GSA Data Repository Item 2016354

Portenga, E.W., Bierman, P.R., Trodick, C.D., Jr., Greene, S.E., DeJong, B.D., Rood, D.H., and Pavich, M.J., 2016, Background rates of erosion and sediment generation in the Potomac River basin, USA, derived using in situ ¹⁰Be, meteoric ¹⁰Be, and ⁹Be: GSA Bulletin, doi:10.1130/B31543.1.

DATA REPOSITORY TABLES

Table DR1. Sample basin location dataTable DR2. Beryllium isotope dataTable DR3. Erosion rate data

Table DR4. Hybia Valley sediment core data

DETAILED METHODS

We collected stream sediment from 70 subcatchments within the Potomac River watershed (main text Figure 2, Table DR1) for analysis of in situ-produced ¹⁰Be, meteoric ¹⁰Be, weathered ⁹Be in the reactive phase, and unweathered ⁹Be left remaining in the mineral phase (¹⁰Be_i, ¹⁰Be_m, ⁹Be_{reac}, and ⁹Be_{min}, respectively). Samples from each catchment were used for ¹⁰Be_m analysis (n = 70); sufficient amounts of pure quartz was extracted from samples for the majority of catchments (n = 62) from which ¹⁰Be_i was used to calculate basin-averaged, longterm erosion rates; ⁹Be_{reac} was measured on aliquots of all samples (n = 70); ⁹Be_{min} was successfully extracted from bulk sediment from 57 of the 70 catchments. ¹⁰Be_m was measured from sandier intervals of core sediment from the Hybla Valley (Core 7) (Litwin et al., 2013).

All samples were processed at the University of Vermont Cosmogenic Nuclide Laboratory (www.uvm.edu/~cosmolab). ⁹Be_{reac} was extracted from sediment grain coatings by leaching ~0.25 g of powdered sediment in 2 mL of 6 M HCl in centrifuge tubes for 24 h. Subsequent leaching experiments show that native ⁹Be, that which is naturally found in situ within mineral crystal lattices, remains locked in the mineral grains and does not interfere with ⁹Be sample measurement (Greene et al., 2015). Samples were diluted with 10 mL of 0.2 M HNO3 and 0.1 M HCl in order to match the matrix of multi-element inductively coupled plasma optical emission spectrometry (ICP-OES) standard solutions. Diluted samples were weighed and centrifuged at 3,200 rpm for 5 min and the supernatant was transferred to a clean centrifuge tube for analysis using ICP-OES. Beryllium emission was measured with the monochromator at 313.107 nm. The mass of the sample and the solution added were used to calculate atoms of ⁹Be per gram of sample. ¹⁰Be concentrations are 8–9 orders of magnitude lower than ⁹Be concentrations, well below the detection limit of the ICP-OES and thus do not interfere with ⁹Be measurements.

 9 Be_{min} was extracted from the same sample material as 9 Be_{reac}. Following the HCl leaching, sediment was rinsed with MilliQ water and dried. Material from each sample was digested in 2.5 Ml of 1:1 HNO₃ in a beaker heated to 95 °C and refluxed for 15 min; refluxing was done twice more with 1 mL of concentrated HNO₃ added after each reflux. Samples were heated for two hours at 95 °C until ~1 mL of solution remained in the beaker. Samples were colled and 1 mL of 18 M Ω water and 1 mL of 30% H₂O₂ was added. Samples were covered and heated to 85 °C for 1 h. Following a second cooling step, an additional 1 mL of 30% H₂O₂ was added and heated at 85 °C for another hour. The H₂O₂ step was repeated in full and samples were

then heated for ~2 h at 95 °C or until there was ~1 mL of solution remaining in the beaker. Samples were cooled again and a mixture of 3 mL of concentrated HF with 1% H₂SO₄, 0.5 mL of concentrated HNO₃, and 1 mL of concentrated HClO₄ were added to each beaker. Samples were covered, left overnight at 105 °C, and evaporated the next morning at 110 °C until dry. Samples were subsequently heated to 230 °C to drive off HClO₄. Samples were then cooled and gravimetrically diluted with 0.01 M HNO₃ and analyzed using ICP-OES. Often, white crystalline TiO₂ was observed at the end of the leaching steps and was subsequently centrifuged before ICP-OES analysis. Such a precipitate has been previously observed in ¹⁰Be_i digestions and does not appear to incorporate beryllium (Hunt et al., 2008).

 10 Be_m samples were powdered and spiked with ~300 µg of ⁹Be standard solution (SPEX 1000 ppm; ⁹Be_{spex}; Table DR2). A modification of Stone's (1998) total fusion method was used to extract ¹⁰Be_m from each sample as a beryllium-hydroxide gel, which was subsequently ignited to produce BeO and mixed with Nb powder at a 1:1 molar ratio before being packed into stainless steel accelerator mass spectrometry (AMS) cathodes. Samples were processed in batches of 16 including one full process blank.

Samples processed for ¹⁰Be_i (Table DR2) were first etched in 6 N HCl and then in a series of 1% HF/HNO₃ acids to dissolve all carbonates and remove grain coatings and non-quartz minerals (Kohl and Nishiizumi, 1992). Each sample was then heated to 500 °C for 5 h to burn off any organic material, including coal. Some samples required further density separations using sodium-polytungstate to isolate quartz. All quartz was then etched for one week in 0.5% HF/HNO₃ and tested for purity (that is <100 ppm Al, Fe, Ti and ~10 ppm Na, Ca, K). About 20 g of pure quartz was dissolved in HF along with ~250 µg ⁹Be carrier (⁹Be_{carr}; ⁹Be carrier 285–2A, created in-house from beryl, $\rho = 1.012$ g mL⁻¹). Aliquots from each sample were analyzed to demonstrate that the only substantial ⁹Be in each ¹⁰Be_i sample was that added as a carrier, ensuring erosion rate determinations are accurate (Portenga et al., 2015). Beryllium was subsequently isolated from Fe, Ti, and Al using procedures outlined in Corbett et al. (2011), oxidized, and mixed with Nb at a 1:1 molar ratio before being packed into stainless steel AMS cathodes. All sample batches (12 unknowns) contained one full process blank.

 ${}^{10}\text{Be}_{m}{}^{9}\text{Be}_{\text{spex}}$ and ${}^{10}\text{Be}_{i}{}^{9}\text{Be}_{\text{carr}}$ ratios were measured at the Lawrence Livermore National laboratory Center for AMS and normalized to the AMS beryllium standard, 07KNSTD, assuming a nominal standard ratio of 2.85×10^{-12} (Nishiizumi et al., 2007; Table DR2). ${}^{10}\text{Be}_{i}$ and ${}^{10}\text{Be}_{m}$ concentrations presented here, and used in subsequent analyses, were derived from blank-corrected ${}^{10}\text{Be}_{m}{}^{9}\text{Be}_{\text{spex}}$ and ${}^{10}\text{Be}_{i}{}^{9}\text{Be}_{\text{carr}}$ AMS ratios ($2.11 \times 10^{-14} \pm 9.31 \times 10^{-15}$ for meteoric ${}^{10}\text{Be}$, n = 6; $1.23 \times 10^{-14} \pm 5.41 \times 10^{-16}$ for in situ ${}^{10}\text{Be}$, n = 5), which include all AMS measurement uncertainties and the propagated uncertainty of the average process blank ratio (Table DR3).

We summarized ¹⁰Be_i production across each sampled basin to a single point in space and calculated basin-scale erosion rates from ¹⁰Be_i data using the CRONUS online calculator (Balco et al., 2008, main calculator version 2.1, wrapper script 2.2, objective function 2.0, constants 2.2.1, muons 1.1; main text Table 1), incorporating standard atmospheric pressure and a sample thickness of 1 cm. ¹⁰Be production rates were scaled from global production rates at high latitude-sea level using Lal's (1991) and Stone's (2000) polynomials. The effective elevation (Portenga and Bierman, 2011), mean latitude, and mean longitude for each catchment were used as input parameters to the CRONUS calculator. Some sampled catchments are nested within others; thus, we derive effective erosion rates for unnested portions of larger catchments following Granger et al. (1996). ¹⁰Be_i erosion rates referred to in the remainder of this study are

either the CRONUS erosion rates for unnested catchments or the effective erosion rates. In this way, erosion rates and catchment data are assigned to unoverlapped portions of the field area. ${}^{10}\text{Be}_{i}$ erosion rates were converted to long-term sediment fluxes using a bulk rock density of 2.7 g/cm³.

REFERENCES CITED

- Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T.J., 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements: Quaternary Geochronology, v. 3, no. 3, p. 174–195, doi:10.1016/j.quageo.2007.12.001.
- Brown, L., Pavich, M.J., Hickman, R.E., Klein, J., and Middleton, R., 1988, Erosion of the eastern United States observed with 10Be: Earth Surface Processes and Landforms, v. 13, no. 5, p. 441–457, doi:10.1002/esp.3290130509.
- Corbett, L.B., Young, N.E., Bierman, P.R., Briner, J.P., Neumann, T.A., Rood, D.H., and Graly, J.A., 2011, Paired bedrock and boulder ¹⁰Be concentrations resulting from early Holocene ice retreat near Jakobshavn Isfjord, western Greenland: Quaternary Science Reviews, v. 30, no. 13-14, p. 1739–1749, doi:10.1016/j.quascirev.2011.04.001.
- Gellis, A.C., Banks, W.S.L., Langland, M.J., and Martucci, S.K., 2004, Summary of Suspended-Sediment Data for Streams Draining the Chesapeake Bay Watershed, Water Years 1952– 2002: U.S. Department of the Interior, U.S. Geological Survey.
- Graly, J.A., Reusser, L.J., and Bierman, P.R., 2011, Short and long-term delivery rates of meteoric ¹⁰Be to terrestrial soils: Earth and Planetary Science Letters, v. 302, no. 3–4, p. 329–336, doi:10.1016/j.epsl.2010.12.020.
- Granger, D.E., Kirchner, J.W., and Finkel, R., 1996, Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment: The Journal of Geology, v. 104, no. 3, p. 249–257, doi:10.1086/629823.
- Greene, E.S., Bierman, P., and Perdrial, N., 2015, Comparing meteoric ¹⁰Be, *in situ* ¹⁰Be and native ⁹Be across three watersheds: Geological Society of America Abstracts with Programs, v. 47, no. 7, p. 514.
- Hunt, A.L., Larsen, J., Bierman, P.R., and Petrucci, G.A., 2008, Investigation of factors that affect the sensitivity of accelerator mass spectrometry for cosmogenic ¹⁰Be and ²⁶Al isotope analysis: Analytical Chemistry, v. 80, no. 5, p. 1656–1663, doi:10.1021/ac701742p.
- Kohl, C.P., and Nishiizumi, K., 1992, Chemical isolation of quartz for measurement of *in-situ*produced cosmogenic nuclides: Geochimica et Cosmochimica Acta, v. 56, p. 3583–3587, doi:10.1016/0016-7037(92)90401-4.
- Lal, D., 1991, Cosmic ray labeling of erosion surfaces: *In situ* nuclide production rates and erosion models: Earth and Planetary Science Letters, v. 104, no. 2-4, p. 424–439, doi:10.1016/0012-821X(91)90220-C.
- Litwin, R.J., Smoot, J.P., Pavich, M.J., Markewich, H.W., Brook, G., and Durika, N.J., 2013, 100,000-year-long terrestrial record of millennial-scale linkage between eastern North American mid-latitude paleovegetation shifts and Greenland ice-core oxygen isotope trends: Quaternary Research, v. 80, no. 2, p. 291–315, doi:10.1016/j.yqres.2013.05.003.
- Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., and McAninch, J., 2007, Absolute calibration of ¹⁰Be AMS standards: Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, v. 258, no. 2, p. 403–413.

- Portenga, E.W., and Bierman, P.R., 2011, Understanding Earth's eroding surface with ¹⁰Be: GSA Today, v. 21, no. 8, p. 4–10, doi:10.1130/G111A.1.
- Portenga, E.W., Bierman, P.R., Duncan, C., Corbett, L.B., Kehrwald, N.M., and Rood, D.H., 2015, Erosion rates of the Bhutanese Himalaya determined using in situ-produced ¹⁰Be: Geomorphology, v. 233, p. 112–126, doi:10.1016/j.geomorph.2014.09.027.
- Stone, J., 1998, A rapid fusion method for separation of beryllium-10 from soils and silicates: Geochimica et Cosmochimica Acta, v. 62, no. 3, p. 555–561, doi:10.1016/S0016-7037(97)00340-2.
- Stone, J.O., 2000, Air pressure and cosmogenic isotope production: Journal of Geophysical Research, v. 105, no. B10, p. 23,753–723,759.
- von Blanckenburg, F., Bouchez, J., and Wittmann, H., 2012, Earth surface erosion and weathering from the ¹⁰Be (meteoric)/⁹Be ratio: Earth and Planetary Science Letters, v. 351–352, p. 295–305, doi:10.1016/j.epsl.2012.07.022.

Table DR1 - Sample Basin Location Data												
	USGS			Mean	Mean	Mean	Average	Basin	Basin			Mean
Sample	Gauging	Latitude	Longitude	Latitude	Longitude	Elevation	Basin	Area	Relief	Phys.	Land-	Annual
ID ^a	Station ID	(°N)	(°W)	(°N) ^b	(°W) ^b	(m asl) ^b	Slope (°)	(km ²)	(m)	Prov. ^c	use ^d	Precip (cm yr ⁻¹)
POT01	01646580	38,9306	77 1161	39 1646	78.3821	387	8.8	30000	1482	VR	т	100
POT02	01650500	39 0647	77 0284	39 1077	77 0333	130	35	55	90	P	Ú	100
POTOA	01647740	30 1050	77 1250	30 1/20	77.1400	143	3	11	06	, D		107
POTOF	01047740	20 1170	77.1250	39.1400	77.1409	143	20	44	90		0	105
P0105	01647720	39.1179	77.1009	39.1463	77.0953	140	2.8	24	/4	P	0	106
PO106	01638500	39.2724	77.5462	39.1331	78.5789	432	10	25021	1425	VR	I	100
POT09	01656120	38.6401	77.5123	38.6458	77.6740	113	2.8	459	359	Р	A	103
POT10	01631000	38.9142	78.2100	38.3639	78.8516	494	9.4	4227	1211	VR	F	102
POT11	01603000	39.6215	78.7737	39.5320	79.0409	658	10.5	2274	1080	AP	F	108
POT12	01614500	39.7157	77.8242	39.9156	77.7381	266	5.6	1321	628	VR	А	102
POT13	01639000	39.7157	77.8242	39.8122	77.2481	192	3.1	449	507	Р	А	105
POT14		39 5870	77 4641	39 5889	77 4863	477	87	15	298	BR	F	111
POT15		30 3060	77 6511	30 2838	77.6720	167	19	33	357	BR	Δ.	100
DOT16		20 7004	77.4116	20 7046	77 4442	261	4.0	27	206		F	100
POTIO		39.7004	77.4110	39.7040	77.4442	301	0.2	21	290	BR	1	109
P0117		39.4797	77.3276	39.4753	77.2971	152	5.4	10	109	Р	A	101
PO118		39.2107	77.3108	39.2305	77.3077	173	5	14	86	Р	A	102
POT19		39.1543	77.1320	39.1742	77.1376	155	2.6	15	66	Р	A	105
POT20		39.0218	76.8604	39.0238	76.8481	53	2	25	56	С	U	108
POT21		38.8312	76.9197	38.8347	76.9004	79	2.7	18	42	С	U	105
POT22		38.7554	76.8417	38.7840	76.8573	73	1.8	27	40	С	U	105
POT23		38.7590	76.9419	38.7815	76.9091	76	2.2	30	47	С	U	105
POT24		38.6645	76.8794	38.6820	76.8701	69	0.9	11	21	С	А	105
POT25		38 5421	77 0176	38 5761	76 9937	57	2.8	42	55	C.	F	104
POT26		38 / 220	77 2132	38 /612	77 21/1	33	1.8	36	13	Č	F	101
0120		20.4020	77.0044	20 5142	77.2141	47	1.0	20		C C	-	101
P0127		30.4030	77.0041	30.3142	77.0021	47	3.4	22	52		г -	103
P0128		38.4417	77.5406	38.4014	77.5592	99	2.9	10	01	Р	F	104
PO129		38.5664	//.6/2/	38.5507	//.6/48	109	2.2	10	63	Р	F	104
POT30		38.6293	77.7641	38.6472	77.7873	140	1.9	22	81	Р	A	105
POT31		38.6688	77.5374	38.6784	77.5692	74	1.4	27	54	Р	A	100
POT32		38.6174	77.3721	38.6389	77.4061	108	3.7	21	66	Р	F	101
POT33		38.7818	77.3880	38.8084	77.3677	110	4.1	44	94	Р	U	101
POT34		38.7980	77.3519	38.8216	77.3337	121	4	16	74	Р	U	102
POT35		38.9593	77.5383	38.9644	77.5740	110	2.5	23	69	Р	А	101
POT36		38 9508	77 7196	38 9100	77 7497	184	54	64	291	P	Δ	104
POT37		39.0616	77 7543	30 0053	77 8036	210	53	49	431	BR	Δ	102
DOT20		20.0010	79 1264	20.00004	79 1622	210	2.0	12	55		^	06
PO130		20.0725	70.1204	20.0555	70.1032	210	2.9	10	50			30
POTA		30.9735	70.0020	30.9000	78.0371	577	11.0	13	000		г -	103
P0140		38.7358	78.5306	38.7440	78.5545	605	13.8	9	441	VR	-	103
POT41		38.3471	78.6120	38.3203	78.6222	602	17.5	14	545	BR	F	110
POT42		38.2510	78.8920	38.2594	78.9283	369	3.9	16	148	VR	A	98
POT43		38.1014	78.8603	38.0935	78.8106	575	13.8	26	521	BR	F	111
POT44		37.9403	78.9682	37.9132	79.0043	693	16.3	30	674	BR	F	117
POT45		38.5582	79.1520	38.5328	79.1694	990	21.9	29	635	VR	F	113
POT46		38.4926	79.6653	38.4727	79.6798	1198	12.7	16	295	VR	F	133
POT47		38.8096	78.9457	38.8210	78.9278	595	13.1	16	369	VR	F	95
POT48		39.0700	78.9575	39.0436	78.9278	391	11.4	13	712	VR	F	92
POT49		39 1374	78 7717	39 1385	78 8125	651	11 7	27	481	VR	F	101
POT50		38 8895	79 4031	38 9115	79 4140	1150	19	20	754	VR	F	132
POT51		30 2373	79 4490	30 2320	79 4714	868	92	14	251	ΔP	F	131
DOT52		30 3484	70 2851	30 3621	70 3000	844	6.1	20	272			123
DOTES		30 3000	70 1224	30 3700	70 1240	720	11 1	20	107		, E	110
POTCA		39.3900	70 0044	39.3709	79.1249	120	11.1	- 22	49/		г г	110
PO154		39.4552	10.0041	39.4412	10.1895	324	15.6	5	312	VK	F	92
P0155		39.4578	79.2281	39.4464	79.2536	804	8.5	17	282	AP	F	118
PO156		39.5134	79.1549	39.5280	79.1998	716	13.3	30	385	AP	F	113
POT57		39.6034	79.0791	39.6246	79.0900	740	12.7	6	291	AP	F	110
POT58		39.5657	78.9799	39.5436	78.9634	704	10.2	10	410	AP	F	105
POT59		39.8191	78.9376	39.7944	78.9178	734	9	17	190	AP	F	107
POT60		39.9059	78.8355	39.9119	78.8502	707	10.9	6	314	AP	А	108
POT61		39.8933	78.6019	39.8905	78.6265	602	13.9	9	410	VR	F	101
POT62		39.6870	78.5858	39.6955	78.6093	367	13.1	29	332	VR	F	95
POT63		39.4712	78.4380	39.4651	78.4584	424	10.7	18	419	VR	F	96
POT64		39 7955	78 2547	39 7878	78 2925	341	87	21	356	VR	F	96
DOTES		30 2615	78 2017	30 2071	78 2867	120	۵.7	10	259			08
DOTES		10 0400	70.0011	40.0077	10.2001	200	3 7 F	12	200		г г	90
		40.0180	10.0401	40.03//	10.0259	309	C.1	10	94		г -	39
PU16/		40.1//3	11.0030	40.2034	11.0380	430	12.1	25	408	VK	г •	CUI
POT68		39.8671	(1.2227	39.8900	//.2197	1/1	2.4	12	69	Р	A	104
POT69		39.8794	77.2936	39.9043	77.3101	237	4.9	11	312	BR	A	105
POT70		39.9163	77.7482	39.9271	77.7767	196	3.3	13	113	VR	Α	101
POT71		39.9505	77.4445	39.9720	77.4291	558	8.7	12	214	BR	F	114
POT72		39.5675	77.0598	39.5648	77.0250	205	4.8	23	127	Р	А	107
POT73		39.6610	76.9482	39.6687	76.9185	247	5.7	15	146	Р	А	108

^{a 10}Be_m and ⁹Be were measured from all samples; ¹⁰Be_i was measured for samples in bold; ⁹Be_{min} was measured for samples in italics.

^b Basin metrics used as input for calculating erosion rates using the CRONUS erosion rate calculator (Balco et al., 2008), following methods presented in Portenga and Bierman (2011).

^c Physiographical provinces. AP - Appalachian Plateau; BR - Blue Ridge; C - Coastal Plain; P - Piedmont; VR - Valley and Ridge.

^d Predominant land-use for each catchment. A - Agriculture; F - Forest; T - Trunk stream (mostly forested); U - Urban.

Table DR2 - Sample Preparation Data and AMS Measurement Ratios								
			Blank Corrected			Blank Corrected		
	¹⁰ Be _i Quartz		¹⁰ Be _i / ⁹ Be _{carr}	¹⁰ Be _m Sample		¹⁰ Be _i / ⁹ Be _{spex}		
Sample	Mass	⁹ Be _{carr} Mass	Measured Ratio	Mass	⁹ Be _{spex} Mass	Measured Ratio		
ID	(g)	(µg)	x10 ⁻¹³ (± 1SD)	(g)	(µg)	x10 ⁻¹² (± 1SD)		
Potomac River	r data from this	study						
POT01	20.2835	249.1	3.44 ± 0.070	0.551	300.4	5.31 ± 0.116		
POT02	21.3027	248.8	2.36 ± 0.060	0.519	300.40	2.08 ± 0.030		
POT04	20.4721	248.8	2.84 ± 16.312	0.581	301.38	3.31 ± 0.056		
POT05	20.3331	248.1	3.11 ± 12.293	0.575	300.40	4.07 ± 0.059		
POT06	20.3349	251.0	3.41 ± 11.542	0.456	325.10	5.31 ± 0.058		
POT06x				0.512	300.40	6.41 ± 0.059		
POT09	20.1183	249.2	5.24 ± 0.015	0.517	299.41	4.17 ± 0.060		
POT10	20.2061	250.6	8.15 ± 0.016	0.574	300.40	10.42 ± 0.147		
POT11	20.6843	248.3	4.83 ± 0.011	0.459	326.09	8.55 ± 0.086		
POT12	20.4943	248.1	6.18 ± 0.012	0.486	325.10	11.82 ± 0.149		
POT13	20.4158	248.7	3.66 ± 0.007	0.495	325.10	6.55 ± 0.066		
POT14	20.5500	249.2	3.65 ± 0.009	0.475	327.1	18.19 ± 0.225		
POT15	22.2406	247.9	4.83 ± 0.011	0.577	300.4	7.55 ± 0.068		
POT16	12.4930	248.7	2.45 ± 0.006	0.463	299.4	8.78 ± 0.120		
POT17	22.4892	249.5	3.35 ± 0.008	0.474	299.4	9.18 ± 0.109		
POT18	19.2144	249.0	3.15 ± 0.008	0.471	300.4	12.20 ± 0.100		
POT19	22.4617	249.5	4.08 ± 0.008	0.481	300.4	4.65 ± 0.042		
POT20	23.0535	249.8	1.37 ± 0.004	0.462	295.5	0.82 ± 0.011		
POT21	22.3728	248.6	5.19 ± 0.123	0.443	304.3	0.76 ± 0.011		
POT22	22.5192	247.7	9.86 ± 0.194	0.479	298.4	2.12 ± 0.023		
POT23	22.7368	250.5	6.68 ± 0.131	0.479	301.4	1.21 ± 0.018		
POT24	20.6337	248.6	8.51 ± 0.145	0.459	301.4	1.68 ± 0.019		
POT25	20.7810	248.6	7.50 ± 0.128	0.526	301.4	1.64 ± 0.028		
POT26	21.0315	249.7	6.04 ± 0.142	0.491	300.4	1.24 ± 0.019		
POT27	22.4813	247.9	11.10 ± 0.194	0.497	298.4	2.52 ± 0.027		
POT28	22.3990	247.4	4.04 ± 0.007	0.510	300.4	2.84 ± 0.039		
POT29	22.2244	241.1	6.87 ± 0.161	0.474	299.4	17.82 ± 0.272		
POT30	20.5498	249.0	3.82 ± 0.009	0.542	300.4	25.48 ± 0.148		
POT31	13.1799	249.1	5.05 ± 0.117	0.498	299.4	38.00 ± 0.500		
POT32	20.6290	248.3	12.18 ± 0.203	0.545	298.4	1.99 ± 0.022		
POT33	22.7229	248.4	9.41 ± 0.144	0.536	300.4	10.50 ± 0.073		
POT34	22.7791	251.1	4.11 ± 0.010	0.532	298.4	4.23 ± 0.033		
POT35	20.0630	249.3	4.05 ± 0.009	0.533	299.4	17.29 ± 0.120		
POT36	18.9722	251.1	5.12 ± 0.009	0.546	300.4	5.02 ± 0.054		
POT37	18.4223	249.1	3.03 ± 0.007	0.522	299.4	4.88 ± 0.046		
POT38	18.5186	248.3	3.12 ± 0.007	0.514	297.4	23.15 ± 0.230		
POT39	20.1190	248.2	6.72 ± 0.156	0.581	299.4	11.55 ± 0.074		
POT40	18.2155	250.0	10.26 ± 0.168	0.511	298.4	9.30 ± 0.086		
POT41	18.6707	251.3	4.11 ± 0.010	0.524	300.4	10.80 ± 0.058		
POT42	18.5351	247.8	12.38 ± 0.205	0.513	300.4	43.45 ± 0.446		
POT43	20.4871	250.6	6.73 ± 0.162	0.575	299.4	7.54 ± 0.112		
POT44	18.6002	248.4	4.93 ± 0.008	0.546	299.4	9.58 ± 0.092		
POT45	17.1618	249.1	2.46 ± 0.006	0.507	299.4	5.52 ± 0.036		
POT46	17.2141	250.2	4.07 ± 0.010	0.549	299.4	8.40 ± 0.076		
POT47				0.554	298.4	14.41 ± 0.152		
POT48	18.6625	251.8	9.68 ± 0.183	0.530	302.4	15.95 ± 0.123		

POT49	21.6322	248.5	6.59 ± 0.126	0.539	298.4	11.61 ± 0.129
POT50	21.6409	249.1	6.44 ± 0.142	0.506	300.4	7.28 ± 0.120
POT51	21.4089	249.0	4.88 ± 0.009	0.594	299.4	3.98 ± 0.035
POT52	21.8922	249.2	7.54 ± 0.125	0.551	301.4	17.07 ± 0.262
POT53	14.5076	249.6	4.98 ± 0.008	0.509	300.4	17.94 ± 0.196
POT54				0.539	297.4	9.26 ± 0.072
POT55	8.9300	250.9	2.68 ± 0.006	0.506	300.4	10.45 ± 0.081
POT56				0.555	299.4	7.10 ± 0.055
POT57				0.518	290.5	9.34 ± 0.111
POT58	21.6532	248.7	3.98 ± 0.009	0.544	299.4	8.92 ± 0.082
POT59				0.523	299.4	11.20 ± 0.186
POT60				0.545	300.4	8.26 ± 0.064
POT61	21.6659	249.1	8.27 ± 0.137	0.533	299.4	9.51 ± 0.121
POT62	9.8105	248.3	1.82 ± 0.004	0.539	298.4	10.56 ± 0.143
POT63	21.7010	248.0	8.99 ± 0.148	0.518	300.4	5.45 ± 0.091
POT64	20.0599	249.3	4.22 ± 0.010	0.511	301.4	7.53 ± 0.050
POT65	20.1525	248.7	4.39 ± 0.113	0.508	299.4	5.82 ± 0.032
POT66				0.530	299.4	18.92 ± 0.103
POT67	22.1607	248.0	6.42 ± 0.107	0.519	300.4	2.70 ± 0.018
POT68	21.5883	249.0	3.82 ± 0.009	0.523	299.4	20.36 ± 0.126
POT69	21.9931	249.1	5.43 ± 0.103	0.533	300.4	6.27 ± 0.043
POT70				0.510	306.3	13.32 ± 0.145
POT71	21.9866	248.6	4.61 ± 0.009	0.516	300.4	1.26 ± 0.011
POT72	22.1316	249.8	3.26 ± 0.008	0.530	301.4	9.68 ± 0.110
POT73	22.7059	248.6	3.52 ± 0.008	0.525	300.4	9.24 ± 0.063
Paleo-Potomac R	iver data from tl	he Hybla Vall	ey Core			
R2C45				0.520	298.4	8.25 ± 0.056
R3C55				0.531	301.4	10.78 ± 0.073
R7C10				0.508	299.4	16.16 ± 0.148
R11C30				0.508	301.4	14.84 ± 0.072
R13(AL)20				0.524	299.4	1.00 ± 0.016
R18C55				0.507	301.4	31.28 ± 0.696
R23C25				0.534	305.3	17.76 ± 0.295
R25C45				0.522	299.4	17.05 ± 0.432
R28C35				0.521	300.4	15.60 ± 0.245
R32C65				0.514	300.4	19.80 ± 0.31
R35(AL)(L)30				0.525	299.4	18.25 ± 0.233
R41C10				0.523	299.4	17.72 ± 0.278
R45C10				0.537	302.4	0.84 ± 0.022

					Table DR3 - Beryll	ium Isotope Data			
	⁹ Be _{reac}	⁹ Be _{min}	⁹ Be _{diss}		i	¹⁰ Be _i			¹⁰ Be _m
Sample	(atoms kg ⁻¹	(atoms kg ⁻¹	(atoms kg ⁻¹	¹⁰ Be _i	¹⁰ Be _i ± 1SD	Prod. Rate	¹⁰ Be _m	¹⁰ Be _m ± 1SD	Deposition Rate
ID ^a	x10 ¹⁹)	x10 ¹⁹)	x10 ¹⁹) ^b	LLNL #	$(atoms q^{-1} x 10^5)$	(atoms q ⁻¹ yr ⁻¹) ^c	LLNL #	(atoms g ⁻¹ x10 ⁸) ^d	(atoms cm ⁻² yr ⁻¹ x10 ⁶) ^e
Potomac R	iver data from	this study	- /		(2000) g			(20000 g 1000 /	(******
POT01	2.77	4.91	9.03	BE29062	2.83 ± 0.055	5.72	BE27095	1.93 ± 0.042	1.89
POT02	1.48	1.99	13.24	BE29063	1.84 ± 0.045	4.49	BE27096	0.81 ± 0.012	2.02
POT04	2.05	5.36	9.30	BE29064	2.31 ± 0.059	4.55	BE27097	1.15 ± 0.020	1.98
POT05	2.18	3.74	10.79	BE29066	2.54 ± 0.062	4.53	BE27098	1.42 ± 0.021	2.00
POT06	3.09	6.71	7.04	BE29067	2.81 ± 0.068	6.03	BE27778	2.53 ± 0.028	1.89
POT06x							BE27099	2.51 ± 0.023	1.89
POT09	2.24	4.75	9.72	BE29068	4.34 ± 0.123	4.37	BE27100	1.61 ± 0.023	1.93
POT10	3.15	3.43	10.13	BE29069	6.76 ± 0.133	6.19	BE27101	3.65 ± 0.051	1.90
POT11	13.01			BE29070	3.88 ± 0.091	7.22	BE27779	4.06 ± 0.041	2.05
POT12	6.93	8.06	1.72	BE29071	5.00 ± 0.096	5.16	BE27780	5.28 ± 0.067	1.95
POT13	7.24	10.81	0.00	BE29072	2.98 ± 0.058	4.8	BE27781	2.88 ± 0.029	2.01
POT14	3.39	3.30	10.02	BE29073	2.96 ± 0.07	0.18	BE2//82	8.37 ± 0.103	2.11
POT 15	2.74	3.55	0.03	BE29074	3.00 ± 0.005 3.26 ± 0.070	4.00	BE27763	2.03 ± 0.024 3.70 ± 0.052	2.09
POT10	2.02	7.40	5.55	BE20075	3.20 ± 0.079	1.59	BE27764	3.89 ± 0.032	2.00
POT18	3.46	16.26	0.00	BE29075	2.40 ± 0.009 2.72 + 0.065	4.50	BE27765	5.00 ± 0.040 5.20 ± 0.043	1.92
POT19	2 13	6.97	7.61	BE20078	3.03 ± 0.000	4.59	BE27766	3.20 ± 0.043 1 94 + 0.018	1.93
POT20	0.78	0.00	15.93	BE29079	0.99 ± 0.025	4 15	BE27767	0.35 ± 0.005	2.03
POT21	0.55	0.00	16 16	BE29080	3.85 ± 0.020	4.28	BE27768	0.35 ± 0.005	1.97
POT22	0.83	0.00	15.88	BE29081	7.25 ± 0.142	4.25	BE27769	0.88 ± 0.010	1.97
POT23	0.62	0.46	15.63	BE29088	4.92 ± 0.097	4.26	BE27770	0.51 ± 0.008	1.97
POT24	0.39	0.57	15.75	BE29089	6.85 ± 0.117	4.2	BE27771	0.74 ± 0.008	1.96
POT25	0.58	0.83	15.31	BE29090	6.00 ± 0.103	4.16	BE27105	0.63 ± 0.011	1.94
POT26	0.49	0.39	15.83	BE29091	4.79 ± 0.113	4.06	BE27772	0.51 ± 0.008	1.88
POT27	1.16	0.53	15.02	BE29082	8.18 ± 0.143	4.11	BE27773	1.01 ± 0.011	1.92
POT28	0.90	1.39	14.43	BE29083	2.98 ± 0.05	4.33	BE27774	1.12 ± 0.015	1.94
POT29	9.25	10.97	0.00	BE29092	4.98 ± 0.117	4.34	BE27775	7.52 ± 0.115	1.94
POT30	5.29	1.71	9.71	BE29093	3.09 ± 0.074	4.47	BE27776	9.44 ± 0.055	1.96
POT31	15.12			BE29094	6.38 ± 0.148	4.21	BE28973	15.27 ± 0.201	1.87
POT32	1.33	2.48	12.90	BE29095	9.80 ± 0.163	4.35	BE28974	0.73 ± 0.008	1.89
POT33	3.88	7.95	4.88	BE29084	6.88 ± 0.105	4.38	BE28975	3.93 ± 0.027	1.89
POT34	2.17	5.62	8.92	BE29085	3.03 ± 0.072	4.41	BE28976	1.58 ± 0.012	1.91
POT35	6.15	9.51	1.05	BE29096	3.36 ± 0.079	4.37	BE28977	6.49 ± 0.045	1.90
POT36	2.37	5.13	9.21	BE29097	4.53 ± 0.083	4.7	BE29391	1.85 ± 0.020	1.96
POT37	2.50	5.30	8.91	BE29099	2.74 ± 0.065	4.83	BE29392	1.87 ± 0.018	1.92
POT38	11.40	3.64	1.67	BE29100	2.80 ± 0.066	4.86	BE29393	8.95 ± 0.089	1.81
POT39	11.40	11.67	0.00	BE29101	5.54 ± 0.128	5.65	BE29394	3.98 ± 0.026	1.94
POT40	4.81	3.32	8.58	BE29102	9.41 ± 0.154	6.86	BE29395	3.63 ± 0.034	1.93
POT41	4.57	12.28	0.00	BE29103	3.70 ± 0.086	6.5	BE29396	4.14 ± 0.022	2.04
POT42	14.00	0.07	11.10	BE29104	11.11 ± 0.183	5.49	BE29397	17.00 ± 0.175	1.82
P0143	2.92	2.67	11.12	BE29105	5.50 ± 0.133	0.55	BE2/106	2.62 ± 0.039	2.05
POT44	2.93	4.49	9.29	DE29100	4.40 ± 0.075	0.10	DE29390	3.31 ± 0.034	2.10
POT45	4.20	7.30	5.21	BE20108	2.39 ± 0.033	9.19	BE20401	2.10 ± 0.014	2.11
POT40	2.07			DL29100	5.90 ± 0.095	10.02	BE20402	5.00 ± 0.020	2.40
POT48	13 57	15 76	0.00	BE29109	373 + 0165	5 64	BE29402	6.08 ± 0.047	1.73
POT49	5.42	7.09	4.20	BE29110	5.06 ± 0.096	7.06	BE29404	4.30 ± 0.048	1.91
POT50	6.39	11.36	0.00	BE29111	4.95 ± 0.109	10.6	BE27107	2.89 ± 0.047	2.48
POT51	7.04	2.34	7.33	BE29112	3.79 ± 0.073		BE29405	1.34 ± 0.012	2.48
POT52	7.97	4.28	4.46	BE29113	5.74 ± 0.095		BE29406	6.24 ± 0.096	2.33
POT53	16.60			BE29114	5.72 ± 0.096		BE29407	7.08 ± 0.077	2.09
POT54	9.25						BE29408	3.42 ± 0.026	1.75
POT55	5.07	3.48	8.16	BE29115	5.03 ± 0.12		BE29409	4.15 ± 0.032	2.24
POT56	5.95						BE29410	2.56 ± 0.020	2.15
POT57	7.79						BE29411	3.50 ± 0.042	2.10
POT58	18.18	3.92	0.00	BE29116	3.06 ± 0.072		BE27108	3.28 ± 0.030	2.00
POT59	6.64						BE29412	4.28 ± 0.071	2.04
POT60	4.48						BE29413	3.04 ± 0.024	2.07
POT61	2.42	3.60	10.69	BE29117	6.35 ± 0.105		BE29414	3.57 ± 0.045	1.93
POT62	6.72	21.30	0.00	BE29118	3.07 ± 0.076		BE29416	3.91 ± 0.053	1.81
POT63	3.76	3.48	9.47	BE29119	6.86 ± 0.113		BE27109	2.11 ± 0.035	1.82
POT64	3.57	3.62	9.52	BE29120	3.50 ± 0.082		BE29417	2.97 ± 0.020	1.83
POT65	2.94	3.37	10.40	BE29122	3.62 ± 0.093		BE29418	2.29 ± 0.012	1.88
POT66	9.51						BE29419	7.14 ± 0.039	1.90
POT67	1.87	0.00	14.84	BE29123	4.80 ± 0.08		BE29420	1.05 ± 0.007	2.02
PO168	10.25	12.53	0.00	BE29124	2.94 ± 0.069		BE29421	1.19 ± 0.048	1.99
POT69	3.02	3.39	10.30	BE29125	4.11 ± 0.078		BE29422	2.36 ± 0.016	2.01
	9.96	0.50	15 70	DE20420	2 40 + 0.000		BE29423	5.35 ± 0.058	1.93
	0.42	0.53	10.70	DE29120	3.40 ± 0.000		DE29424	0.49 ± 0.004	2.10 2.04
PO1/2	∠.88 2.60	14.00 17 64	0.00	BE2912/	2.40 ± 0.058 2.58 ± 0.061		DE29425 BE20426	3.00 ± 0.042	2.04
FU1/3	2.00	17.04	0.00	DE78159	2.00 ± 0.001		DE29420	3.53 ± 0.024	2.00
<i>Potomac R</i> 01638500	liver data from	Brown et al.	(1988)					3.81	1.89
01643000								7.69	1.98
01610200								4.14	1 84

^a Sample IDs for Brown et al.'s (1988) samples are USGS gauging station identification numbers.

^b ⁹Be_{dis} was estimated by subtracting measured ⁹Be_{reac} and ⁹Be_{min} concentrations from an assumed crustal ⁹Be_{parent} concentration of 2.5 ppm (von Blanckenburg et al., 2012).

^{c 10}Be_h production rate calculated using the CRONUS calculator (main calculator version 2.1, wrapper script 2.2, objective function 2.0, constants 2.2.1, muons 1.1; Balco et al., 2008), a global ¹⁰Be production rate scaled from high latitude and sea level using Lal's (1991) and Stone's (2000) scaling factors. ^{d 10}Be_m concentrations from Brown et al. (1988) were recalculated from originally-reported ¹⁰Be_m/⁹Be_{carr} AMS ratios to account for recent constraints of the ¹⁰Be half-life (see Supplementary Information).

^{e 10}Be_m deposition rates derived from Graly et al.'s (2011) equations, using the mean annual precipitation rate (Table 1) and mean latitude for each catchment.

Sample	Core Depth	¹⁰ Be _m	Core Age	¹⁰ Be _m ± 1SD	Erosion
ID	(m)	LLNL #	(ka) ^a	(atoms g⁻¹) x10 ⁵	Index
R2C45	0	BE29438	17	0.38 ± 0.006	0.06
R3C55	1	BE29431	17	5.88 ± 0.029	0.97
R7C10	5	BE29439	32	12.43 ± 0.277	2.04
R11C30	9	BE29441	49	6.54 ± 0.165	1.07
R13(AL)20	9	BE29443	51	7.73 ± 0.121	1.27
R18C55	14	BE29427	70	3.17 ± 0.022	0.52
R23C25	17	BE29428	84	4.09 ± 0.028	0.67
R25C45	19	BE29440	90	6.79 ± 0.113	1.12
R28C35	21	BE29429	100	6.37 ± 0.059	1.05
R32C65	24	BE29444	113	6.96 ± 0.089	1.14
R35(AL)(L)30	26	BE29442	123	6.01 ± 0.094	0.99
R41C10	31	BE29446	140	6.78 ± 0.106	1.11
R45C10	34	BE29447	156	0.31 ± 0.008	0.05

Table DR4 - Hybla Valley Core Data

^a Core ages derived from age-depth relationships presented in Litwin et al. (2013).