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θ Range of Natural Streams (Including Both Bedrock and Alluvial Channels) 12 

We collected θ data from a wide range of literature covering both bedrock and alluvial 13 

channels. The range spans from 0.11 to 2.1, with mean and standard deviation as 0.63 and 14 

0.33, respectively (TABLE DR1). 15 

θ Range of Bedrock Channels at Equilibrium State under Spatially Uniform Uplift Rate 16 

Regions 17 

We collected θ for bedrock channels, which are reported to be at steady-state under spatially 18 

uniform uplift rate region (Snyder et al., 2000; Kirby and Whipple, 2001). Mean and standard 19 

deviation are obtained as 0.43 and 0.08 (TABLE DR2). 20 

Ranges and Two Moments of the Scaling Exponents 21 

Two process parameters  and  are known to range mostly between 1 and 2 (Prosser and 22 

Rustomji, 2000; Peckham, 2003; Paik, 2012). For their distributions, we adopted ==1.5 23 

and ==0.25. Recall that we have three geomorphic parameters (n, h, and p) originated 24 

from aforementioned scaling relationships. For n, we used n=0.0667 and n=0.0135, given 25 

by Parker et al. (2007). h is empirically found to be between 0.5 and 0.7 (Hack, 1957; Gray, 26 

1961; Robert and Roy, 1990; Crave and Davy, 1997). Here, h=0.6 and h=0.05 were used. p 27 

varies between 0.3 and 0.9 (Brierley and Hickin, 1985) (TABLE DR3), and we adopted 28 

p=0.6 and p=0.2. Finally, the last parameter of  is typically less than 1 but no less than 0.5 29 

when it comes to the dominant discharge. We used =0.77 and =0.09, estimated from 30 

literature (TABLE DR4). Physically unrealistic parameter ranges, i.e., < 0, < 0, < 0, > 31 

1, h < 0, and p < 0, were truncated from the Gaussian distributions.  32 
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Analysis of Four Alluvial Rivers 33 

Longitudinal profiles and area-slope relationships have been extracted from DEM for the 34 

Minnesota and the Sugar-Wabash Rivers in Midwest USA (Figure DR1). The same analysis 35 

was repeated for the Gwda-Noteć (Poland) and the Neman (Lithuania) Rivers in northern 36 

Europe (Figure DR2). The analysis was implemented using TopoToolbox (Schwanghart and 37 

Kuhn, 2010) software in the following procedure. Italic terms in parentheses are the name of 38 

functions in TopoToolbox. 39 

(A) Preprocessing DEM 40 

We first filled sinks (depression cells) in the DEM (fillsinks). Then flow directions were 41 

assigned based on the D8 algorithm (FLOWobj) and flow accumulation was calculated 42 

(flowacc) on the filled DEM, sequentially. 43 

(B) Selection of channel reaches 44 

In this analysis, we defined a DEM cell of which upslope area equals 100 cells 45 

(approximately 0.64 km2) as channel head. This criterion has been consistently applied for 46 

four study rivers. Accordingly, flow paths extracted from DEM are pruned (STREAMobj) and 47 

specific reaches for which longitudinal profiles are extracted were selected (modify). 48 

(C) Drawing longitudinal profiles 49 

Longitudinal profiles were drawn for each selected reach (plotdz). Raw DEM was used in the 50 

drawing and hence sinks are shown in profiles (Figure 3). The sink-filled DEM was only 51 

used for flow direction extraction. 52 

 (D) Plotting area-slope relationships 53 

Local slope at each cell was calculated with the distance to the downstream cell of 30 m 54 

vertical drop (slopearea with ‘drop’ option). After a couple of trial-and-error, this criterion 55 

was found appropriate to prevent negative slope due to sinks in DEM. This criterion was 56 

consistently used for all four study rivers.  57 
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Figure 58 

 59 

Figure DR1. Location of the Minnesota and the Sugar-Wabash Rivers in Midwest USA60 
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 61 

Figure DR2. Location of the Gwda-Noteć (Poland) and the Neman (Lithuania) Rivers in 62 
northern Europe  63 
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TABLE 64 

TABLE DR1. PROFILE CONCAVITY DATA FROM LITERATURE. 65 

 Location	 θ 

Middle River, Appalachians, Virginia (three branches)* 0.64, 0.59, 0.49 

North River, Appalachians, Virginia (four branches)* 0.43, 0.47, 0.56, 0.52 

Montgomery Fork, Tennessee† 0.37 

Watson Creek, Ohio† 0.58 

Left Fork, Washington and Virginia† 0.78 

Grovers Creek, Kentucky† 0.52 

Bear Branch, Kentucky† 0.65 

Cooks Run, Pennsylvania† 0.56 

Hawes Fork, Kentucky† 0.83 

West Bays Fork, Kentucky† 0.40 

Flat Creek, Kentucky† 0.63 

McGills Creek, Kentucky† 0.59 

Brush Run, Pennsylvania† 0.70 

Virginia Badlands§ 0.15 

Utah Badlands§ 0.19 

Great Plains§ 0.20 

Ephemeral, New Mexico (two channels)§ 0.15, 0.11 

Walnut Gulch, Arizona (three sub-basins)# 0.30, 0.29, 0.25 

Big Creek, Idaho (two sub-basins)# 0.51, 0.48 

North Fork Cour d'Alene River, Idaho# 0.47 

St. Joe River, Idaho (two sub-basins)# 0.47, 0.56 

St. Regis River, Montana (two sub-basins)# 0.55, 0.55 

Schoharie Creek, New York (three sub-basins)# 0.48, 0.42, 0.43 

East Delaware River, New York# 0.55 

Racoon Creek, Pennsylvania (two sub-basins)# 0.51, 0.34 

Beaver Creek, Pennsylvania and Ohio# 0.34 

Buck Creek, northern California# 0.48 

Brushy Creek, Alabama# 0.53 

Moshannon Creek, Pennsylvania# 0.58 

Montgomery Fork, Tennessee# 0.85 

Siuslaw, Umpqua, and Alsea River basins, southern coastal Oregon** 1.00 

Mahantango Creek, Pennsylvania†† 0.49 

Central Zagros Mountains, Iran†† 0.42 

Upper Noyo River, California (seven sub-basins)§§ 0.89, 0.56, 0.65, 0.83, 1.13, 0.59, 0.67 

Coastal basins, northern California (21 basins)## 
0.37, 0.29, 0.58, 0.43, 0.45, 0.44, 0.41, 0.40, 0.58, 0.25, 
0.36, 0.39, 0.31, 0.47, 0.42, 0.37, 0.52, 0.48, 0.46, 0.59, 

0.36 

Waipaoa River, New Zealand (five sub-basins)*** 0.61, 0.53, 0.49, 0.55, 0.57 

Southern Sierra Madre Occidental, Mexico (11 rivers)††† 
0.24, 0.52, 0.63, 0.35, 0.74, 0.53, 0.42, 0.53, 0.35, 0.85, 

0.19 

Santa Ynez Mountains, coastal California (50 channels)§§§ 
0.58, 0.35, 0.48, 0.41, 0.67, 0.53, 0.40, 0.34, 0.97, 0.51, 
1.60, 0.65, 0.62, 1.10, 0.87, 0.85, 0.74, 0.87, 1.80, 2.10, 
0.89, 0.72, 0.86, 0.92, 0.54, 0.60, 0.55, 0.38, 1.20, 0.71, 
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0.40, 1.90, 1.60, 1.20, 0.90, 0.76, 0.58, 0.97, 0.81, 0.77, 
0.88, 0.69, 0.54, 0.55, 0.37, 0.56, 0.54, 0.55, 0.58, 1.00 

Eastern Central Range, Taiwan (16 rivers)### 
0.77, 0.78, 0.72, 1.54, 1.41, 1.30, 0.54, 1.01, 0.96, 0.78, 

0.94, 0.90, 0.65, 0.95, 0.95, 0.52 

* Hack (1957). For the calculated θ values, refer to Tucker and Whipple (2002). 
† Flint (1974). 
§ Howard (1980). Each θ was calculated assuming that Hack’s exponent is 0.6. 
# Tarboton et al. (1991).  
** Seidl and Dietrich (1992). 
†† Tucker (1996). Refer to Tucker and Whipple (2002). 
§§ Sklar and Dietrich (1998) 
## Snyder et al. (2000). 
*** Whipple and Tucker (2002). 
††† Montgomery and López-Blanco (2003) 
§§§ Duvall et al. (2004). 
### Stolar et al. (2007). 

  66 
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TABLE DR2. PROFILE CONCAVITY DATA FOR BEDROCK CHANNES AT EQUILIBRIUM STATE UNDER THE SPATIALLY UNIFORM UPLIFT 67 

AREAS. 68 

 Location and Reference Fitted θ 

Basin names of the measured channels in the Mendocino triple junction region, northern 
California (Snyder et al., 2000)

Singley 0.37 

Davis 0.29 

Fourmile 0.58 

Cooskie 0.43 

Randall 0.45 

Spanish 0.44 

Oat 0.41 

Kinsey 0.40 

Big 0.58 

Big Flat 0.25 

Shipman 0.36 

Buck 0.39 

Gitchell 0.31 

Horse Mtn. 0.47 

Telegraph 0.42 

Whale 0.37 

Jackass 0.52 

Hardy 0.48 

Juan 0.46 

Howard 0.59 

Dehaven 0.36 

Davis 0.43 

  

Channels in the Siwalik Hills in central Nepal* (Kirby and Whipple, 2001) 

14 0.50 

15 0.47 

16 0.48 

17 0.51 

18 0.44 

19 0.34 

20 0.51 

  

Averaged θ value  

 0.43±0.08 

* Data for only the bedrock channels flowing parallel to the strike of the anticline, thereby under 

the spatially uniform uplift rate regions. Numbers refer to channels in Kirby and Whipple (2001)’s 

Data Repository Table DR1 and Figure DR1. 

  69 
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TABLE DR3. REPORTED p VALUES FOR THE POWER FUNCTIONAL DOWNSTREAM FINING EQUATION (THE SQUAMISH RIVER, CANADA, 70 

FITTED WITH MEDIAN GRAIN SIZE) (Brierley and Hickin, 1985) 71 

Location and Type p 

Braided Reach 0.79 

Meandering Section 0.76 

Within the Canyon 0.38 

  72 
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TABLE DR4. REVIEWED RELATIONS BETWEEN DISCHARGE OF A GIVEN FREQENCY OF OCCURRENCE AND UPSTREAM CONTRIBUTING 73 

AREA (Q∝A) 74 

 Corresponding flow frequency Location and Reference 

~1 Average annual discharge Potomac River basin, USA (Hack, 1957) 

0.895 Bankfull discharge 
High-elevation basins in Colorado, USA 
(Segura and Pitlick, 2010) 

0.85 Mean annual flood discharge (Q2.33) New England, USA (Benson, 1962)* 

0.80 Mean annual flood discharge (Q2.33) Pennsylvania, USA (Brush, 1961) 

0.78 Mean annual flood discharge (Q2.33) River Trent, England (Knighton, 1987)* 

0.77 Mean annual flood discharge (Q2.33) British Isles, (NERC, 1975)* 

0.74 Mean annual flood discharge (Q2.33) Great Britain, (Nash and Shaw, 1966)* 

0.70 Annual maximum flood peak discharge 
Pennsylvania and New Jersey, USA (Aron and 
Miller, 1978)† 

0.62 Average annual peak discharge Kentucky, USA (Sólyom and Tucker, 2004) 

0.57 ~90th Percentile unit discharge§ 
USA and Puerto Rico, (O’Connor and Costa, 
2004) 

0.53 ~99th Percentile unit discharge§ 
USA and Puerto Rico, (O’Connor and Costa, 
2004) 

   * Cited in Knighton (1999). 

   † Cited in Snow and Slingerland (1987). 

   § Peak discharge divided by drainage area. 
  75 
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