GSA Data Repository 2017167

B.P. Horton et al., 2017, Response times of microfossils to rapid sea-level rise: Timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia: Geology, doi:10.1130/G38832.1.

1 APPENDIX DR1 – METHODS USED IN THE STUDY

2 For foraminiferal and diatom analyses, two sets of surface samples of 1 cm thickness each 3 were taken from alternating corners of a 1×1 m sampling quadrant at three stations (stations 1-4 3) in the Ni-les'tun salt marsh (Fig. 1 d, Table DR1) prior to tide gate removal on 15-16 5 August 2011. After tidal restoration, samples were taken monthly in the first 12 months, and 6 subsequently every two and then every six months until March 2016. The samples for 7 foraminiferal analysis were stained with Rose Bengal on the day of sampling for identification 8 of living specimens (Walton, 1952), stored in a buffered ethanol/ water solution (50:50) in 9 order to avoid dissolution of calcareous tests and refrigerated at 5°C. Wet sample volume 10 from each sample was measured and samples were wet-sieved through 500 μ m and 63 μ m 11 screens. The fraction $>500 \,\mu\text{m}$ was examined for larger foraminifera before being discarded. 12 A wet-splitter (Scott and Hermelin, 1993) was used to split the fraction between 63-500 µm 13 into eight equal aliquots as described in Horton and Edwards (2006). Live and dead 14 foraminiferal tests were counted wet under a binocular microscope to facilitate the detection 15 of stained foraminifera and to prevent drying of the organic residue (de Rijk, 1995; Table 16 DR2). Only tests with all but the last chamber clearly stained red were counted as living at the 17 time of collection. Taxa were identified according to the taxonomic descriptions in Horton 18 and Edwards (2006), Hawkes et al. (2010), and Wright et al. (2011). Foraminifera were 19 classified into two subenvironments: tidal flat/ low marsh taxa and middle/ high marsh taxa 20 following previous studies in Oregon (Hawkes et al., 2010; Engelhart et al., 2013; Milker et 21 al., 2015a; Table DR2).

A total of 60 diatom slides were prepared from Stations 1, 2, and 3 using the following

23 method:

24 (1) \sim 1 g of sediment was subsampled and oxidized with hydrogen peroxide to remove organic 25 material. Samples were gently heated in a water bath to accelerate the oxidation; 26 (2) Samples were rinsed three times in a centrifuge with distilled water; 27 (3) A known volume of digested sample (between 25 and 100 ml depending on the diatom 28 concentration) was pipetted and distributed evenly on a cover slip; 29 (4) The cover slip was dried overnight and then inverted and mounted on a glass slide using 30 Naphrax. 31 Diatoms were identified to species level using a Leica light microscope under oil immersion 32 at 1000x magnification with reference to Krammer et al. (1986), Krammer and Lange-33 Bertalot (1988, 1991a,b) and Witkowski et al. (2000) and digital reference collections held by 34 The University of Colorado (2010, 2012) and The Academy of Natural Sciences of Drexel 35 University (2012) (Table DR3). When possible, 400 diatoms were identified and counted in 36 slides with each species expressed as a percentage of total diatom valves counted. Fragments 37 containing more than half a valve were included in the count. Using the known 38 volume/weight of sample used in making the diatom slides, the area of slide counted, and the 39 number of valves observed in that area, the concentration of diatom valves per gram was 40 calculated for each sample (Table DR3). 41 Only species that exceeded 4% of total valves counted were used for paleoecological 42 interpretation. Paralia sulcata, a tychoplanktonic diatom that may form prominent 43 allochthonous assemblages, was excluded from ecological interpretations (Hemphill-Haley, 44 1995a).

45	Diatom species were classified into three marsh subenvironments (freshwater/high marsh, low
46	marsh, and tidal flat/subtidal channel) following previous studies in Oregon and Washington
47	(Atwater and Hemphill-Haley 1997; Hemphill-Haley, 1993, 1995a, b, 1996; Sherrod, 1999;
48	Sherrod et al. 2000; Sherrod, 2001; Witter et al., 2009; Sawai et al., 2016), and when
49	necessary global catalogs (Denys, 1991; Hartley et al., 1996; Krammer et al., 1986, Krammer
50	and Lange-Bertalot 1988, 1991a,b; Vos and de Wolf, 1988, 1993; Witkowski et al., 2000;
51	Table DR4). The freshwater/high marsh group includes fresh and fresh-brackish diatoms that
52	generally occur in salt concentrations less than 0.2 ‰. The low marsh diatom group includes
53	brackish and brackish-marine species that tolerate salt concentrations between 0.2 and 30 psu.
54	The intertidal flat/subtidal channel diatom group includes marine-brackish and marine species
55	that thrive in salinities exceeding 30 ‰.
56	Diatoms were also classified by life-form (planktonic, epipelic, epiphytic, aerophilic). Diatom
57	taxa that live attached to plants are defined as epiphytic forms; taxa that live on wet sediments
58	are defined as epipelic forms; taxa that live on wet sediments but are able to survive
59	temporarily dry conditions are defined as aerophilic forms (Table DR5). Tychoplanktonic
60	diatoms include an array of species that live in the benthos, but are commonly found in the
61	plankton. Diatoms that float in the water column and do not live attached to any substrate are
62	defined as planktonic forms (Vos and de Wolf, 1988, 1993).
63	Samples for grain-size measurements were taken prior to restoration and monthly for the first
64	12 months (Fig. 2e). The surface samples were treated with hydrogen peroxide (20%) prior to
65	analysis to oxidize organic matter. Grain-size distribution was determined with a Laser
66	Diffraction Particle Size Analyzer. Particle size data are reported as differential volume (i.e.,
67	the percentage of total volume that each size class occupies) based on the Wentworth Phi
68	Scale (Wentworth, 1922).

69 Station elevations were determined relative to the average elevation of an adjacent vegetation 70 transect that were measured with Real-time Kinematic (RTK) GPS/GNSS and total station 71 equipment (Brophy and van de Wetering, 2012). Elevations (Error = ± 2 cm) were referenced 72 to the North American vertical datum (NAVD88) and mean tide level (MTL) (Table DR1). 73 Measurements were taken at the beginning of the study (i.e., pre-restoration). 74 Pre- and post-restoration maximum tidal heights (Fig. 1a) were processed from water level 75 data recorded at 15 minute intervals by tide gauges installed in lower Fahys Creek (Lower 76 Fahys TG2), in the Coquille River (Coquille River TG2), and outside the restoration site in 77 2011 and 2012 (Fig. DR2). All water levels were referenced to NAVD88 and MTL. Pre- and 78 post-restoration salinity data were recorded at 30 minute intervals by salinity loggers installed 79 in Fahys Creek, in the Coquille River (i, ii, and ii on Fig. 1c), and outside the restoration site 80 in 2011 and 2013 (Table DR1; Figs. 2b, DR1). 81 Post-restoration sedimentation rates were calculated from one 19-cm-long core (10 cm in

diameter) recovered in March 2016 at Station 1. Sedimentation was 1.5 cm g/cm^2 from

83 August 2011 until March 2016 (56 months) (Table DR1).

84

APPENDIX DR2 – LIVE AND DEAD FORAMINIFERAL DISTRIBUTION AT THE CONTROL SITE

87 In order to study the live and dead foraminiferal distribution at the control site (Bandon salt

88 marsh), surface samples (0-1 cm depth) were taken July and October 2011 and in August and

- 89 October 2012 (Milker et al., 2015b). Sample storage, preparation and foraminiferal
- 90 investigations followed the methods described in Appendix DR1.

91	During the sampling period, on average between 384 and 599 live individuals (per 10 cm^3
92	sediment volume) at the tidal flat stations (St. 1-2), between 50 and 741 individuals at the low
93	marsh stations (St. 3-4), between 144 and 424 individuals at the high marsh stations (St. 5-9),
94	and 30 individuals at the station in the highest marsh to upland transition (St. 10) were
95	observed (Fig. DR2A). The live populations, averaged over the sampling period, were
96	dominated by Miliammina fusca (76-99%) and Haynesina sp. (0-21%) in the tidal flat and low
97	marsh (St. 1-4). The high marsh (St. 5-9) was dominated by Jadammina macrescens (6-43%),
98	Trochammina inflata (0-34%), M. fusca (9-25%) and Haplophragmoides spp. (1-21%) and
99	the highest marsh to upland transition (St. 10) by Trochamminita irregularis (55%) and
100	Balticammina pseudomacrescens (34%).
101	In the dead assemblages had higher total numbers compared to the live populations. At the
102	tidal flat stations (St. 1-2) between 1144 and 1166 individuals (per 10 cm ³), at the low marsh
103	stations (St. 3-4) between 635 and 1474 individuals, at the high marsh stations (St. 5-9)
104	between 388 and 1879 individuals and in the highest marsh to upland transition (St. 10) 251
105	individuals, averaged over the sampling period, were observed (Fig. DR2B). The dead
106	assemblages were generally dominated by the same species such as in the live populations.
107	The tidal flat and low marsh (St. 1-4), averaged over the sampling period, was dominated by
108	<i>M. fusca</i> (91-99%) while <i>Haynesina</i> sp. has a lower relative abundance with 0-2%.
109	Jadammina macrescens (21-64%), T. inflata (1-28%), M. fusca (6-26%) and
110	Haplophragmoides spp. (1-18%) dominated in the high marsh (St.5-9), and T. irregularis
111	(62%) and <i>B. pseudomacrescens</i> (27%) the highest marsh to upland transition (St. 10).
112	The live and dead foraminiferal distribution in the naturally developed Bandon marsh is
113	comparable to other estuarine salt marshes where a vertical benthic foraminiferal distribution
114	with respect to elevation is observed (e.g., Kemp et al., 2009; Hawkes et al., 2010; Engelhart

115	et al., 2013). A comparison of the foraminiferal distributions at the control and restoration
116	sites suggest that tidal restoration resulted in a long-term change from a high marsh to a tidal
117	flat-low marsh environment, dominated by M. fusca, at St. 1 and the development of a
118	middle-high marsh environment, dominated by Haplophragmoides manilaensis, T. inflata and
119	T. irregularis, at St. 3 in the Ni-les'tun salt marsh. At St. 2, the assemblages suggest a tidal
120	flat-low marsh environment during the first three years after tidal restoration, but then a
121	change to a middle-high marsh assemblage occurred until September 2016 (own
122	observations)

. . . 1 1. .

1 1

. -

C 11 C

123

117

(1 0010)

124 APPENDIX DR3 – LIVE FORAMINIFERAL DISTRIBUTION AT THE

125 **RESTORATION SITE**

126 The live foraminiferal distribution is similar to the dead assemblages observed at the

127 restoration site (Figs. 3a; DR3; Table DR2). At Station 1, there was a standing crop of 34 live

specimens (per 10 cm³ sediment volume) prior to restoration. The assemblage was

129 characterized by middle and high-marsh species (e.g., J. macrescens, B. pseudomacrescens

and *T. irregularis*). Standing crops increased although remained low at 66 ± 52 for 10 months

131 after restoration. In June 2012, then months after restoration, standing crops increased to 800

132 per 10 cm³. From June 2012 to March 2016, the post-restoration live assemblage was

dominated (74-100%) by the low-marsh species *M. fusca*. At Station 2, the first notable

numbers of living foraminifera appeared 16 months (December 2012) after restoration with a

135 standing crop of 248 per 10 cm³. *Miliammina fusca* was the dominant species with a relative

- abundance of 67–100% between 2012 and 2014. By March 2015 the abundance of *M. fusca*
- 137 decreased and middle to high-marsh species such as *H. manilaensis* and *H. wilberti* firstly
- appeared. At Station 3, notable numbers of living foraminifera (standing crop of 272 per 10

- 139 cm³) first appeared in September 2013, 25 months after restoration. Diverse, middle to high-
- 140 marsh species such as *H. manilaensis* and *T. irregularis* dominated the assemblage since then.
- 141

142 DATA REPOSITORY REFERENCES

- 143 Atwater B.F., and Hemphill-Haley E., 1997, Recurrence intervals for great earthquakes of the
- 144 past 3,500 years at northeastern Willapa Bay, Washington: U.S. Geological Survey
- 145 Professional Paper, v. 1576, 108 p.
- 146 Brophy, L. S., and van de Wetering, S., 2012, Ni-les'tun Tidal Wetland Restoration
- 147 Effectiveness Monitoring: Baseline (2010-2011): Green Point Consulting, the Institute for
- 148 Applied Ecology, and the Confederated Tribes of Siletz Indians, 114 p.
- de Rijk, S., 1995, Salinity control on the distribution of salt marsh foraminifera (Great
- 150 Marshes, Massachusetts): The Journal of Foraminiferal Research, v. 25, p. 156–166, doi:
- 151 10.2113/gsjfr.25.2.156.
- 152 Denys, L., 1991, A Check-list of the diatoms in the Holocene deposits of the western Belgian
- 153 coastal plain with a survey of their apparent ecological requirements. Ministère des affaires
- 154 économiques, Service Géologique de Belgique.
- 155 Engelhart, S. E., Horton, B. P., Vane, C. H., Nelson, A. R., Witter, R. C., Brody, S. R., and
- Hawkes, A. D., 2013, Modern foraminifera, δ^{13} C, and bulk geochemistry of central Oregon
- 157 tidal marshes and their application in paleoseismology: Palaeogeography, Palaeoclimatology,
- 158 Palaeoecology, v. 377, p. 13–27, doi: 10.1016/j.palaeo.2013.02.032.
- 159 Hartley, B., Ross, R., and Williams, D. M., 1996, A check-list of the freshwater, brackish and
- 160 marine diatoms of the British Isles and adjoining coastal waters: Journal of the Marine

- 161 Biological Association United Kingdom, v. 66, p. 531–610, doi:
- 162 10.1017/S0025315400042235.
- 163 Hawkes, A. D., Horton, B. P., Nelson, A. R., and Hill, D. F., 2010, The application of
- 164 intertidal foraminifera to reconstruct coastal subsidence during the giant Cascadia earthquake
- 165 of AD 1700 in Oregon, USA: Quaternary International, v. 122, p. 116–140, doi:
- 166 10.1016/j.quaint.2009.09.019.
- 167 Hemphill-Haley, E., 1993, Taxonomy of recent and fossil (Holocene) diatoms
- 168 (Bacillariophyta) from northern Willapa Bay, Washington: US Geological Survey Open-File
- 169 Report 93–289, 151 p.
- 170 Hemphill-Haley, E., 1995a, Diatom evidence for earthquake-induced subsidence and tsunami
- 171 300 years ago in southern coastal Washington: Geological Society of America Bulletin, v.
- 172 107, p. 367–378, doi: 10.1130/0016-7606.
- 173 Hemphill-Haley, E., 1995b, Intertidal diatoms from Willapa Bay, Washington: applications to
- 174 studies of small-scale sea-level changes: Northwest Science, v. 69, p. 29–45.
- 175 Hemphill-Haley, E., 1996, Diatoms as an aid in identifying late Holocene tsunami deposits:
- 176 The Holocene, v. 6, p. 439–448, doi: 10.1177/095968369600600406.
- 177 Horton, B. P., and Edwards, R. J., 2006, Quantifying Holocene sea-level change using
- 178 intertidal foraminifera: Lessons from the British Isles: Cushman Foundation for Foraminiferal
- 179 Research, Special publication No. 40, p. 1–97.
- 180 Kemp, A. C., Horton, B. P., and Culver, S. J., 2009, Distribution of modern salt-marsh
- 181 foraminifera in the Albemarle–Pamlico estuarine system of North Carolina, USA:
- 182 Implications for sea-level research: Marine Micropalaeontology, v. 72, p. 222–238, doi:
- 183 10.1016/j.marmicro.2009.06.002.

- 184 Krammer, K., Lange-Bertalot, H., and Heynig, H., 1986, Bacillarophyceae 2/1. Naviculaceae,
- 185 in Ettl, H., Gerloff, J., Mollenhauser, eds., Süsswasserflora von Mitteleuropa. Gustav Fischer
- 186 Verlag, Stuttgart, p. 1–876.
- 187 Krammer, K., and Lange-Bertalot, H., 1988, Bacillarophyceae 2/2. Basillariaceae,
- 188 Epithemiaceae, Surirellaceae, in Ettl, H., Gerloff, J., Heynig, H., Mollenhauser, eds.,
- 189 Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, p. 1–600.
- 190 Krammer, K., and Lange-Bertalot, H., 1991a, Bacillarophyceae 2/3. Centrales, Fragilariaceae,
- 191 Eunotiaceae, in Ettl, H., Gerloff, J., Heynig, H., Mollenhauser, eds., Süsswasserflora von
- 192 Mitteleuropa. Gustav Fischer Verlag, Stuttgart, p. 1–600.
- 193 Krammer, K., and Lange-Bertalot, H., 1991b, Bacillarophyceae 2/4. Achnanthaceae, Kritische
- 194 Ergänzungen zu Navicula (Lineolatae) und Gomphonema, in Ettl, H., ed., Pascher's
- 195 Süsswasserflora von Mitteleuropa, vol. 2, part 4. Gustav Fischer Verlag, Stuttgart, p. 1–437.
- 196 Milker, Y., Horton, B. P., Nelson, A. R., Engelhart, S. E., and Witter, R. C., 2015a,
- 197 Variability of intertidal foraminiferal assemblages in a salt marsh, Oregon, USA: Marine
- 198 Micropaleontology, v. 118, p. 1–16, doi: http://dx.doi.org/10.1016/j.marmicro.2015.04.004.
- 199 Milker, Y., Horton, B. P., Vane, C. H., Engelhart, S. E., Nelson, A. R., Witter, R. C., Khan,
- 200 N. S., and Bridgeland, W. T., 2015b, Annual and seasonal distribution of intertidal
- 201 foraminifera and stable carbon isotope geochemistry, Bandon Marsh, Oregon, USA: The
- Journal of Foraminiferal Research, v. 45, p. 146–155, doi: 10.2113/gsjfr.45.2.146.
- 203 Sawai, Y., Horton, B. P., Kemp, A. C., Hawkes, A. D., Nagumo, T., and Nelson, A. R., 2016,
- 204 Relationships between diatoms and tidal environments in Oregon and Washington, USA:
- 205 Diatom Research, v. 31, p.17–38, doi: 10.1080/0269249X.2015.1126359.

- 206 Scott, D. B., and Hermelin, J. O. R., 1993, A device for precision splitting of
- 207 micropaleontological samples in liquid suspension: Journal of Paleontology, v. 67, p. 151-
- 208 154, doi. 10.1017/S0022336000021302.
- 209 Sherrod, B. L., 1999, Gradient analysis of diatom assemblages in a Puget Sound salt marsh:
- 210 can such assemblages be used for quantitative paleoecological reconstruction?
- 211 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 149, p. 213–226, doi:
- 212 10.1016/S0031-0182(98)00202-8.
- 213 Sherrod, B. L., 2001, Evidence for earthquake-induced subsidence about 1100 yr ago in
- 214 coastal marshes of southern Puget Sound, Washington: Geological Society of America
- 215 Bulletin, v. 113, p. 1299–1311, doi: 10.1130/0016-7606.
- 216 Sherrod, B. L., Bucknam, R. C., Leopold, E. B., 2000, Holocene relative sea level changes
- 217 along the Seattle Fault at Restoration Point, Washington: Quaternary Research, v. 54, p. 384-
- 218 393, doi: 10.1006/qres.2000.2180.
- 219 The Academy Of Natural Sciences Of Drexell University, 2012, ANSP Algae Image
- 220 Database from the Phycology Section, Patrick Center for Environmental Research, The
- 221 Academy of Natural Sciences. Accessed at: <u>http://diatom.acnatsci.org/AlgaeImage/</u>
- 222 The University Of Colorado, 2010. Diatoms of the Unites States. Accessed at:
- 223 http://westerndiatoms.colorado.edu/
- Vos, P.C., and de Wolf, H., 1988, Methodological aspects of paleo-ecological diatom research
- in coastal areas of the Netherlands: Geology Mijnbouw, v. 67, p. 31–40.
- Vos, P.C., and de Wolf, H., 1993, Diatoms as a tool for reconstruction sedimentary
- 227 environments in coastal wetlands: methodological aspects: Hydrobiologia, v. 269/270, p.
- 228 285–296, doi: 10.1007/978-94-017-3622-0_30.

- 229 Walton, W. R., 1952, Techniques for recognition of living foraminifera: Contributions of the
- 230 Cushman Foundation for Foraminiferal Research, v. 3, p. 56–60.
- 231 Wentworth, C. K., 1922, A scale of grade and class terms for clastic sediments: The Journal
- 232 of Geology, v. 30, p. 377–392.
- 233 Witkowski, A., Lange-Bertalot, H., and Metzeltin, D., 2000, Diatom flora of marine coasts, in
- 234 Lange-Bertalot H., ed., Iconagraphia Diatomologica. Annotated Diatom Micrographs,
- 235 Diversity-Taxonomy-Identification, vol. 7, Ruggell, A.R.G. Gantner, 925 p.
- 236 Witter, R.C., Hemphill-Haley, E., Hart, R., and Gay, L., 2009, Tracking prehistoric Cascadia
- 237 tsunami deposits at Nestucca Bay, Oregon: U.S. Geological Survey, National Earthquake
- Hazards Reduction Program Final Technical Report 08HQGR0076 92, 34 p.
- 239 Wright, A. J., Edwards, R. J., and van de Plassche, O., 2011, Reassessing transfer-function
- 240 performance in sea-level reconstruction based on benthic salt-marsh foraminifera from the
- 241 Atlantic coast of NE North America: Marine Micropaleontology, v. 81, p. 43–62, doi:
- 242 10.1016/j.marmicro.2011.07.003.

243 DATA REPOSITORY TABLES

- Table DR1. Location and elevation of the stations, and location and sensor elevation of the
- tide gauges and salinity loggers installed at the restorations and control sites (Fig. 1c).
- Table DR2: Raw live and dead foraminiferal counts, sample split and sample volume (in cm³)
- 247 (spreadsheet). Tidal flat-low marsh species are given in blue and middle-high marsh species
- are given in green.
- 249 Table DR3. Raw diatom counts and diatom concentrations (spreadsheet).
- 250 Table DR4. Diatom results summary (spreadsheet).

251 Table DR5. List of diatom taxa and ecological classifications (spreadsheet).

252 DATA REPOSITORY FIGURES

- Figure DR1. Pre- (2011) and post-restoration (2013) salinity in the Coquille River and in
- Fahys Creek (a, b; i, ii, and ii on Fig. 1c) and post-restoration (2013) water level in the
- 255 Coquille River and lower Fahys Creek (c; Fig. 1c, Table DR1).
- 256 Figure DR2. Total live (A) and dead (B) foraminiferal numbers (per 10 cm³ sediment volume;
- 257 given is the mean, maximum and minimum total number for the four sampling campaigns)
- and relative abundance of the most abundant living foraminifera, averaged over the four
- sampling campaigns, at the control site.
- 260 Figure DR3. Total live foraminiferal numbers (per 10 cm³ sediment volume) at stations 1-3
- 261 during the pre- and post-restoration phases in the Ni-les'tun salt marsh. Note different scaling
- of the y-axes.

Table DR1. Location and elevation of the stations, and location and sensor elevation of the tide gauges and salinity loggers installed at the restorations and control sites (Fig. 1c).

Tide gauges (TG)	Latitude	Longitude	Sensor elevation	Label in Fig. 1
Coquille River TG2	43° 8.765'N	124° 23.561'W	-1.51	Ι
Lower Fahys Creek TG2	43° 8.898'N	124° 23.366'W	0.30	II
Salinity/temperature				
logger (no.)				
Coquille River (8234)	43° 8.768'N	124° 23.565'W	0.80	i
Fahys Creek mouth (8239)	43° 8.898'N	124° 23.366'W	0.37	ii
Fahys Creek mid (8230)	43° 9.257'N	124° 23.111'W	0.47	iii

			Elevation (m	Flevation	Sediment- ation rate
Ni-les'tun (NM) stations			NAVD88)	(m MTL)	
Station 1	43° 8.984'N	124° 23.270'W	1.45	0.33	1.5
Station 2	43° 9.120'N	124° 22.997'W	1.84	0.72	0.5
Station 3	43° 9.064'N	124° 23.263'W	2.07	0.95	0.0

_	Live foraminifera													Dead foraminifera																		
						manilaensis	wilberti		pseudomacrescer	aris	S		S								nilaensis	berti		eudomacrescer	aris	S		S				[cm³]
	(month/day/year)	fusca	sp.	p.	ia inflata			noides spp		iita irregularis	macrescens	petila	Trochamminid			fusca	sp.		<i>ites</i> spp.	ia inflata	Haplophragmoides manilaensis	Haplophragmoides wilberti	<i>noides</i> spp.	bs	iita irregularis	macrescens	petila	Trochamminid				volume [c
Sample ID	Date (mont	Miliammina fusca	Haynesina s	<i>Reophax</i> sp	ochammina	Haplophragmoides	Haplophragmoides	Haplophagmoides	Balticammina	Trochamminita	Jadammina	Miliammina	juvenile Tro	indetermine	E	Miliammina fusca	Haynesina s	<i>Reophax</i> spp.	Ammobaculites	Trochammina inflata	plophrag	plophrag	Haplophagmoides	Balticammina	Trocham minita	adammina	Miliammina	juvenile Tro	indetermine	n	lit	et sample
		-	На	Re	Tro	-	На	На	_			Mi	vnĺ		Sum		На	Re	An		-	На		-		1	Mi			sum	. Split	Wet
	08/16/11	8			4	1			8	6	6			4	37	123				28	50	5	0	62	126	170		62	40	666		43.6
	09/02/11	1							2	1	1		2	2	5	177				5	21	0	0	51	50	85		54	/	450	1/8	41.1
	09/14/11 09/28/11	26 1							19 9	16 12	2		2 5	2	67 32	102 129				0	10	0	0	16 62	30 65	13 35		2 8	14	170 323		30.5 40.3
	10/14/11	1							8	12	7		3	4	21	129				0	33	0	0	24	57	57		ہ 31	4 	308	3/8	40.5 28.8
	11/07/11	1							4	5	8		5	1	19	140				0	25	0	0	16	17	23		15	2	238	4/8	17.5
1	12/14/11	54				1			18	11	22		7	2	115	63					12			17	41	35		6	4	178	5/8	26.8
1	01/12/12	13							13	18	6		5	2	57	76					37			26	37	56		11	1	244	, 5/8	21.5
	02/09/12	14				1			5	15	16		6	2	59	78					26	2		16	61	44		3	1	231		17.2
1	04/11/12	34				1			8	5	2		1		51	93				2	35	1		68	64	59		6	8	336	2/8	27.8
1	05/16/12	37				1			21	13	5		1	2	80	90				1	44			34	46	17		4	1	237	2/8	22.5
1	06/19/12	156									1		1		158	76				3					3					82	1/8	15.8
	07/24/12	92													92	207									0					207	1/8	20.0
	08/29/12	496									3				499	2800				1	1			5	7	25		41		2880	8/8	30.0
1	10/11/12	39													39	132					1			3	4	2		2		144	1/8	14.5
1	12/08/12	63								2					65	243								1	5			1		250	1/8	14.5
	02/27/13	120							2	3			1		126	132								2	9	1		1		145	1/8	16.5
	05/31/13	134	2							1					135	356 407					1			4	2 5			6	0	364	1/8	15.0
	09/24/13 03/12/14	44 189	2												46 189	407					1			4	5				0	417	2/8 1/8	15.7
	03/12/14	52	5							1					58	305	1			2		1		4	0	1				314		22.2
	03/10/15	144	4							-					148	169	1			2		T		2	5	4					2/8	
	10/15/15	56	20												76	287	10		1					1	2	- 1				302		
	03/18/16	44	-	2											46	272		2	3	1	1	1			6	- 1					1/8	
	08/15/11						1								0										0					0	8/8	
	10/14/11														0										0					0		
	12/14/11														0										0					0	8/8	
	03/09/12														0										0					0	8/8	31.4
	06/19/12														0										0					0	8/8	
	07/24/12	4								1				1	6	1									0					1		19.0
	08/29/12														0	11									0						,	
	10/11/12	35													35	137					1				0			1			8/8	
	12/08/12	422			1					3				1	427	27				2				2	2	4		2			8/8	1
	02/27/13	99								3					102	7									1					8		
	05/31/13	121								10					131	67									4					71	-	
2	09/24/13	28			2					2					32	207								1	4	1			0	213	2/8	14.5

-	-																 										-		
2	03/12/14	220				1			4					225	207				2			9			1		219	1/8	30.5
2	09/04/14													0	92							0					92	1/8	26.5
2	03/10/15	63			23	2	1							89	42			90	2			2	13		2	3	154	1/64	29.0
2	10/15/15	17												17	113		2	13	21	1	5	13	5	1	3		177	3/8	14.6
2	03/18/16	354		6	5	16		4	5	4			2	396	397		18	20	11	3	23	23	38		4	1	538	1/8	23.0
3	08/16/11													0								0	1				1	8/8	24.2
3	10/14/11													0								0					0	8/8	19.5
3	11/07/11													0	1							0					1	8/8	25.0
3	03/09/12													0								0			1		1	8/8	18.2
3	07/24/12													0								0					0	8/8	18.2
3	10/11/12													0				1			1	0					2	8/8	15.0
3	12/08/12								2					2								12					12	8/8	13.5
3	02/27/13			2	2			8	2					14	1		3				7	5			2		18	8/8	17.5
3	05/31/13	2												2			1					6					7	8/8	18.5
3	09/24/13	9		10	32			3	4	1		4		63	8		14	88	2		91	24	6		39	0	272	1/8	18.5
3	03/12/14	24		5	245	1		11	49	2		7		344	15		4	89	1		19	58	6		29		221	1/8	22.5
3	09/04/14	73		4	5	6	1	8	18		2	3		120	26		5	16	2		26	51		1	8		135		31.5
3	03/10/15	70		1	27	11			8	44		6		167	38		1	18	3			5	36		2		103	2/8	19.2
3	10/15/15	25		10	55	8		7	2	2		2		111	54		5	100	22		18	17	8	9	22	1	256		17.6
3	03/18/16	37		10	46	36		1	8	6		3	1	148	35		73	53	39	5	13	30	15		16		279		21.0

Table DR3. Raw diatom counts and diatom concentrations (spreadsheet).

2017167_Table DR3.xlsx

Table DR4. Diatom results summary (spreadsheet).

2017167_Table DR4.xlsx

Diatom taxa	Taxonomic authority	Ecological information (life form and preferred environment)	Classification in this paper
Achnanthes brevipes	Agardh 1824	Epiphyte, tidal flat (1); Tidal flat (2); Tidal flat (3); Low marsh/tidal flat (5); Tidal flat (6); Low marsh/tidal flat (7)	Tidal flat
Actinoclyclus normanii	(Gregory) Hustedt, 1957	Planktonic, subtidal (1)	Planktonic
Actinocyclus ochotensis	A.P. Jousé, 1969	Planktonic, subtidal (1)	Tidal flat
Actinoptychus senarius	(Ehrenberg) Ehrenberg, 1843	Tychoplanktonic, subtidal (1); Tidal flat (2); Tidal flat (6)	Planktonic
Bacillaria paradoxa	J.F.Gmelin, 1791	Epiphyte, tidal channel or low marsh (1); Tidal flat (4); Low marsh (5); Tidal flat (6); Low marsh/tidal flat (7)	Tidal flat
Caloneis bacillum	(Grunow) Cleve, 1894	Epipelic, high marsh (1); High marsh and low marsh (2); High marsh and low marsh (3); High marsh (5); Low marsh (6); High marsh and low marsh (7)	High marsh
Caloneis westii	(W. Smith) Hendey, 1964	Epipelic, low marsh and tidal flats (1); Low marsh and tidal flats (2); Low marsh (3); Low marsh (4); Low marsh (6)	Low marsh
Cavinula lapidosa	(Krasske) Lange- Bertalot, 1996	High marsh (6)	High marsh
Cocconeis scutellum	Ehrenberg, 1838	Epiphyte, tidal flat (1); Tidal flat (2); Tidal flat (3); Tidal flat (4); Tidal flat and low marsh (5); Tidal flat (6); Tidal flat (7)	Tidal flat
Cosmioneis pusilla	(W.Smith) D.G.Mann & A.J.Stickle, 1990	Epipelic, high marsh (1); High marsh (2); High marsh (3); High marsh (4); High marsh and low marsh (5); High marsh (6); High marsh (7)	High marsh
Delphineis kippae	Sancetta	Epipsammic, epiphyte, tidal flat (8)	Tidal flat
Delphineis surirella	(Ehrenberg) G.W.Andrews, 1981	Epipsammic, epiphyte, tidal flat (1); Tidal flat (2); Tidal flat (4); Tidal flat (6)	Tidal flat
Denticula subtilis	Grunow, 1862	Epipelic, high marsh (1); High marsh (2); High marsh (3); High marsh (4); High marsh (6); High marsh (7)	High marsh

Table DR5: List of diatom taxa and ecological classifications.

Diploneis ovalis	(Hilse) Cleve, 1891	High marsh (6)	High marsh
Diploneis pseudovalis	Hustedt, 1930	Epipelic, high marsh (1); high marsh and low marsh (2); High marsh (3); High marsh and low marsh (4); High marsh (6)	High marsh
Diploneis smithii var. rhombica	Cleve-Euler, 1915	Epipelic, tidal flat (1); Low marsh (6); Low marsh (7)	Low marsh
Eunotia pectinales	Ehrenberg 1837	Epiphyte, high marsh/upland (1); Upland (6)	Freshwater/High marsh
Fallacia forcipata	(Greville) Stickle & Mann, 1990	Tidal flat or channel (6); Low marsh and tidal flat (7);	Low marsh
Frustulia vulgaris	(Thwaites) De Toni, 1891	Epipelic, high marsh (1); High marsh and low marsh (2); High marsh and low marsh (3); High marsh (4); High marsh (6); High marsh (7)	High marsh
Gomphonema parvulum	(Kützing) Kützing, 1849	High marsh or freshwater (1); Freshwater (6)	Freshwater/High marsh
Gyrosigma acuminatum	(Kützing) Rabenhorst, 1853	Tidal flat (4); Low marsh (6)	Low marsh
Gyrosigma eximium	(Thwaites) Boyer, 1927	Epipelic, low marsh (1); Low marsh (2); Low marsh (3) Low marsh (4); Low marsh (5); Low marsh (6); Low marsh (7)	Low marsh
Hyalodiscus scoticus	(Kützing) Grunow, 1879	Epiphyte, tidal flat (1); Tidal flat or channel (2); Tidal flat (3); Low marsh or tidal flat (5); Tidal flat or channel (6)	Tidal flat
Luticola mutica	(Kützing) D.G.Mann, 1990	Epiphyte, high marsh (1); High marsh and low marsh (2); High marsh and low marsh (4); High marsh and low marsh (6); High marsh (7)	
Mastogloia exigua	F.W.Lewis	Epipelic, low marsh (1); Low marsh and tidal flats and channels (2); Low marsh (3); Low marsh (4); Low marsh (6); Low marsh (7)	Low marsh
Melosira moniliformis	(O.F.Müller) C.Agardh, 1824	Epipelic, epiphyte, tidal flat and low marsh (1); Tidal flat or channel (2); Tidal flat or channel (3); Tidal flat (4) Tidal flat (6); Tidal flat (7)	Tidal flat
Melosira nummuloides	C.Agardh, 1824	Epipelic, epiphyte, tidal flat and low marsh (1); Tidal flat or channel (2); Tidal flat or channel (3); Tidal flat (4); Low marsh (5); Tidal flat (6); Tidal flat (7)	Tidal flat

Navicula cincta	(Ehrenberg) Ralfs, 1861	Epipelic, high marsh and low marsh (1); High marsh and low marsh (2); High marsh and low marsh (3); High marsh and low marsh (4); High marsh (6); High marsh and low marsh (7)	High marsh
Navicula gregaria	Donkin, 1861	Epipelic, low marsh and high marsh (1); Low marsh (4); Low marsh (7)	Low marsh
Navicula peregrina	(Ehrenberg) Kützing, 1844	Low marsh (5); Low marsh (6); Low marsh (7)	Low marsh
Navicula salinarium	Grunow, 1880	Epipelic, low marsh (1); High marsh and low marsh (5); Low marsh (7)	Low marsh
Navicula tripunctata	(O.F.Müller) Bory de Saint-Vincent, 1822	Epipelic, high marsh (2)	High marsh
Nitzschia brevissima	Grunow, 1880	Epipelic, high marsh (1); High marsh (3); High marsh (4); High marsh (7)	High marsh
Nitzschia commutata	Grunow, 1880	Epipelic, high marsh (1); High marsh (2) High marsh and low marsh (3) High marsh and low marsh (4); High marsh (6)	High marsh
Nitzschia dubia	W.Smith, 1853	Low marsh (6)	Low marsh
Nitzschia scapelliformis	(Grunow) Grunow, 1880	Epipelic, low marsh (1); Low marsh (2); Low marsh (3); Low marsh (4) Low marsh (7)	Low marsh
Nitzschia sigma	(Kützing) W.Smith, 1853	Epipelic, tidal flat and low marsh (1); Tidal flat or channel (2); Tidal flat or channel (3); Tidal flat (4); Tidal flat (6); Low marsh (7)	Tidal flat
Odontella aurita	(Lyngbye) C.Agardh, 1832	Planktonic, tidal flat (1); Tidal flat (2); Tidal flat (4); Planktonic or tychoplanktonic (6)	Tidal flat
Opephora marina	(Gregory) Petit, 1888	Epipsammic, tidal flat (1); Tidal flat or channel (3); Low marsh and tidal flat (5); Tidal flat or channel (6)	Tidal flat
Petroneis marina	(Kalls) D.O.Mallil,	Epipelic, tidal flat (1); Tidal flat (4)	Tidal flat
Pinnularia intermedia	(Lagerstedt) Cleve, 1895	Aerophilic, freshwater or high marsh (8)	Freshwater/High marsh
Pinnularia lagerstedtii	(Cleve) Cleve-Euler, 1934	Aerophilic, high marsh (2); High marsh (4); High marsh (3); Freshwater or high marsh (5); High marsh (6)	High marsh

Pinnularia microstauron	(Ehrenberg) Cleve, 1891	Aerophilic, freshwater or high marsh (5); Freshwater or high marsh (6)	Freshwater/High marsh
Pinnularia viridis	(Nitzsch) Ehrenberg, 1843	Aerophilic, freshwater or high marsh (6)	Freshwater/High marsh
Planothidium delicatulum	(Kützing) Round & Bukhtiyarova, 1996	Epipsammic, tidal flat (1); Tidal flat or channel (2); Tidal flat or channel (3); Tidal flat (4); Low marsh and tidal flat (5); Tidal flat or channel (6); Tidal flat or low marsh (7)	Tidal flat
Planothidium lanceolatum	(Brébisson ex Kützing) Lange-Bertalot 1999	Epipsammic, epiphyte, low marsh (1); Tidal flat (2); Low marsh (6); Low marsh (7)	Low marsh
Rhaphoneis psammicola	R.Z.Riznyk	Epipsammic, tidal flat (1); Tidal flat or channel (2); Tidal flat (4); Tidal flat or channel (6)	Tidal flat
Rhopalodia musculus	(Kützing) Otto Müller, 1900	Epiphyte, epipelic, low marsh (1); Low marsh (2); Low marsh (3); Low marsh (4); Low marsh (5)	Low marsh
Stauroneis anceps	Ehrenberg, 1843	Epipelic, high marsh (1); High marsh (2)	
Surirella brebissonii	Krammer & Lange- Bertalot, 1987	Epipelic, low marsh (1); Low marsh (5)	Low marsh
Surirella ovalis	Brébisson, 1838	Low marsh (7)	Low marsh
Tabularia fasciculata	(C.Agardh) D.M.Williams & Round, 1986	Epiphyte, tidal flat (1); Tidal flat or channel (2); Tidal flat or channel (3); Tidal flat (4); Tidal flat or channel (6); Tidal flat and low marsh (7)	Tidal flat
Thalassiosira antiqua	(Grunow) Cleve	Planktonic or tychoplanktonic, tidal flat (6)	Tidal flat
Thalassiosira pacifica	Gran & Angst, 1931	Planktonic or tychoplanktonic, tidal flat (6)	Tidal flat
Tryblionella debilis	Arnott ex O'Meara, 1873	Epipelic, low marsh (1); Low marsh and high marsh (2); Low marsh and high marsh (3); Low marsh (4); Low marsh (6); Low marsh (7)	Low marsh
Tryblionella granulata	(Grunow) D.G.Mann, 1990	Epipelic, tidal flat (1); Tidal flat or channel (2); Tidal flat or channel (3); Tidal flat (4); Tidal flat or channel (6)	Tidal flat
Tryblionella levidensis	W.Smith, 1856	Epipelic, tidal flat (1); Tidal flat or channel (3); Tidal flat (4); Tidal flat or channel (6); Tidal flat (7)	Tidal flat

(1) Hemphill-Haley, E., 1993, Taxonomy of recent and fossil (Holocene) diatoms (Bacillariophyta) from northern Willapa Bay, Washington: U.S. Geological Survey open report 93–289, 151 p.

(2) Hemphill-Haley, E., 1995a, Intertidal diatoms from Willapa Bay, Washington: applications to studies of small-scale sea-level changes: Northwest Science , v. 69, p. 29–45.

(3) Hemphill-Haley, E., 1995b, Diatom evidence for earthquake-induced subsidence and tsunami300 years ago in southern coastal Washington: Geological Society of America Bulletin, v. 107, p. 367–378.

(4) Atwater B.F., Hemphill-Haley E., 1997, Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington: U.S. Geol. Surv. Prof. Pap. 1576:108 p

(5) Sherrod B.L., 1999, Gradient analysis of diatom assemblages in a Puget Sound salt marsh: can such assemblages be used for quantitative paleoecological reconstruction? Palaeogeography, Palaeoclimatology, Palaeoecology, v. 149, p. 213-226.

(6) Witter, R.C., Hemphill-Haley, E., Hart, R., and Gay, L., 2009, Tracking prehistoric Cascadia tsunami deposits at Nestucca Bay, Oregon: U.S. Geological Survey, National Earthquake Hazards Reduction Program Final Technical Report 08HQGR0076 92, 34 p.

(7) Sawai, Y., Horton, B.P., Kemp, A.C., Hawkes, A.D., Nagumo, T. and Nelson, A.R., 2016, Relationships between diatoms and tidal environments in Oregon and Washington, USA: Diatom Research, v. 31, p.17-38.

(8) Denys, L., 1991, A Check-list of the diatoms in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements. Ministère des affaires économiques, Service Géologique de Belgique.

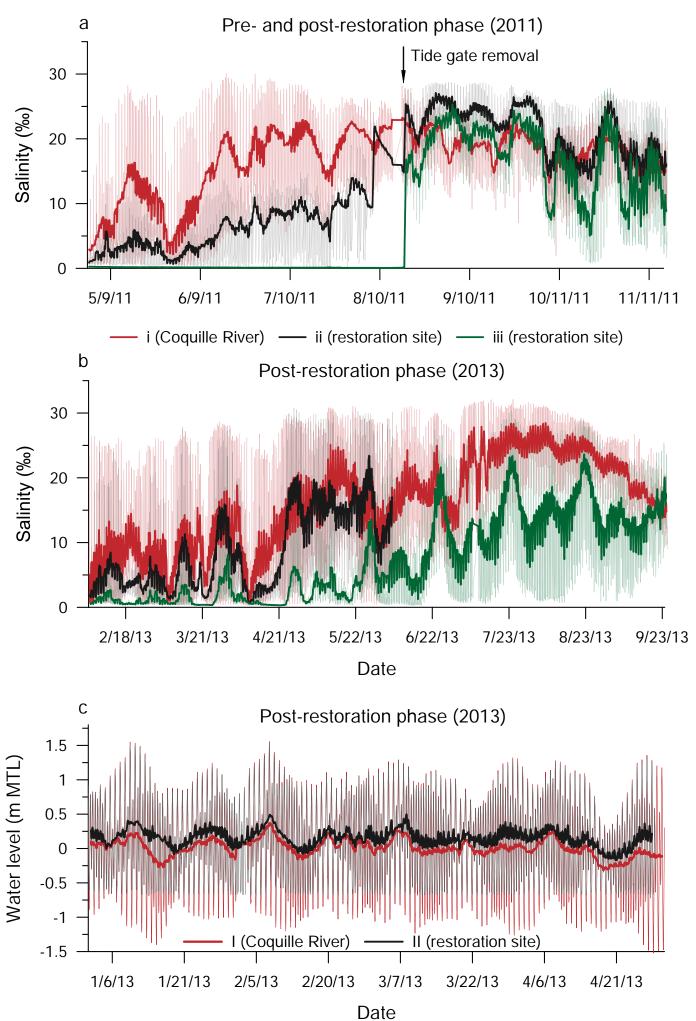
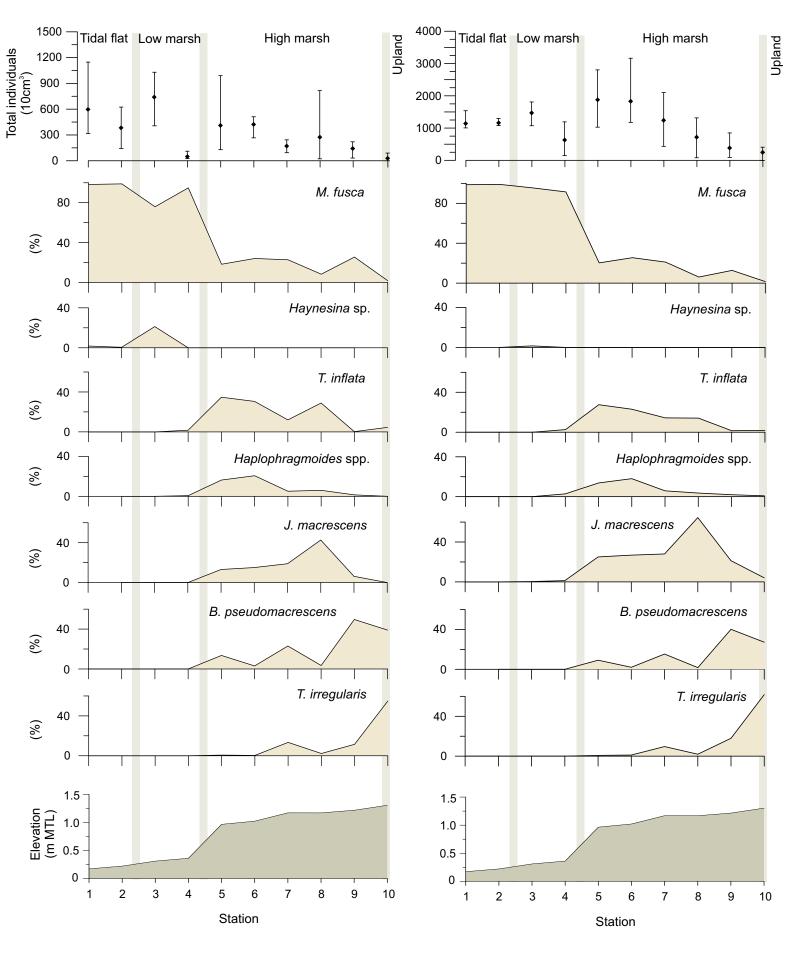



Figure DR1

A. LIVE PPOULATIONS

Figure DR2

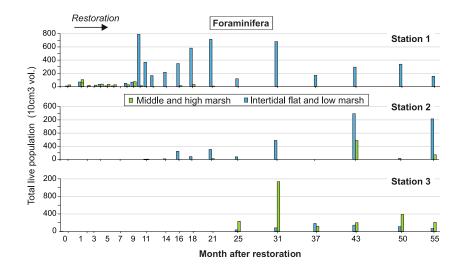


Figure DR3