GSA Data Repository 2016232

Pleistocene onset of rapid, punctuated exhumation in the eastern Central Range of the Taiwan orogenic belt Hsu et al.

1 (U-Th)/He method and data

2 Samples from the two transects were crushed, and zircon grains were separated using 3 sieving, magnetic and heavy liquid mineral separation techniques. Ten samples yielded zircon of 4 sufficient quality for analysis. All crystals from the ten samples for (U-Th)/He analyses were 5 hand-picked using a 184x binocular microscope to ensure the grains were selected on the basis of 6 appropriate size, euhedral habit, clarity, and the presence of as few inclusions as possible. The 7 grains were loaded in niobium micro-crucibles and their helium isotopic analyses of individual 8 grains were measured by diode laser gas extraction and quadrupole mass spectrometry in the 9 Group 18 Laboratories at Arizona State University (ASU). After helium extraction the grains 10 were dissolved using standard dissolution procedures (Evans et al., 2005; Reiners, 2005; Reiners 11 et al., 2002) and U and Th concentrations were measured by inductively coupled plasma-source 12 mass spectrometry (ICPMS) at Group 18 Laboratories at ASU. A complete description of the 13 (U-Th)/He dating procedures in Group 18 Laboratories can be found in Van Soest et al. (2011). 14 An alpha particle ejection correction (Ft) was applied to (U-Th)/He dates calculated from the 15 measurements to derive a corrected (U-Th)/He age (Farley et al., 1996; Hourigan et al., 2005). 16 For each sample from which at least two grains could be dated successfully, we calculated 17 inverse variance-weighted mean dates for all grains and the standard deviation of that weighted 18 mean (σ_{WM}). We also calculated the mean squared weighted deviation (MSWD) of the weighted 19 mean (Wendt and Carl, 1991), which is a measure of the degree of dispersion of the data around 20 the weighted mean. As is often the case for (U-Th)/He data, the MSWD for our samples were 21 frequently of sufficient magnitude to indicate that the data scatter exceeded that which could be 22 explained by analytical uncertainty alone. An established way to present more realistic 23 uncertainties in the weighted means for such samples is to multiply σ_{WM} by the square-root of the MSWD to arrive at an adjusted uncertainty ($\sigma_{WMadjusted}$) (Ludwig, 2003). In the data tables and 24 25 our data modeling and interpretations, we report and use uncertainties of $2\sigma_{WM}$ for inverse 26 variance-weighted means when the data are not over-dispersed, and $2\sigma_{WMadjusted}$ when they are. 27 For sample C04-40 (see p12, Beyssac et al., 2007) (Fig. 2A), we excluded one individual 28 grain age from the mean calculation because it was substantially older than the rest of the 29 replicates for that sample. A summary of new ApHe, ZrnHe and ZrnFT ages are presented in 30 Table DRA1, DRA2 and DRA3. 31

32 Inverse modeling

- 33 We modeled the exhumation histories interpreted from the age-elevation data and zero-age
- 34 interpretations using the Monte Carlo inversion algorithm of HeFTy v.1.8.3 program (Ketcham,
- 35 2005). To evaluate variations in the time-temperature histories along strike in the Central Range
- 36 (i.e., the collision propagation model) we selected samples from lowest elevation sites in the
- 37 northern and southern transects. For the northern transect we used modeled samples LS9019
- 38 (ZrnFT) and C04-47 (ZrnHe) and for southern transect we modeled sample C64, which contains
- 39 three different thermochronometers: ZrnFT, ZrnHe and ApHe.
- 40 The range of possible thermal histories was constrained by two geologic events (boxes in Fig DR
- 41 4): (1) the depositional age of the sample from the northern site (td) and (2) relatively wide
- 42 temperature window (300°C to 450°C) for peak metamorphism at 5 to 1 Ma (tb). The samples at
- 43 the lowest elevation at the southern site are Eocene, so deposition is constrained to be no later
- 44 than late Eocene (~34-38 Ma). Samples from northern the site are from the Tananao Complex,
- 45 which is interpreted be separated from the Eocene sediments by an angular unconformity; the
- 46 complex was also therefore at or near the Earth's surface in the Eocene. The peak metamorphism
- 47 is based on illite crystallinity (Chen, 1994; Tsao, 1996) and Raman spectroscopy of carbonaceous
- 48 materials (Beyssac et al., 2007) and peak temperatures are interpreted to have been achieved in
- 49 the passive margin setting just prior to exhumation (e.g., Lee et al., 2015; Lo and Onstott, 1995;
- 50 Wintsch et al., 2011). We therefore set the time of peak temperatures between 5 Ma to 1 Ma.
- 51 Each model had monotonic path segments with four half-segments evenly spaced between
- 52 adjacent constraints and the models were run until there were 100 "good" goodness of fits (GOF).
- 53 The number of model runs ranged from 28800 to 1459000. For every run, the program
- 54 determined "acceptable" GOF (i.e., >0.05), "good" GOF (i.e., >0.5) and a weighted mean fit.
- 55 Our inverse model, as shown in Fig. 3 and Fig. DR4, suggest three cooling periods: (1) prior to
- 56 2-2.5 Ma; (2) 2 to 0.5 Ma and (3) 0.5-0 Ma.

Sample	Rep.	Longitude	Latitude	Elevation	[U]	1s	[Th]	1s	[He]	1s	Th/238U	Raw Age	1s	Mean I	Mean r	Mean F _⊺	Age F _{T corr}	1s	WM Age	2s
·	-	-		(m)	pmole	pmole	pmole	pmole	pmole	pmole		Ma	Ма	μm	μm		Ма	Ма	Ma	Ма
									Sou	thern transe	ect									
C64	z01	120.99	22.71	540	4.084	0.035	0.749	0.006	0.00217	0.00011	0.185	0.40	0.02	137.7	32.6	0.678	0.586	0.031		
	z02				0.757	0.008	0.424	0.004	0.00045	0.00002	0.565	0.41	0.02	119.1	31.7	0.661	0.621	0.030		
	z03				1.387	0.012	0.544	0.004	0.00048	0.00002	0.395	0.25	0.01	119.0	28.6	0.640	0.387	0.014		
	z04				2.955	0.025	2.031	0.013	0.00110	0.00004	0.692	0.25	0.01	119.2	28.1	0.640	0.390	0.013		
	mean																		0.425	0.094
K05	z01	120.94	22.73	674	1.517	0.016	0.803	0.006	1.28383	0.01549	0.534	559.55	8.98	151.4	41.2	0.725	771.8	12.4		
	z02				11.066	0.092	6.962	0.046	0.04627	0.00058	0.634	2.85	0.04	190.8	46.9	0.767	3.714	0.054		
	z03				5.485	0.046	3.130	0.019	0.58848	0.00715	0.575	73.47	1.05	146.1	31.5	0.681	107.8	1.5		
	z04				7.823	0.070	5.576	0.040	3.65467	0.04334	0.718	304.80	4.43	168.5	40.0	0.726	419.7	6.1		
	z05				9.703	0.083	2.087	0.016	0.00485	0.00012	0.217	0.37	0.01	233.7	36.3	0.742	0.500	0.013		
	mean																		0.5	0.013
K02	z01	120.93	22.73	810	2.859	0.024	1.060	0.008	0.00115	0.00002	0.373	0.29	0.01	245.8	60.5	0.818	0.353	0.007		
	z02				5.793	0.049	4.597	0.029	0.00389	0.00008	0.799	0.44	0.01	209.7	42.8	0.763	0.580	0.013		
	z03				6.409	0.053	3.351	0.023	3.26507	0.04097	0.527	343.96	5.18	362.5	33.3	0.731	470.3	7.1		
	z04				7.095	0.063	4.629	0.030	4.14060	0.05026	0.657	382.63	5.69	238.7	46.5	0.779	491.5	7.3		
	z05				3.753	0.033	2.187	0.014	2.03279	0.02446	0.587	360.81	5.35	225.7	30.4	0.698	516.6	7.7		
	mean																		0.41	0.20
K14	z01	120.92	22.70	1224	16.195	0.160	2.886	0.019	0.01097	0.00017	0.180	0.51	0.01	215.6	45.8	0.775	0.655	0.012		

Table DR1. Zircon (U-Th)/He Data Obtained Along the Southern transect of eastern Central Range and Mt. Yu transects in Central and Southern Taiwan

	z02				2.464	0.025	1.905	0.012	0.00133	0.00006	0.779	0.36	0.02	151.1	30.9	0.673	0.530	0.023		
	z03				12.705	0.124	9.265	0.059	0.00856	0.00013	0.735	0.45	0.01	203.5	47.3	0.771	0.583	0.010		
	z04				19.210	0.192	5.935	0.038	0.01738	0.00028	0.311	0.66	0.01	262.7	58.7	0.819	0.805	0.015		
	z05				5.110	0.050	3.060	0.019	0.00430	0.00008	0.603	0.58	0.01	170.8	40.5	0.741	0.778	0.016		
	mean																		0.661	0.093
OT16	z01	120.87	22.74	1810	3.983	0.033	4.023	0.030	0.00582	0.00025	1.017	0.92	0.04	172.5	42.8	0.752	1.227	0.054		
	z02				2.842	0.024	2.169	0.014	0.00351	0.00018	0.769	0.82	0.04	160.7	30.4	0.682	1.203	0.064		
	z03				5.757	0.048	2.744	0.019	0.00499	0.00009	0.480	0.61	0.01	152.3	35.4	0.704	0.865	0.017		
	z04				3.417	0.030	0.956	0.006	0.00294	0.00006	0.282	0.63	0.01	138.4	32.2	0.685	0.920	0.020		
	z05				1.130	0.010	0.688	0.005	0.00100	0.00004	0.613	0.60	0.02	110.8	31.8	0.658	0.915	0.034		
	mean																		0.916	0.092
OT11	z03	120.90	22.72	2020	3.479	0.034	3.502	0.024	0.00429	0.00009	1.014	0.78	0.02	204.3	35.0	0.723	1.080	0.024		
	z04				5.051	0.050	5.655	0.039	0.00549	0.00009	1.128	0.67	0.01	181.4	35.7	0.713	0.945	0.017		
	z05				4.038	0.039	1.352	0.009	0.00330	0.00007	0.337	0.59	0.01	167.8	46.0	0.762	0.775	0.018		
	mean																		0.91	0.16
									M	t. Yu transed	rt									
YS-20	z01	120.92	23.53	900	8.914	0.123	4.255	0.080	0.02993	0.00036	0.470	2.34	0.041	185.1	46.0	0.749	3.127	0.055		
	z02				4.858	0.075	3.279	0.061	0.00812	0.00010	0.670	1.12	0.021	163.4	41.6	0.749	1.497	0.028		
	z03				2.911	0.042	1.598	0.033	0.00252	0.00004	0.550	0.60	0.013	130.0	28.5	0.657	0.907	0.020		
	z05				2.835	0.045	1.754	0.032	0.00296	0.00004	0.610	0.71	0.014	125.0	23.9	0.610	1.159	0.024		
	z06				2.340	0.039	0.747	0.018	0.00241	0.00004	0.320	0.74	0.017	136.7	31.5	0.646	1.151	0.027		
	z07				3.276	0.047	1.740	0.034	0.00323	0.00005	0.530	0.68	0.014	146.0	30.5	0.680	1.002	0.020		
	mean																		1.03	0.13

Rainbow	z01	120.94	23.57	1550	17.456	0.234	11.312	0.232	0.01498	0.00042	0.640	0.58	0.02	229.8	42.3	0.767	0.754	0.023		
	z02				14.873	0.186	8.247	0.139	0.02510	0.00049	0.550	1.16	0.03	297.3	58.0	0.823	1.409	0.032		
	z03				6.306	0.100	3.987	0.095	0.00980	0.00040	0.630	1.05	0.05	219.6	52.4	0.800	1.314	0.056		
	z04				3.356	0.046	3.020	0.056	0.00617	0.00008	0.890	1.18	0.02	257.7	42.2	0.768	1.537	0.027		
	z05				3.779	0.060	3.482	0.069	0.00533	0.00007	0.910	0.90	0.02	207.5	43.8	0.763	1.182	0.022		
	mean																		1.34	0.22
YS-06	z01	120.92	23.47	2880	2.509	0.036	1.454	0.026	0.00392	0.00007	0.580	1.07	0.023	151.3	30.3	0.679	1.573	0.035		
	<i>z</i> 02				3.320	0.051	1.371	0.030	0.04771	0.00057	0.410	10.16	0.19	133.5	30.8	0.680	14.940	0.280		
	z03				10.621	0.136	6.986	0.117	0.08654	0.00109	0.650	5.48	0.093	246.5	50.3	0.799	6.860	0.120		
	z04				4.022	0.070	3.368	0.052	0.30115	0.00358	0.830	48.45	0.91	190.7	39.7	0.740	65.400	1.200		
	z05				9.153	0.137	12.574	0.209	0.04147	0.00050	1.360	2.67	0.045	183.4	32.9	0.697	3.825	0.066		
	mean																		1.57	0.07
YS-02	z01	120.96	23.47	3952	4.488	0.068	0.785	0.023	0.00985	0.00012	0.170	1.64	0.032	145.6	31.45	0.687	2.378	0.046		
	<i>z</i> 02				1.387	0.030	1.511	0.035	0.01902	0.00024	1.080	8.49	0.19	99.0	28.9	0.625	13.590	0.300		
	z03				0.993	0.016	0.601	0.015	0.01183	0.00015	0.600	8.10	0.16	107.4	18.7	0.502	16.130	0.330		
	z04				0.983	0.016	0.317	0.014	0.00117	0.00003	0.320	0.86	0.024	109.7	21.65	0.568	1.516	0.042		
	z05				2.055	0.039	1.206	0.029	0.03334	0.00041	0.580	11.06	0.23	113.0	20.75	0.549	20.150	0.430		
	z06				1.044	0.018	0.803	0.020	0.00150	0.00003	0.760	0.95	0.022	104.2	22.2	0.566	1.675	0.040		
	mean																		1.82	0.51

57 For each sample, sample position (WGS84 system) and elevation (m) are given. For each replicate, we provide concentrations in U, Th and He, mass of the grain, Ft, mean radius and mean length, and raw and corrected ages. Italics are excluded

58 calculating mean age.

59

									Southern	transect										
Sample	Rep.	Longitude	Latitude	Elevation	[U]	1s	[Th]	1s	[He]	1s	mean r	mean l	$\text{Mean}\ F_{T}$	Age $F_{T \text{ corr}}$	1s	[²³⁸ U]	[²³² Th]	[eU]	WM Age	2s
				(m)	pmole	pmole	pmole	pmole	fmole	fmole	μm	μm		Ма	Ма	ppm	ppm	ppm	Ма	Ма
C64	a01	120.99	22.71	540	0.0671	0.0007	0.6684	0.0081	1.418	0.034	44.4	132.1	0.656	7.53	0.19	7.3	71.8	24		
	a02				0.1372	0.0013	0.6985	0.0085	0.064	0.013	36.6	98.3	0.592	0.28	0.06	29.7	148.3	65		
	a03				0.1206	0.0011	0.9915	0.0100	0.052	0.012	36.4	155.9	0.618	0.19	0.04	16.6	133.8	48		
	a04				0.3789	0.0031	1.4762	0.0130	0.139	0.013	43.6	148.0	0.669	0.22	0.02	38.2	146.1	73		
	a05				0.1026	0.0009	1.8208	0.0157	0.137	0.012	51.0	139.2	0.687	0.29	0.03	8.0	140.1	41		
	mean																		0.25	0.03

Table DR2. Aptite (U-Th)/He Data Obtained in the Southern transect of the eastern Central Range.

61 For each sample, sample position (WGS84 system) and elevation (m) are given. For each replicate, we provide concentrations in U, Th and He, mass of the grain, Ft, mean radius and mean length, and raw and corrected ages. Italics are excluded

62 calculating mean age.

-

able DR3. Zircon Fission Track Data Obtained Along the Southern transect of eastern Central Range and Mt. Yu Transects in Central and Southern Taiwan 75														75			
Sample	Longitude	Latitude	Elevation(m)	Zeta	Crystal	RhoS	(Ns)	Rhol	(Ni)	RhoD	(Nd)	Pooled Age	±1s	Mean Age	±1s	Central Age	76s
							So	uthern trar	nsect								77
C64	120.99	22.71	540	26.33	20	1.422	69	30.039	1458	12	4798	1.5	0.2	1.7	0.2	1.5	7682
K014	120.92	22.70	1224	26.33	20	1.926	106	26.594	1464	12	4798	2.3	0.3	2.5	0.2	2.3	70 9 8
OT16	120.87	22.74	1810	26.33	21	3.518	245	38.5	2681	12	4798	2.9	0.2	3	0.3	2.9	802
OT11	120.90	22.72	2020	26.33	20	1.733	108	24.57	1531	12	4798	2.2	0.3	2.3	0.1	2.2	8B
							М	lt. Yu trans	ect								82
ys-04	120.94	23.46	3300	26.33	7	0.048	128	0.172	462	9.1	4798	3.7	0.4	3.7	0.4		83
ys-05	120.93	23.46	3100	26.33	5	0.046	46	0.157	158	9.1	4798	3.8	0.7	4	0.3		84
Ran Bow	120.94	23.57	1550	26.33	23	0.032	216	0.276	1848	1.295	4238	2.2	0.2	2.2	0.1		85
ys-17	120.96	23.53	1450	26.33	11	0.001	108	0.01	978	1.4	4123	2.2	0.3	2.2	0.2		86
																	87

88

- 90 Figure DR1. Sample location maps for southern transect (A) and Mt. Yu (B).
- 91 Diamond: ApHe age; Square: ZrnHe age; Circle: ZrnFT age (* previously ZrnFT age
- 92 reported by Lee et al. (2006) and Lee et al. (2015); ** new ZrnHe age and previously
- 93 ZrnFT age reported by Lee et al. (2015)).

- 95 Figure DR2. Sample location maps for northern transect (A) and middle transect (B).
- 96 Square: ZrnFT age published by Tsao et al. (1992); Tsao (1996); Liu et al. (2001).
- 97 Circle: ZrnHe age reported by Beyssac et al. (2007).
- 98

100 Figure DR3. Thermal gradient map derived from Curie point depth map (Curie

101 temperature 580°C) (From Hsieh et al. (2014)).

105 Figure DR4. Time-temperature model results for selected samples from the northern

106 (A) and southern (B) transects using HeFTy (Ketcham, 2005). The acceptable

107 goodness of fit (GOF) >0.05 are represented by light gray paths and good GOF >0.5

108 by dark gray paths. Black dashed boxes indicate additional constraints : the

109 depositional age (t d) and range of plausible post-depositional burial heating histories

110 (t b) based on illite crystallinity and RSCM temperatures. The thick black line is the

111 weighted mean fit t-T path.

114 Figure DR5. Zircon (U-Th)/He ages versus elevation from northern transect (A),

115 middle transect (B), southern transect (C) and Mt. Yu (D) showing 1) expected closure

116 depth beneath the present mean elevation estimated by the modern thermal gradient

and 2) projected closure depth assuming no exhumation since about 0.6 Ma, 0.8 Ma,

118 0.5 Ma and 1.3 Ma (time of closure for rocks at the mean elevation) respectively.

119 Difference between expected and projected depths requires an increase in the rate of

120 exhumation in the southern area but a decrease in the rate of exhumation in Mt. Yu

121 (Reiners and Brandon, 2006).

122

113

126 transects. The plots show high rates of cooling at all four areas (\sim 3–5 km/m.y.).

REFERENCES CITED

129	Beyssac, O., Simoes, M., Avouac, JP., Farley, K., Chen, YG., Chan, YC., and
130	Goffe, B., 2007, Late Cenozoic metamorphic evolution and exhumation of
131	Taiwan: Tectonics, v. 26, p. TC6001.
132	Chen, CH., 1994, Metamorphic facies map of Taiwan: Special publication of the
133	Central Geological Survey, v. 2, p. 1-3.
134	Evans, N. J., Byrne, J. P., Keegan, J. T., and Dotter, L. E., 2005, Determination of
135	uranium and thorium in xircon, apatite and fluorite: Application to laser
136	(U-Th)/He thermochronology: Journal of Analytical Chemistry, v. 60, p.
137	1159-1165.
138	Farley, K. A., Wolf, R., and Silver, L. t., 1996, The effects of long alpha-stopping
139	distances on (U-Th)/He chronometry: Geochimica et Cosmochimica Acta, v.
140	60, p. 4223-4229.
141	Hourigan, J. K., Reiners, P. W., and Brandon, M., 2005, U-Th zonation-dependent
142	alpha-ejection in (U-Th)/He chronometry: Geochimica et Cosmochimica Acta,
143	v. 46, p. 637-649.
144	Hsieh, HH., Chen, CH., Lin, PY., and Yen, HY., 2014, Curie point depth from
145	spectral analysis of magnetic data in Taiwan: Journal of Asian Earth science, v.
146	90, p. 26-33.
147	Ketcham, R., 2005, Forward and inverse modeling of low-temperature
148	thermochronometry data: Reviews in Mineralogy & Geochemistry, v. 58, no. 1,
149	p. 275-314.
150	Lee, YH., Byrne, T., Wang, WH., Lo, W., and Rau, RJ., 2015, Simultaneous
151	mountain building in the Taiwan orogenic belt: Geology, v. 43, p. 447-450.
152	Lee, YH., Chen, CC., Liu, TK., Ho, HC., Lu, HY., and Lo, W., 2006, Mountain
153	building mechanisms in the Southern Central Range of the Taiwan Orogenic
154	Belt — From accretionary wedge deformation to arc-continental collision:
155	Earth and Planetary Science Letters, v. 252, p. 413-422.
156	Liu, TK., Hsieh, S., Chen, YG., and Chen, WS., 2001, Thermo-kinematic
157	evolution of the Taiwan oblique-collision mountain belt as revealed by zircon
158	fission track dating: Earth and Planetary Science Letters, v. 186, p. 45-56.
159	Lo, CH., and Onstott, T. C., 1995, Rejuvenation of K-Ar systems for minerals in the
160	Taiwan Mountain Belt: Earth and Planetary Science Letters, v. 131, p. 71-98.
161	Ludwig, K., 2003, Mathematical-statistical treatment of data and errors for 230Th/U
162	geochronology: Reviews in Mineralogy and Geochemistry, v. 52, no. 1, p.
163	631-656.
164	Reiners, P., and Brandon, M. T., 2006, Using themochronology to understand
165	orogenic erosion, Annual Reviews of Earth and Planetary Sciences, Volume 34:

166	New Haven, Yale University.
167	Reiners, P. W., 2005, Thermochronometry, Reviews in Mineralogy and Geochemitry,
168	Volume 58, p. 151-179.
169	Reiners, P. W., Farley, K. A., and Hickes, H. J., 2002, He diffusion and (U-Th)/He
170	thermochronometry of zircon: Initial resuls from Fish Canyon Tuff and Gold
171	Butte, Nevada: Tectonophysics, v. 349, p. 297-308.
172	Tsao, S., 1996, The geological significance of illite crystallinity, zircon fission-track
173	ages and K-Ar ages of metasedimentary rocks of the Central RangeM.S.]:
174	National Taiwan University, 272 p.
175	Tsao, S., LI, TC., Tien, JL., Chen, CH., Liu, TK., and Chen, CH., 1992, Illite
176	crystallinity and fission track ages along the east Central Cross Island
177	Highway of Taiwan: Acta Geological Taiwanica, v. 30, p. 45-64.
178	Van Soest, M. C., Hodges, K. V., Wartho, JA., Biren, M. B., Monteleone, B. M.,
179	Ramezani, J., Spray, J. G., and Thompson, L. M., 2011, (U-Th)/He dating of
180	terrestrial impact structures: The Manicouagan example.: Geochem. Geophys.
181	Geosyst., v. 12, p. 8.
182	Wendt, I., and Carl, C., 1991, The statistical distribution of the mean squared
183	weighted deviation: Chemical Geology: Isotope Geoscience Section, v. 86, no.
184	4, p. 275-285.
185	Wintsch, R. P., Yang, HJ., Li, XH., and Tung, KA., 2011, Geochronologic
186	evidence for a cold arc-continent collision: the Taiwan orogeny: Lithos, v. 125,
187	no. 1, p. 236-248.
188	