies that stack in an  
 
upward shoaling motif.  Vertical facies variability reflects the sensitivity of the deepwater coring site to  
 
lake level changes.  All lithofacies contain allochthonous siliciclastic and biogenic components, which  
 
were separated chemically to facilitate particle size and palynological analysis.   (A) Massive mottled  
 
silts, associated with deposition during a profound lake level lowstand. (B) Sand-rich mass wasting  
 
deposit with clay rip-up clasts; this facies is uniquely associated with open canopy woodland pollen. (C)  
 
Laminated silty clay with turbidite and siderite nodules. Thin turbidites occur in highstand deposits of  
 
P2.  (D) Laminated calcareous mud commonly deposited during lake level lowstands; this facies is  
 
associated with low kaolinite:smectite and abundant fine detrital particle sizes, illite, and grass pollen.  
 
(E) Silty diatom ooze; this facies is associated with high relative kaolinite:smectite and closed canopy  
 
forest pollen. 



 

 



 

 
 
Supplementary Figure DR2.  Tree and herb pollen percentages with lake level reconstruction (based on 
Lyons et al., 2015) for the period discussed in the paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplementary Figure DR3.  Principal components analysis of all sedimentological, mineralogical, and 
paleoecological indicators from core MAL05-1B used in this analysis.  Biplot shows that the facies 
associated discussed in Figure 2 of the manuscript are backed up by ordination analysis. 

 
 


