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MODEL DESCRIPTIONS
CCSM4

We use the Community Climate System Model version 4 (CCSM4) maintained at the
National Center for Atmospheric Research (NCAR). Our model component-set includes the
Community Atmospheric Model version 4 (CAM4), the Community Land Model version 4 with
dynamic vegetation (CLM4-DGVM), the Parallel Ocean Project model version 2 (POP2), and
the Community Sea Ice model version 4 (CICE4). Additional details on the model components

and performance can be found in Gent et al. (2011), and information on the DGVM is
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documented in Levis et al. (2004). The ocean and sea ice models run on a rotated poles grid at
roughly 1° resolution with 60 vertical ocean levels. The atmosphere and land-surface models run
on a finite-volume grid of 1.9x2.5°, and the atmosphere has 28 vertical levels. We run CAM4
with the Bulk Aerosol Model (BAM), a prognostic aerosol model, with aerosol concentrations
and types adjusted for the Cretaceous using a method similar to Heavens et al. (2012). Here,
aerosol data come from pre-industrial datasets converted into hemispherically symmetric,
monthly zonal average aerosols distributions masked independently to land and sea. In addition,
we add the land black carbon emissions from 62.5°N/S to all latitudes further poleward to reflect
the greater vegetation cover and fire potential at high latitudes during the Cretaceous (Upchurch
et al., 1998). We run all simulations for 1500 years with all model components active and
synchronously coupled.
HadCM3L

We also use the Hadley Centre Model (HadCM), developed by the UK Met Office. For
this study, we implement HadCM3L version 4.5, which contains dynamic atmosphere, ocean,
land, and sea ice components on a 2.5x3.75° grid. The ocean and atmosphere have 19 and 20
vertical levels, respectively. Description of the similar HadCM3 model is documented in Gordon
et al. (Gordon et al., 2000). We couple HadCM3L with the Top-down Representation of
Interactive Foliage and Flora Including Dynamics (TRIFFID) model with the land surface
scheme MOSES 2.1 to simulate dynamic vegetation (Cox, 2001). We run the HadCM3

experiments in 4 phases:

1. 50 years with 280 ppm CO, and bare-ground
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2. 319 years of either 560 or 1120 ppm CO; with TRIFFID turned on
3. 53 years with the addition of prescribed lakes
4. 1000 years with barotropic ocean flow enabled to allow non-zero vertically integrated

ocean flow

For additional details on HadCM3L initialization and spin-up see Lunt et al. (2015).
MODELS SETUP

Simulations use the paleogeographic reconstructions of Getech Plc. Following model
standard practices and for improved stability, we apply model specific smoothing to the
topography. For both models, we adjust total TSI for the Cenomanian (CEN) and Maastrichtian
(MAA) based on the equation of Gough (1981). We prescribe CO, concentrations as either 4x
(1120 ppm) or 2x preindustrial (560 ppm). All other GHG concentrations are set to preindustrial
values of 790 ppb for CHy, 275 ppb for N,O, and no CFCs. The orbit configuration is set to
present-day. Vegetation plant functional types are model defaults; we make no adjustments for
the Cretaceous. All simulations run long enough for the upper ocean to reach near-equilibrium;
however, the deep ocean continues to adjust. As a result, we focus only on surface conditions.
ENERGY BALANCE CALCULATIONS

We use the zonal mean energy balance decomposition method of Heinemann (2009),
which was subsequently adopted and modified by Lunt et al. (2012), and Hill et al. (2014), to
explore the mechanisms responsible for surface temperature change in the Late Cretaceous with
changes in paleogeography and CO,. This method assumes incoming shortwave balances with

outgoing longwave and that local imbalances are due to changes heat convergence, using the
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following relationship:
54—0(1—01) +H=eT*. (1)

Here, S, is TSI, « is albedo, H is meridional heat convergence, ¢ is emissivitiy, o (5.67x10™
Wm™?K™) is the Stefan-Boltzmann constant, and T is surface temperature. With the exception of
o, values in equation (1) come from zonal averages of Earth system model outputs. We can
rewrite equation (1) with respect to surface temperature as:

T=(= (% (1-a)+ H)O'ZS) =E(s,a,H) . (2)

By substituting variables from different simulations and differencing them, we can deconstruct
the various contributions to the change in surface temperature. We illustrate this below:
ATppim = E(e,a, H) — E(e',a,H) . (3)
ATy, = E(e,a,H) —E(g,a',H) . (4)
ATiron = E(e,a,H) — E(g,a,H") . (5)
where AT, m, ATqp, and ATy, are contributions from emissivity, albedo, and heat
convergence to surface temperature change, and primes represent the zonal averages from the
simulations being compared. The combination of surface temperature changes due to emissivity,
albedo, and heat convergence sum to approximate the total surface temperature response:
ATeotar = ATemm + ATap + ATeran - (0)
This technique can be used to further decompose the climate contributions to surface
temperature.

PROXY DATA
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As mentioned in the main text, SST proxy values represent location and age averages.
Method uncertainties only accounts for calibration uncertainties. We apply these uncertainties to
every averaged data point. The range in values from a particular age and site are often
significantly greater than the calibration uncertainties. Therefore, uncertainties represent
minimum estimates.

Point locations are consistently rotated back in time from their present-day sampling
locations to the CEN and MAA using the plate reconstructions from Getech Plc. Occasionally,
the coarse model resolutions result in marine proxy paleo-locations over land instead of water. In
these situations, we select the nearest model ocean location to represent the SST value.

To create more representative latitudinal SST gradients, Gaussian fits of the proxies
include an adjustment for the deviation of the SSTs from the zonal mean based on model-
simulated longitudinal heterogeneity. For example, if an equatorial proxy location has a model
simulated SST of 30°C and a model zonal mean equatorial SST of 35°C, then 5°C are added to
the proxy value so that it is in better agreement with the zonal average. This technique assumes
that model longitudinal variability is robust regardless of mean SSTs.

We investigate the statistical similarity between the temperature gradients of our CEN
and MAA datasets using an F-test. An F-test determines if the variance of multiple datasets are
statistically different from each other. To standardize the data, we first remove the global means
of the Gaussian fitting procedure (Fig. 2d). Then, we apply an F-test to test the hypothesis that
the spread of residual SSTs between the CEN and MAA are statistically distinct. Our results

produce a p-value equal to 0.39, which suggests that SST variations, except for the means



104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

between datasets, are not robust.
Seawater '°0

We assume a mean SISOSW of -1% VSMOW, based on the assumption of an ice-free
world (Shackleton and Kennett, 1975). This assumption is widely used in Cretaceous SST
reconstructions (e.g. Huber et al., 2002; Friedrich et al., 2012); however, debate remains about
the potential for glaciation in the Late Cretaceous (e.g. Miller et al., 2005). A significant increase
in land-ice would require less cooling in the MAA from §'*0 records but is not considered
further in this study.

804y has significant regional variability in both the modern and Late Cretaceous (Zhou
et al., 2008). To account for this variability, we use zonal average salinity from the model
outputs with the present-day salinity/8'*Oy, relationship of Broecker (1989). This simple linear
relationship follows:

50, = 0.5(PSU) — 17.12 . (7)
where PSU stands for positive salinity units. In our simulations, mean ocean salinity starts at 35
PSU, which is equivalent to present-day. While not perfect, we prefer this relationship to the
commonly employed present-day latitudinal 8'*O,, correction by Zachos et al. (1994), because it
indirectly accounts for precipitation and evaporation, and does not make present-day
assumptions about the latitudinal distribution of SISOSW (Poulsen et al., 1999). Still, this
technique is inferior to model experiments that include water isotope tracking (e.g. Zhou et al.,
2008).

Planktonic Foraminifera
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We calculate SSTs from 8'*0 measurements of planktonic foraminifera using the
calibration of Erez and Luz (1983) and a conversion to VSMOW of -0.22%0 (Bemis et al.,
1998). This calibration has been widely used for foraminifera temperature reconstructions and
proven accurate for a wide range of temperatures. Temperatures are calculated using the
polynomial:

T(°C) = 16.998 — 4.52[5180, — 6180,,] + 0.028[6180, — §180;,,]% . (8)
where 8180C is the 8'%0 of sample calcite.

Diagenetic alteration is a potential issue for foraminifera, causing them to pickup post-
depositional temperature signals from the ocean floor (e.g. Pearson et al., 2001; Norris et al.,
2002). It is likely that some of the foraminifera presented in this study suffer from such alteration
given the sample descriptions, relatively cool tropical SSTs, and disagreement with other SST
proxy values. However, given the paucity of records and uncertainty in other included proxy
techniques such as TEXg¢ (e.g. Taylor et al., 2013), we opt to include all planktonic foraminifera
data. For comparison, we include zonal SST reconstructions without foraminifera as well (Fig.
DRS, DR9, DR10). Even though removal of foraminifera leads to warmer tropical SST
reconstructions, it does not significantly change the magnitude of cooling from the CEN to the
Maa, which is the main focus of this study. We assign an uncertainty of +2.9°C for planktonic
foraminifera based on Holocene core-top data from Crowley and Zachos (Crowley and Zachos,
2000) and to be consistent with the work of Upchurch (2015).

Shells and Others

We use the 3'°0 to temperature conversion of Anderson and Arthur (1983) for both
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aragonite and calcite of shells of mollusks, bivalves, brachiopods, and belemnite rosta based on
its prevalent use in the proxy source literature (Grossman, 2012). The equation is:

T(°C) = 16.4 — 4.14(8'0,/q — 6'%04,) + 0.13(6'%0, /g — 6'%04,)* . (9)
where 880y, is the 8'%0 of sample calcite or aragonite. Like foraminifera, shells are prone to
alteration (Steuber et al., 1999). We include all records here for completeness. We also show
comparisons with shell SST proxies omitted (Fig. DR8, DR9, DR10). We apply an uncertainty of
+1.6 based on 1o of a mollusk calibration by Grossman and Ku (1986) as in Upchurch et al.
(2015).
Tooth Enamel $'*0

Our SST proxy compilation includes phosphate 8'*O records from fish tooth enamel,
most of which were originally compiled by Pucéat et al. (2007). These records are considered
more resistant to diagenetic alteration than foraminifera or shells, and were previously used by
Pucéat et al. (2007) to argue for a near-modern latitudinal SST gradient in the Cretaceous, in
contrast to reconstructions from foraminifera that suggested a shallower latitudinal SST gradient
(e.g. Huber et al., 2002). Recently, there have been several recalibrations of the phosphate §'*0
temperature relationship. Here, we use the most recent calibration by Lecuyer et al. (2013):

T(°C) = 117.4 — 4.5(680pp4 — 6180, . (10)
where 8'*Opoq is the 5'°0 of sample phosphate. This calibration results in SSTs that are several
degrees warmer than the calibration by Pucéat et al. (2007) and several degrees cooler than the
recent calibration by Pucéat et al. (2010). However, the magnitude of offset between calibrations

remains quite similar over the range of 8'*Opoy4 values. Therefore, while the absolute temperature

8
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reconstructions differ depending on the chosen calibration, the difference between the CEN and
MAA records is small. In addition, the calibration of Lecuyer et al. (2013) benefits from the
smallest uncertainty of +£1.2°C, which we apply to all tooth enamel SST values.

TEXss

TEXgs is a relatively new SST proxy method based on the ratio of different glycerol
dialkyl glycerol tetraethers (GDGTs) with 86 carbons, which comprise membrane lipids in
marine Crenarchaeota (Schouten et al., 2002). It has the benefit of not relying on 8" O
assumptions. Here, we use the calibration of Kim et al. (2010) TEXgﬁH, which provides the
smallest error in warm climate conditions. The equation is:

T(°C) = 68.410g(TEXge) + 38.6 . (11)

Modern calibration by Kim et al. (2010) show an uncertainty of £2.5°C, which we use in our
model/proxy comparison.

We include the high-latitude MAA TEXgs" SST value from Jenkyns et al. (2004) in our
tables and plots for reference but do not include it in our analyses. We find, like several former
studies (Davies et al., 2009; Spicer and Herman, 2010; Upchurch et al., 2015), that this value
represents an extreme outlier from other proxy data and model results. Inclusion of this data
point significantly skews our results, because it is the only available Arctic MAA SST value.
Based on our other findings, it requires roughly 10°C warming from 50°N to 80°N, for which we
have no physical basis.

GSA DATA REPOSITORY FIGURE CAPTIONS

Figure DR1. Getech Plc CEN and MAA paleogeography with marine proxy locations.
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Figure DR2: Individual model simulated Late Cretaceous mean annual surface temperatures and
temperature responses to changes in paleogeography and CO; concentration. Row 1 shows
CCSM4 mean annual surface temperatures from CEN4x (A), MAA4x (B), and MAA2x (C).
Row 2 shows HadCM3L mean annual surface temperatures from CEN4x (D), MAA4x (E), and
MAAZ2x (F). Row 3 shows CCSM4 mean annual surface temperature differences between
CEN4x and MAA4x (G), MAA4x and MAA2x (H), and CEN4x and MAA2x (I). Row 4 shows
HadCM3L mean annual surface temperature differences between CEN4x and MAA4x (J),
MAA4x and MAA2x (K), and CEN4x and MAA2x (L). The large-scale surface temperature
patterns are quite similar for both models.

Figure DR3. Late Cretaceous mean annual total cloud cover and anomalies. Column 1 shows the
model total cloud cover from A) CEN4x, B) MAA4x, and C) MAA2x. Column 2 shows the
difference in total cloud cover between D) CEN4x and MAA4x, E) MAA4x and MAA2x, and F)
CEN4x and MAA2x. Column 3 shows the total cloud cover anomalies between CCSM4 and
HadCM3L for G) CEN4x, H) MAA4x, and I) MAA2x. Clouds remain one of the largest
uncertainties in climate models. Both models show similar cloud patterns for all model
configurations. However, the range of cloud cover between regions is more pronounced in
HadCM3L than CCSM4. The configuration of the CCSM4 aerosols for paleoclimate might be
partly responsible for the discrepancies in cloud magnitude.

Figure DR4. Late Cretaceous mean annual surface albedo and anomalies. Column 1 shows the
model surface albedo from A) CEN4x, B) MAA4x, and C) MAA2x. Column 2 shows the

difference in surface albedo between D) CEN4x and MAA4x, E) MAA4x and MAA2x, and F)

10
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CEN4x and MAA2x. Column 3 shows the surface albedo anomalies between CCSM4 and
HadCM3L for G) CEN4x, H) MAA4x, and I) MAAZ2x. In the high-latitudes, CCSM4 simulates
higher surface albedos than HadCM3L due to differences in sea ice cover and vegetation.
CCSM4 tends to produce more sea in the Arctic than HadCM3L, which leads to greater
shortwave reflection, especially in the spring and fall. CCSM4 also grows shorter, less dense
vegetation than HadCM3L in the polar regions. A lower vegetation and reduced canopy allows
for more snow cover of vegetation, which raises the albedo. Tall, dense Antarctic vegetation
suggested by paleobotantical reconstructions is not simulated in CCSM4 (e.g. Upchurch et al.,
1998). Modification of the vegetation model will be an important step in our future work, as
some research shows vegetation can help remedy model/proxy LST discrepancies (e.g. Otto-
Bliesner and Upchurch, 1998; Zhou et al., 2012).

Figure DRS. Zonal mean annual SST responses to changing topography and decreasing CO, for
both CCSM4 and HadCM3L models. Comparison of CCSM4 and HadCM3L outputs highlight
the similarities in surface temperature response.

Figure DR6. Decomposition of the simulated changes in zonal mean surface temperature into
contributions from heat convergence (red), emissivity (green), albedo (blue), and TSI (yellow)
for A) CCSM4 and B) HadCM3L changes in geography, C) CCSM4 and D) HadCM3L changes
in CO,, and E) CCSM4 and F) HadCM3L changes in both geography and CO,. See Data
Repository for details on energy balance calculations.

Figure DR7. Seasonal sea ice exists in all 4x PI CO, simulations in agreement with some proxies

that find evidence for Arctic sea ice during peak Cretaceous warmth (Davies et al., 2009). The

11
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Arctic experiences an increase in sea ice concentration from the CEN to MAA because the
Arctic becomes more restricted in the Maa. With a reduction in CO,, a significant amount of
perennial sea ice forms in the Arctic while Antarctic sea ice remains mostly seasonal. This
contrast in sea ice between hemispheres is similar to present-day where the restricted Arctic
promotes retention of sea ice, and the open ocean Antarctic allows the equator drift and wasting
of sea ice.

In all experiments, CCSM4 produces greater Arctic sea ice cover and less Antarctic sea
ice cover than HadCM3L. This contrast relates to the differences in open ocean SSTs between
models. In general, CCSM4 has greater ocean overturning in the high Southern latitudes, which
promotes transports of warm equatorial water poleward and inhibits sea ice formation. In
contrast, there is less deep-water formation in the high Northern latitudes in either model.
Further, the Late Cretaceous Arctic is quite restricted from the greater ocean, especially in the
Maa, which prevents warm open ocean waters from having a large effect.

Figure DR8. Latitudinal temperature gradient reconstructions from the CEN with the systematic
removal of SST proxy reconstruction data from individual methods. Simulated CEN4x zonal
average SSTs with all CEN proxies SST except A) foraminifera, B) fish tooth enamel, C) shells
and related structures, and D) TEXss. Removal of foraminifera leads to a significantly warmer
equator and steeper equator-to-pole temperature gradient. This gradient is steeper than model
simulated SSTs. It appears likely that some foraminifera are not recording a pure SST signal.
Figure DRY. Latitudinal temperature gradient reconstructions from the MAA with the systematic

removal of SST proxy reconstruction data from individual methods. Simulated MAA4x zonal

12
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average SSTs with all MAA proxies SST except A) foraminifera, B) fish tooth enamel, C) shells

and related structures, and D) TEXge. Like for the Cen, removal of foraminifera leads to a

significantly warmer equator and steeper equator-to-pole temperature gradient.

Figure DR10. Identical to figure S7 except with simulated MAA2x data plotted.

Figure DR11. SST model/proxy discrepancies by latitude. A) Differences between CEN proxies

and CEN4x simulations. B) Differences between MAA proxies and MAA4x simulations. C)

Differences between MAA proxies and MAA2x simulations. In general, the CEN4x simulations

have a cold bias while the MAA4x simulations have a warm bias. The MAA2x simulations are

in better agreement with SST proxies. A model warm bias remains in the equatorial region in the

MAAZ2x, but this might be a result of diagenetic alteration of planktonic foramina. While beyond

the scope of this work, calibration choices also impact model/proxy agreement. For example, the

warmer fish tooth enamel calibration of Pucéat et al. (2010) might result in a better agreement

between models and proxies for the MAA2x simulations.
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Temperature (°C)

A. Maastrichtian 4x CO, Zonal SSTs: No Forams
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B. Maastrichtian 4x CO, Zonal SSTs: No Teeth
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A. Maastrichtian 2x CO, Zonal SSTs: No Forams
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C. Maastrichtian 2x CO, Zonal SSTs: No Shells
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B. Maastrichtian 2x CO, Zonal SSTs: No Teeth
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A. Cenomanian 4x CO, Zonal SST Differences
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B. Maastrichtian 4x CO, Zonal SST Differences
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TABLE DR1: MODEL CONFIGURATION AND DATA

Experiment Age  Solar Constant CO, Global MAT EQTemp:5°S-5°N N Pole Temp: 85°-90°N S Pole Temp: 85°-90°S NH Gradient SH Gradient
(Ma) (Wm?) (ppmv) (°c) (°C) (*Q) (°C) (°C) (°C)

Cen4x: CESM 96.4 1353.9 1120 22.80093 30.75579 -10.93816 -4.673659 41.69395 35.429449
Cendx: HadCM3L 96.4 1353.9 1120 22.17896 31.68976 -12.16977 -7.613354 43.85953 39.303114
Maadx: CESM 68.2 1357.18 1120 22.92284 31.92628 -9.934456 -5.359563 41.860736  37.285843
Maadx: HadCM3L 68.2 1357.18 1120 22.33742 32.52404 -8.000755 -7.752418 40.524795  40.276458
Maa2x: CESM 68.2 1357.18 560 19.81563 29.51464 -23.30825 -9.552328 52.82289 39.066968
Maa2x: HadCM3L 68.2 1357.18 560 19.02272 29.29172 -18.09064 -12.0258 47.38236 41.31752

Note: All reported temperatures are mean annual surface temperatures.

TABLE DR2: ALL MAASTRICHTIAN AND CENOMANIAN SST DATA



ftp://rock.geosociety.org/pub/reposit/2016/2016328_Table DR2.xlsx



