GSA Data Repository 2017028

1 Regional variability in the frequency and magnitude of large

2 **explosive volcanic eruptions**

3

4 Tom Sheldrake¹, Luca Caricchi¹

¹Department of Earth Sciences, University of Geneva, rue des Maraîchers 13, 1205

6 Geneva, Switzerland

7

8 SUPPLEMENTARY MATERIAL

9 Below is a summary of the assumptions, method and results for the (a) homogeneity

10 test and (b) change-point analysis; and detailed summary of the statistical methods

11 used for (c) the statistical model to estimate the frequency-Magnitude relationship,

12 and (d) calculation of the global recurrence rate of large-magnitude eruptions.

13

14 (a) Chi-square test for homogeneity based on a contingency table

A chi-square test for homogeneity is calculated using for the sum of M4 events and sum of M5-M7 events, across different values of t_{unique} . The rationale for reducing the homogeneity test to two populations is that is reduces the degrees of freedom by half so the test statistic is more informative. The number of M4 events is chosen as a population by itself as it represents the largest variation in the record. When $X^2 < df$ the hypothesis of homogeneous populations for different values of t_{unique} is accepted.

22 Results:

tstart	\mathbf{X}^2	df	pvalue
50 ka	1060.2	500	2.2e-16

	11.7 ka	36.991	468	1	
23	(b) Change-point ana	lysis of Magnitude	4 events in the Holo	cene dataset	
24	A change point for the number of magnitude 4 events is calculated using the				
25	segmented package in R ¹ , which uses a dummy variable to identify a change point in				
26	a linear regression by	maximum likelihood	fitting.		
27					
28	¹ (https://cran.r-project	.org/web/packages/se	egmented/segmented	pdf)	
29					
30	(c) Hierarchical Baye	esian Analysis			
31	To statistically	characterise the freq	uency-Magnitude (f-	M) relationship for	
32	volcanic eruptions we	use the methodology	v set out in Sheldrake	(2014), which is	
33	based on analysing the	e proportion of differ	ent events. A hierarcl	hical Bayesian	
34	approach is employed	which quantifies the	e common distributio	n of eruptions for a	
35	group of analogous vo	lcanoes, whilst recog	gnising that each volc	ano has a unique	
36	record. Each of the inc	lividual eruptive reco	ords is considered exc	changeable, and so	
37	each volcano is assum	ed to be able to prod	uce an eruption betw	een M4 and M7. In	
38	terms of magmatic pro	cesses, this assumpt	ion is akin to saying t	hat there is a common	
39	process determining th	ne frequency of erupt	tions of various magn	itudes globally, but at	
40	an individual volcano	this common process	s may only manifest i	n a particular sub-set	
41	of the state space.				
42	The statistical	model has three hiera	archies:		
43	(a) Eruptive records, c	r data, which represe	ent the likelihood of e	each eruption	
44	magnitude (<i>j</i>) at each	volcano (i), and is ch	aracterised as a multi	variate dataset (i.e.	
45	mutually exclusive ev	ents):			
46		$x_{i,j} \sim Mul$	$ti(\theta_{i,j}, n_j).$		

47 (b) Prior distribution, which characterises the common processes associated with the 48 accumulation and eruption of eruptible magma that are responsible for the recurrence 49 rate of volcanic eruptions. The prior is modelled using a Dirichlet distribution, as we 50 characterise eruption magnitude as a continuous multivariate dataset where the 51 probability of the different magnitudes (θ_i) adds to unity at each volcano. The 52 Dirichlet distribution is parameterised by a series of alpha parameters (α_i) , which is 53 advantageous as it does not put any restrictions on the shape of the distribution, 54 allowing different behaviours to be identified for different groups of volcanoes: 55 $\theta_{i,i} \sim Dir(\alpha_i).$ 56 (c) Hyperprior distributions, which allow the prior distribution to be uninformative,

and thus only determined by only the data in the model and not by subjective judgement. The hyperprior distributions (φ_j , ψ) are rearranged in terms of the alpha parameters of the Dirichlet distribution (α_i):

$$\alpha_j = \frac{\varphi(\exp(\phi_j))}{J - 1 + \exp(\phi_j)}$$

where J is the total number of eruption scenarios (i.e. number of eruption magnitudes
= 4). Each hyperprior is chosen so that the before observing the data each magnitude
is equally likely.

64 The fist hyperprior characterises the variability in the data between each of the 65 volcanoes, and so is a distribution on α_0 , which is the sum of all the α_i parameters:

 $\psi = \alpha_0 = \sum \alpha_j,$

In the case where the model is uninformative each $a_j=1$ and so the minimum value of a_0 is the sum of these parameters (in the case here this is the number of Magnitude states = 4), and where the data is fully informative the value of a_0 is equal to the total number of eruptions or observations in the analysis (K, which in the case here is

71 1,766). Hence, the first hyperprior is parameterised as a uniform distribution between 72 these two values: 73 $\psi \sim Unif(4, 1766).$ 74 The second hyperprior is a distribution of the logit of the mean probability for 75 each magnitude multiplied by (J - 1): $\phi_j = \log\left(\frac{(K-1)\alpha_j}{\alpha_0 - \alpha_j}\right).$ 76 77 In the case where each magnitude is equally likely this will equal zero, and so the 78 second hyperprior is parameterised as a diffuse distribution centred on zero: 79 $\phi_i \sim Normal(0,1000).$ 80 There are two outputs of the statistical model, the prior and posterior 81 distributions. The prior distribution is calculated based on a combination of the total 82 number of events for each magnitude, the variation in the proportions of each 83 magnitude at individual volcanoes, and the total number of events observed at each 84 volcano. Once the prior distribution is calculated, the posterior distribution that is 85 unique to each individual volcano can be calculated. To characterise the behaviour of 86 a group of volcanoes, or to compare the behaviour of different volcanoes, we 87 characterise a group of posterior probabilities for different eruption magnitudes (m) 88 using a power-law distribution: 89 $\Pr(M = m) \sim \gamma^m$. 90 For Magnitude 4 -7, this becomes with the appropriate normalisation to unit mass:

91
$$\Pr(M = m) = \frac{\gamma^{m-4}}{1 + \gamma + \gamma^2 + \gamma^3} = \frac{(1 - \gamma)\gamma^{m-4}}{1 - \gamma^4} .$$

92

93	To fit the power law we use a non-hierarchical version of the Bayesian method
94	in Bebbington (2014), with the reference distribution for γ is a diffuse log normal
95	distribution:
96	$log(\gamma) \sim N(0, 10^3).$
97	To perform the statistical analysis we use a Markov Chain Monte Carlo
98	analysis using RStan ¹ .
99	
100	¹ Carpenter, B., et al., 2016, Stan: A probabilistic programming language: Journal of
101	Statistical Software (in press).
102	
103	(d) Calculation of the recurrence rate of large-magnitude eruptions during the
104	Holocene
105	To estimate the global recurrence rate of eruptions of different magnitude, we
106	fit a power-law using the assumptions stated in the main text. We solve for the under-
107	recording parameter λ by using the value of γ from the analysis of the global record
108	and rearranging the following equations:
109	(1) the proportion of eruptions that are Magnitude 4:
110	$ heta_4 = rac{(1-\lambda\gamma)(\lambda\gamma)^0}{1-(\lambda\gamma)^4};$
111	(2) the proportion of eruptions that are Magnitude 7:
112	$\theta_7 = \frac{(1-\lambda\gamma)(\lambda\gamma)^3}{1-(\lambda\gamma)^4};$
113	(3) the expected number of Magnitude 4 events in the Holocene, where $X_{4:1961}$ is the
114	number of Magnitude 4 events observed globally at arc volcanoes between 1961 –
115	2000 (based on 95% confidence that a change point in under-recording occurred after
116	this date; Furlan, 2010) and normalised to the duration of the Holocene:

117
$$N_4 = X_{4:1961} \cdot \frac{11,700}{2000-1961};$$

118 (4) the expected number of Magnitude 7 events in the Holocene:

119
$$N_7 = \frac{N_4}{\theta_4/\theta_7};$$

120 (5) the level of completeness for Magnitude 7 events in the Holocene, which is

121 estimated to be 70% (Brown et al., 2014):

122
$$\frac{N_7}{X_7} = 0.7.$$

123

124

2017028_Data Summary and Results.zip