GSA Data Repository 2016199

Fossil DNA persistence and decay in marine sediment over hundred-thousand-year to million-year time scales

Kirkpatrick et al.

1 **METHODS:**

2 Sediment Sampling

3	The sediment was recovered as 9.5 m cores. Stainless-steel blades, which were cleaned and then
4	sterilized with ethanol, were used to cut sediment into 1.5 m sections. Sampling for DNA was
5	conducted on the drillship catwalk so as to minimize exposure time and potential contamination
6	from the shipboard environment. We sampled with pre-sterilized (autoclaved) cut-off syringes
7	that we pushed into a freshly cut section faces immediately after unwrapping the autoclaved foil
8	cover. We wore fresh nitrile gloves to handle samples, and subsequent to removal from the
9	sections the syringes were immediately put in fresh Whirlpak bags and sealed before freezing at -
10	80 °C.
11	
12	DNA extraction and amplification
13	To extract DNA we used a flame-sterilized spatula to first exposed sediment off the

14 frozen syringe, and then added 0.25 g of underlying frozen sediment to a 2-mL bead tube with

15 0.3 g of 0.1 mm autoclaved zirconia/silica beads (Biospec Products, Bartlesville, OK, USA) pre-

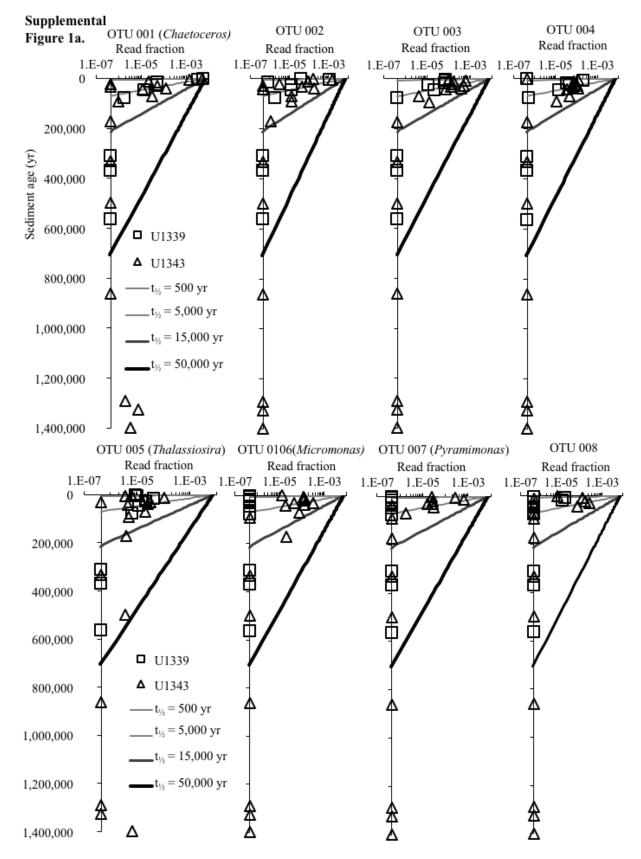
16	aliquoted. We also ran kit blanks with beads and all the solutions but no sediment. To each
17	sample tube, we added 500 μL of MoBio Bead Solution, 250 μL of phenol-chloroform-isoamyl
18	alcohol (pH 8.0; ThermoFisher Scientific, Waltham, MA, USA), and 60 μ L of PowerLyzer®
19	solution C1 before beadbeating for 90 s on a Biospec Mini-Beadbeater-96. We then spun the
20	tubes for 10 min at 16,873 g before removing the supernatant and proceeding with standard kit
21	directions. We conducted all open-tube steps in a Envirco Laminar Flow Work Station
22	(Albuquerque, NM, USA), except the phenol steps, for which we used a fume hood. At the end
23	of the Mobio protocol, we combined multiple 0.25 g extracts (up to 6) from the same depth as
24	necessary and eluted DNA with 80 μ L of kit solution C6. We cleaned extracts with Agencourt
25	AMPure XP beads (Beckman Coulter, Inc., Brea, CA, USA) per manufacturer's directions, using
26	Mobio kit solution C6 to resuspend. 2.5 μ L aliquots were set aside for DNA quantification with a
27	Qubit® 2.0 Fluorometer using the dsDNA HS Assay Kit (ThermoFisher Scientific). We
28	calculated our detection limit (1.01 ng DNA / g sediment) based on the relative fluorescent units
29	(RFUs) of three times the standard deviation of Mobio solution C6 (Tris-Cl). We measured a
30	subset of both shallow and deep sediment samples in triplicate to determine sample measurement
31	error (±0.4 ng / g sediment). We then stored extracts at -80° C until proceeding further.
32	In order to create amplicons for sequencing, we conducted PCR with partial Nextera
33	adapters attached to primers targeting the v4v5 hypervariable region of bacterial 16S rDNA

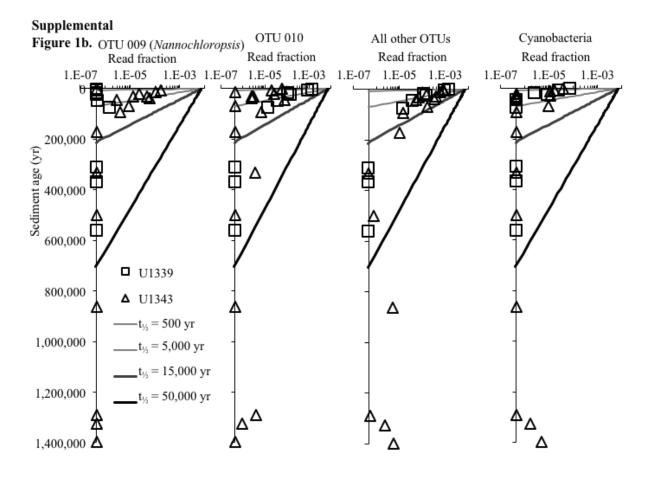
34	(Huse et al., 2010). Our sequences ranged in length from $410 - 430$ bp. The primers were 518F
35	(5'- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCAGCAGCYGCGGTAAN-3')
36	and a 8:1:1 mix of three 926R primers (5'-
37	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGTCAATTCNTTTRAGT-3', 5'-
38	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGTCAATTTCTTTGAGT-3', 5'-
39	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGTCTATTCCTTTGANT-3'). We
40	amplified DNA with the addition of $1 \times BSA$ in our PCR. We used either 0.5 ng extracted DNA
41	as template, or the maximum volume possible for the deepest, lowest biomass samples (<0.5 ng
42	below 80 m CCSF) and blanks. Reaction volume was 25 μ L. We used thermal cycling conditions
43	of 94° C for 9:30, then 30 cycles of 94° for 30 s, 57° for 45 s, and 72° for 30s, with a final 72°
44	extension for 5:00. After another cleanup with Agencourt AMPure XP beads, where we pooled
45	replicate reactions, we submitted the DNA samples and blanks for sequencing to the University
46	of Rhode Island (URI) Next Generation Sequencing facility (http://web.uri.edu/gsc/next-
47	generation-sequencing/). Illumina (San Diego, CA, USA) MiSeq sequencing was conducted
48	using reagent kit v3, 2×300 bp read length paired-end chemistry, with phiX added. 15.5% of
49	reads aligned to phiX.
50	

51 Sequence analysis

52	We trimmed and merged fastq sequence data from Illumina's Basespace® using CLC
53	Workbench version 6.0 (CLC Bio). We used a quality score corresponding to a Phred score of 15
54	as our trim cutoff, determined empirically to yield the greatest number of successfully merged
55	pairs with CLC, with >100 bp of overlap. Either lower or higher Phred scores resulted in fewer
56	merged pairs. After exporting merged reads as a fasta file, we used the Mothur MiSeq pipeline
57	(Kozich et al., 2013; Schloss et al., 2009). Our assessment of total reads per sample
58	(Supplementary Table 1) is based on the sequences remaining after quality control and prior to
59	taxonomic assignment. We used SILVA v119 to align sequences. Our protocol deviates from the
60	standard operating procedure (SOP; http://www.mothur.org/wiki/MiSeq_SOP) in that rather than
61	removing reads with a taxonomic assignment of chloroplast, before clustering we removed
62	everything except those reads with a taxonomic assignment of chloroplast. No remaining
63	sequences overlapped between sediment samples and the kit blank. We did not remove
64	singletons, because i) we're not reporting on OTU richness or diversity, but rather taxonomy ii)
65	it does not change the identification of the most common OTUs and iii) to the extent the
66	removing singletons could remove "real" environmental data (unique sequences), it would inflate
67	the apparent importance of the "dominant" OTUs (Supplementary Figure 2) to be conservative
68	we have avoided this. Overall, at U1339 singleton OTUs represented 3% of cpDNA reads and

69 9% at U1343. Sample information and read counts (total and chloroplast) are in Supplementary
70 Table 1.


71	To build our phylogenetic tree of major photosynthetic eukaryote lineages, we aligned
72	the top 10 most abundant Operational Taxonomic Units (OTUs; defined at the 99% cutoff) with
73	database sequences using ClustalX (Jeanmougin et al., 1998) and SeaView (Gouy et al., 2010).
74	We used a 99% cutoff because we are considering variation within a single bacterial clade
75	(chloroplasts); this may inflate OTU numbers, but we believe this is the conservative approach
76	because i) to the extent it creates "artificial" OTUs it will actually downplay the importance of
77	our "dominant" OTUs, and ii) we are not analyzing OTU-based metrics of diversity. We aligned
78	these fragments with the analogous stretch of cpDNA from database sequences representing both
79	major and minor siliceous microfossil taxa reported from these sites via microscopy (Takahashi
80	et al., 2011), as well as outgroups and potential floral contaminants from our office and campus
81	spaces. This alignment was manually curated, though few problems were found. We then used
82	the alignment to calculate phylogeny two ways: i) using MrBayes 3.2 (Ronquist et al., 2012),
83	with GTR weighting, a gamma distributed rate variation, and 10^6 generations; and ii) a maximum
84	likelihood tree with 1000 bootstraps using phyML (Guindon and Gascuel, 2003). We did not
85	note major variations between the two different methods; both trees are shown here for
86	comparison (Figure 3a, b).

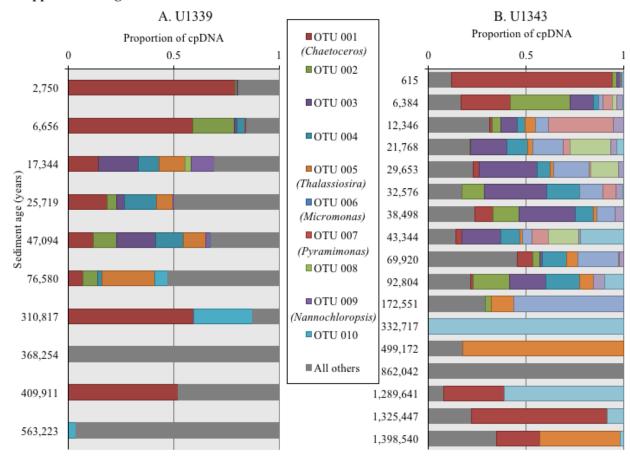

87 Detection of "rare" sequences

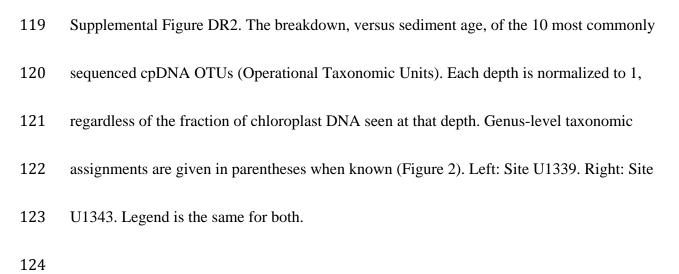
88	Many sequence types in next-generation datasets such as these are found at frequencies
89	that appear extremely low (e.g. <0.1% of reads), but are still represented by dozens or hundreds
90	of repeated sequences. Consequently, whether or not we would expect to detect these "rare"
91	sequences is not intuitive, so we calculated a probabilistic model based on random re-sampling
92	(i.e., assuming an infinitely large pool of sequences). This is a first-order test of detectability, but
93	does not take in to account amplification biases.
94	If a given taxa, such as OTU XYZ, has a frequency of 1% in the data, then picking one
95	read would give a 0.01 chance of detecting that sequence – or a 0.99 chance of missing that
96	sequence. Picking two reads would give $0.99 \times 0.99 = 0.9801$ chance of not detecting that
97	sequencing. In other words,
98	$p_{taxa} = (1 - f_{taxa})^{N}$
99	Where p_{taxa} is the probability of non-detection for a given taxa or sequence type; f_{taxa} is
100	the frequency of that sequence type in the dataset; and N is the number of sequences analyzed.
101	The minimum number of chloroplast reads at any depth for U1339 was 57, or 0.026% of reads
102	for that sample, corresponding to a probability of "missing" this group of sequences at 1.7 \times
103	10^{-25} . The minimum number of chloroplast reads at any depth for U1343 was 13, or 0.006% of

reads for that sample, corresponding to a probability of "missing" this group of sequences at 2.3

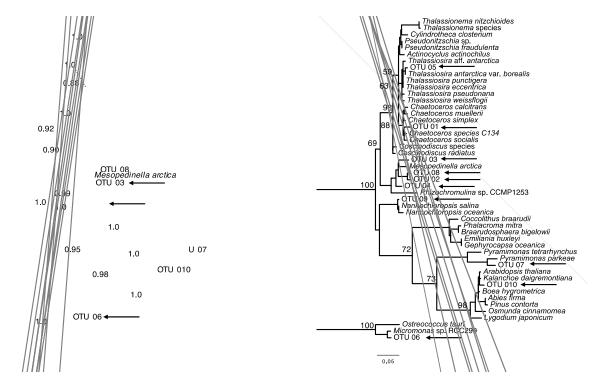
 $\times 10^{-6}$.

108	Supplemental Figure DR1. Profiles versus depth of individual chloroplast OTUs (Operational
109	Taxonomic Units), as a fraction of total reads. The first 10 panels are the 10 most abundant
110	OTUs (Operational Taxonomic Unit) overall (Figure 1a, 1b). The second to last panel includes
111	the fraction of reads due to every remaining read outside of the top 10, including free-living
112	cyanobacteria (Figure 1b). The last panel is for free-living cyanobacteria only (Figure 1b).
113	Genus-level taxonomic assignments are given in parentheses when known. X-axes are
114	logarithmic. The y-axis intercept represents the lowest value for which random re-sampling
115	would still detect a given sequence. Zero values are plotted on the y-axis. Half-life decay curves
116	are shown for comparison.


400


 $\langle \cap$

.


.

Supplemental Figure 2.

125 Supplemental Figure DR3.

126

127 Supplemental Figure DR3. Comparison of phylogenetic trees. Left: Tree constructed with

128 Bayesian inference (MrBayes 3.2; Ronquist *et al.*, 2012). Clade confidence values are shown,

and arrows indicate sequences from this studies. Right: Maximum likelihood tree constructed

130 with PhyML (Guindon and Gascuel, 2003) using 1000 boostraps. Boostrap support values

131 greater than 50 are shown for the major branch points.

133 Supplemental Table DR1. Sample data. Age model is from Takahashi et al. (2011).

Sample site	Sample depth	Sediment age	Cleaned dataset size	Reads identified as
	(m CCSF)	(yr)	(number of reads)	chloroplast
U1343	0.16	615	162,247	1,043 (0.64%)
U1343	1.66	6,384	236,990	1,516 (0.64%)
U1343	3.21	12,346	190,551	434 (0.23%)
U1343	5.66	21,768	183,113	248 (0.14%)
U1343	7.71	29,653	264,598	548 (0.21%)
U1343	8.47	32,576	150,567	147 (0.10%)
U1343	10.01	38,498	216,245	559 (0.26%)
U1343	11.27	43,344	234,277	250 (0.11%)
U1343	18.18	69,920	324,963	415 (0.13%)
U1343	24.13	92,804	196,478	70 (0.04%)
U1343	44.87	172,551	322,319	62 (0.02%)
U1343	86.51	332,717	231,588	13 (0.01%)
U1343	129.79	499,172	257,233	34 (0.01%)
U1343	224.14	862,042	197,960	27 (0.01%)
U1343	335.32	1,289,641	241,626	154 (0.06%)
U1343	344.63	1,325,447	288,110	250 (0.09%)
U1343	363.64	1,398,540	250,859	295 (0.12%)
U1339	0.88	2,750	215,839	1,586 (0.73%)

U1339	2.13	6,656	162,240	1,139 (0.70%)
U1339	5.55	17,344	299,394	912 (0.30%)
U1339	8.23	25,719	244,312	604 (0.25%)
U1339	15.07	47,094	261,778	236 (0.09%)
U1339	32.12	76,580	268,696	100 (0.04%)
U1339	88.36	310,817	275,530	133 (0.05%)
U1339	104.87	368,254	252,962	118 (0.05%)
U1339	217.58	563,223	217,460	57 (0.03%)

136 SUPPLEMENTAL REFERENCES

- 137 Gouy, M., Guindon, S., and Gascuel, O. (2010). SeaView version 4: A multiplatform graphical
- user interface for sequence alignment and phylogenetic tree building. *Mol. Biol. Evol.* 27,
- 139 221–4. doi:10.1093/molbev/msp259.
- 140 Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large
- 141 phylogenies by maximum likelihood. *Syst. Biol.* 52, 696–704.
- 142 doi:10.1080/10635150390235520.
- 143 Huse, S. M., Welch, D. M., Morrison, H. G., and Sogin, M. L. (2010). Ironing out the wrinkles in
- the rare biosphere through improved OTU clustering. *Environ. Microbiol.* 12, 1889–98.
- 145 doi:10.1111/j.1462-2920.2010.02193.x.
- 146 Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G., and Gibson, T. J. (1998). Multiple
- sequence alignment with Clustal X. *Trends Biochem. Sci.* 23, 403–5.
- 148 Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss, P. D. (2013).
- 149 Development of a dual-index sequencing strategy and curation pipeline for analyzing
- amplicon sequence data on the MiSeq Illumina sequencing platform. *Appl. Environ.*
- 151 *Microbiol.* 79, 5112–5120. doi:10.1128/AEM.01043-13.
- 152 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B.,
- 153 Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012, MrBayes 3.2: efficient Bayesian

- 154 phylogenetic inference and model choice across a large model space. Systematic Biology, v.
- 155 61, p. 539–542, doi: 10.1093/sysbio/sys029.
- 156 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B.,
- 157 Lesniewski, R. a., Oakley, B. B., Parks, D. H., Robinson, C. J., et al. (2009). Introducing
- 158 mothur: Open-source, platform-independent, community-supported software for describing
- and comparing microbial communities. *Appl. Environ. Microbiol.* 75, 7537–7541.
- 160 doi:10.1128/AEM.01541-09.
- 161 Takahashi, K., Ravelo, A. C., Alvarev Zarikian, C. A., and Scientists, E. 323 (2011). *Proc.*
- 162 *IODP*, 323. Tokyo: Integrated Ocean Drilling Program Management International, Inc.
- 163 doi:10.2204/iodp.proc.323.2011.
- 164