
Data Repository item 2016219: Scibiorski, E., et al., 2016, Cooling and exhumation along the curved Albany-Fraser Orogen, Western Australia: Lithosphere, doi: 10.1130/L561.1 See also accompanying .xlsx file of Appendix 2 Ar/Ar Data.

Supplemental Figure 1. (A,B,C) Histograms showing the results of the Monte Carlo simulation modeling the 40Ar/39Ar closure temperature in muscovite and biotite. The mean is reported with ± 2 sigma. (D, E, F) Histograms showing the results of the Monte Carlo simulation modeling the cooling rate between hornblende and mica closure temperature. The strongly right-tailed skew of the histograms is due to the large range in mathematically calculated cooling rates. This also skews the mean and standard deviation to unrealistically high values. For this reason, the median is a better measure of the central tendency of these populations, and the inter-quartile range is a more robust measure of scale than the standard deviation.

Locality	Hornblende cooling age		Mica cooling age			Mineral Constants				
	Sample	Cooling age (Ma, ± 2σ)	Sample	Mineral	Cooling age (Ma, ± 2σ)	<i>Т_{со}</i> (°С)	a (µm)	E (kcal/mol)	<i>D</i> ₀ (cm²/s)	A
Biranup Zone										
SW of Urayrie Rock	EAF012	1194 ± 6	EAF015	Ms	1177 ± 5	425	350	63 ± 7	2.3 ^{+ 70} - 2.2	55
Ponton Creek	EAF038	1192 ± 13	EAF039B	Bt	1169 ± 5	300	350	50.5 ± 2.2	$0.4^{+0.96}$ - 0.28	27
Fraser Zone										
Wyralinu Hill	EAF055B	1217 ± 8	EAF054	Bt	1205 ± 4	300	350	50.5 ± 2.2	0.4 ^{+ 0.96} - 0.28	27

Supplementary Table 1 Initial inputs to Dodson's equation (Equation 1 above).

Values for the activation energy (E), diffusion coefficient (D₀) and volume constant (A) for biotite were taken from Grove and Harrison (1996), as biotites analysed in this study have similar Fe/Mg ratios. The initial closure temperature estimates (T_{C0}) for biotite was 300 °C (Harrison et al., 1985). Values for the activation energy (E), diffusion coefficient (D_0), volume constant (A) and the initial closure temperature estimate (T_{c0}) of 425 °C for muscovite were taken from Harrison et al. (2009). Grainsize (a) was estimated at the time of 40 Ar/ 39 Ar analysis.

References Cited:

Grove, M., and Harrison, T.M., 1996, ⁴⁰Ar* diffusion in Fe-rich biotite: The American Mineralogist, v. 81, p. 940–951, doi:10.2138/am-1996-7-816. Harrison, T.M., Célérier, J., Aikman, A.B., Hermann, J., and Heizler, M.T., 2009, Diffusion of ⁴⁰Ar in muscovite: Geochimica et Cosmochimica Acta, v. 73, p. 1039–1051, doi:10.1016/j.gca.2008.09.038.

Hornblende 40 Ar/ 39 Ar age (Ma)Normal (mean, σ)Varies for each mineralTable 3Biotite E D_0Triangular (min, mode, max) Triangular (min, mode, max) $50.5 \pm 2.2 \text{ kcal/mol}$ $0.4 ^{+0.96}_{-0.28} \text{ cm}^2/\text{s}Grove and Harrison (1996)MuscoviteED_0Triangular (min, mode, max)Triangular (min, mode, max)63 \pm 7 \text{ kcal/mol}2.3 ^{+70}_{-2.2} \text{ cm}^2/\text{s}Harrison et al. (2009)Mica^{40}Ar/^{39}Ar cooling age (Ma)^{40}Ar/^{39}Ar closure temperature (°C)Normal (mean, \sigma)n/aVaries for each mineralDirectly calculated by iterating Equation 1$					
Biotite E Triangular (min, mode, max) $50.5 \pm 2.2 \text{ kcal/mol}$ Grove and Harrison (1996) D ₀ Triangular (min, mode, max) $0.4^{+0.96}_{-0.28} \text{ cm}^2/\text{s}$ Muscovite E Triangular (min, mode, max) $63 \pm 7 \text{ kcal/mol}$ Harrison et al. (2009) D ₀ Triangular (min, mode, max) $2.3^{+70}_{-2.2} \text{ cm}^2/\text{s}$ Mica $\frac{40}{40}\text{Ar}/\frac{39}{40}\text{Ar}$ cooling age (Ma) Normal (mean, σ) Varies for each mineral Table 3					
E D0Triangular (min, mode, max) Triangular (min, mode, max) $50.5 \pm 2.2 \text{ kcal/mol}$ $0.4 ^{+0.96}$ $_{-0.28} \text{ cm}^2/\text{s}$ Grove and Harrison (1996)Muscovite E D0Triangular (min, mode, max) $63 \pm 7 \text{ kcal/mol}$ $2.3 ^{+70}$ $_{-2.2} \text{ cm}^2/\text{s}$ Harrison et al. (2009)Mica 40 Ar/39 Ar cooling age (Ma)Normal (mean, σ)Varies for each mineralTable 3					
D_0 Triangular (min, mode, max) $0.4^{+0.96}$ $0.28 cm²/sMuscoviteTriangular (min, mode, max)63 \pm 7 kcal/molHarrison et al. (2009)D_0Triangular (min, mode, max)2.3^{+70}-2.2 cm²/sHarrison et al. (2009)Mica4^{40} Ar/^{39} Ar cooling age (Ma)Normal (mean, \sigma)Varies for each mineralTable 3$					
Muscovite E D0Triangular (min, mode, max) Triangular (min, mode, max) $63 \pm 7 \text{ kcal/mol}$ $2.3 + 70 - 2.2 \text{ cm}^2/\text{s}$ Harrison et al. (2009)Mica 40 Ar/39 Ar cooling age (Ma)Normal (mean, σ)Varies for each mineralTable 3					
E D0Triangular (min, mode, max) Triangular (min, mode, max) $63 \pm 7 \text{ kcal/mol}$ $2.3 + 70 - 2.2 \text{ cm}^2/\text{s}$ Harrison et al. (2009)Mica 40 Ar/39 Ar cooling age (Ma)Normal (mean, σ)Varies for each mineralTable 3					
D_0 Triangular (min, mode, max) $2.3 + 70 - 2.2$ cm²/sMica 4^0 Ar/39 Ar cooling age (Ma)Normal (mean, σ)Varies for each mineralTable 3					
Mica $^{40}_{40}Ar/^{39}_{39}Ar$ cooling age (Ma) Normal (mean, σ) Varies for each mineral Table 3					
Mica ${}^{40}Ar/{}^{39}Ar$ cooling age (Ma) Normal (mean, σ) Varies for each mineral Table 3 ${}^{40}Ar/{}^{39}Ar$ closure tomperature (°C) p/a					
40 Ar/ 39 Ar cooling age (Ma) Normal (mean, σ) Varies for each mineral Table 3					
40 Ar 39 Ar closure temperature (°C) $p/2$					
⁴ °Ar/ ^{3°} Ar closure temperature (°C) n/a Directly calculated by iterating Equation 1					
Cooling rate (°C/Ma) n/a Initially calculated based on hornblende cooling age and closure te	Initially calculated based on hornblende cooling age and closure temperature, and				
mica cooling age and initial closure temperature (T_{CO}). Cooling rate					
	after each iteration of Equation 1, using the newly calculated closure temperature.				