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APPENDIX DR1 

 

Barenblatt (1962) shows that the stress intensity factor K0 for a fluid-filled crack of length l with 

a uniform fluid pressure Pf,0  within a homogeneous isotropic lithostatic stress field of magnitude 

lith is given by 

K0 = P √(l/2),        (DR1-1) 

where P = Pf,0 – lith is the net pressure. See also Barenblatt (2014, chapter 5) for an 

abbreviated analysis.  

A tensile crack expands in a critical fashion if the stress intensity factor K0 is equal to or 

exceeds a critical value Kc (Griffith’s criterion), that is,  

K0 ≥ Kc.          (DR1-2) 

Following Barenblatt (1962), Aki et al. (1977) consider the following situation: the 

original crack is fully filled with fluid. During crack expansion the fluid front cannot keep up 

with the moving crack tip, creating a fluid lag zone, that is, an area at the crack tip which is free 

of fluids. The crack advances by a distance l, and the fluid front is assumed to be stationary for 

simplicity. The fluid-free zone is at zero pressure. Crack extension then creates a cohesive force, 

or negative stress intensity K1, equal to  

K1 ≈-0.9 lith √(l/2),        (DR1-3) 

because of the zero fluid pressure within the fluid-free zone. After expansion, the stress intensity 

Knew,Aki at the moved crack tip becomes 

Knew,Aki = (Pf,0 – lith) √(l/2 + l/2) - 0.9lith√(l/2)       

  = K0 + (Pf,0 – lith) √( l/2) - 0.9lith√(l/2).     (DR1-4) 

This follows from equations (DR1-1) and (DR1-3) if the new crack length l+ l is taken into 

account. If crack extension occurs for K0 ≈ Kc, then Aki et al. (1977) argue that the presence of a 

fluid lag zone will halt crack extension since Knew,Aki < Kc for a reasonable net pressure P and 

lithostatic stresses at say more than 500m depth (around 10MPa). Their analysis implies that 

renewed crack growth then only happens once the fluids have reached the crack tip or the fluid 



 

 

pressure Pf inside the crack is increased, thus countering the negative stress intensity due to the 

fluid lag zone.  

 Aki et al. (1977) argue that the above analysis implies that only continuous fracture 

growth is possible, since any crack extension l, even an infinitesimally small one, leads to 

halting. In this scenario, the fluid speed becomes equal to the rupture velocity, a common 

assumption in mathematical models for hydraulic fracture propagation (Adachi et al., 2007). 

However, Griffith’s criterion, equation DR1-2, only predicts when tensile failure occurs. It does 

not determine the fracture extension length l. Likewise, the Mohr-Coulomb failure criterion for 

shearing only predicts if failure is likely, but not the rupture length. Dynamic fracture models are 

required to predict parameters such as rupture (fracture) length, area and displacement (that is, 

slip and/or aperture). 

 For instance, the seismic moment M0 for shear failure is given by 

 M0 = (16/7) s a
3,         (DR1-5) 

where s is the static stress drop and a is the fracture radius (Eshelby, 1957; Keylis-Borok, 

1959; Walter and Brune, 1993). Equation DR1-5 holds for a Poisson’s body (that is, equal Lamé 

parameters or ). The static stress drop s is defined as the difference between shear stress 

across the fault before and after the event. A stress drop causes a reduction in driving stress. 

Shear failure halts when the shear stress becomes less than the frictional stress and cohesive 

forces. Equation DR1-5 shows that the seismic moment M0 and thus the size of an event is 

proportional to the stress drop s, which in turn is determined by the material and stress 

heterogeneity. 

 In a similar fashion, it can be shown that the seismic moment M0 for a tensile event is 

equal to 

 M0 = √22 Ps a
3,         (DR1-6) 

where Ps is the static fluid pressure drop and fracture radius a=l/2. Again a Poisson’s body is 

assumed. Equation DR1-6 is derived using the following relationships: (1) the nonzero moment 

tensor components for a tensile crack in the horizontal plane and opening along the vertical axis, 

are M11 = M22 = AD and M33=(+2)AD, with A=a2, the surface area, and D is average 

displacement (aperture); (2) the moment M0 is defined as M0=√(MikMik/2) with summation over 

all indices i and k of the full moment tensor (Julian et al., 1998); and (3) the average aperture D 



 

 

= 2a Ps/() (Sneddon, 1951; Walter and Brune, 1993; Eaton et al., 2014b). Tensile cracks 

oriented in other directions yield the same result.  

Note that in analogy with equation DR1-5, variable Ps represents a static stress drop, 

whereas Walter and Brune (1993) and Eaton et al. (2014b) assume it is equal to the effective net 

pressure.  

If the argument of Aki et al. (1977) that any crack extension, including an infinitesimally 

small one, leads to halting is applied to the Mohr-Coulomb failure criterion, it predicts that only 

slow slip is possible but no abrupt shear failure (and thus no felt seismicity, equation DR1-5), 

since it assumes a medium with homogeneous material properties (e.g., no asperities) and 

homogeneous stresses. Likewise, stress and material heterogeneity ensures episodic tensile crack 

growth where the seismic moment M0 of individual events is given by equation DR1-6. For 

instance, in our numerical simulations the presence of natural fracture sets and intact rock 

bridges ensures stress and material heterogeneity. It is important to note that variations in 

material properties generally tend to cause stress heterogeneity [e.g., Roche and Van der Baan 

(2015)]. 

The above analysis thus supports episodic instead of continuous crack propagation for 

hydraulic fracturing treatments which are often around 2km depth, targeting heterogeneous rocks 

such as shales. Furthermore, the negative stress intensity, equation (DR1-3), also leads to partial 

closure of the crack near its tip, creating a process reminiscent of hand clapping. Continuous and 

possibly even accelerated fracture growth is however possible at shallow depths since the 

lithostatic stress lith becomes then small, reducing the effect of the closing negative stress 

intensity, equation (DR1-3). 

Secor (1969) invokes a related but different reasoning to argue for episodic crack growth. 

In his model, crack extension leads to additional crack volume, temporarily reducing the fluid 

pressure Pf at the crack tip, thus lowering the stress intensity factor. Specifically the new fluid 

pressure Pf,new changes from the original fluid pressure Pf,o as 

Pf,new = Pf,o – c-1V/V,       (DR1-7) 

with c the fluid compressibility coefficient  and V/V the relative increase in crack volume (not 

necessarily uniform across the entire crack). For a perfect gas c-1≈ Pf,o. Therefore, a 10% increase 

in volume leads to a 10% reduction in fluid pressure near the crack tip. For water, c-1= 1.96x109 

Pa, and a 1% increase in volume corresponds to a 19.6MPa reduction in fluid pressure. This is 



 

 

substantial if we consider for instance a reservoir around 2km depth with 10MPa net pressure 

(Pf,o = 60MPa, lith = 50MPa).  

The original stress intensity factor K0 prior to crack extension is again given by equation 

(DR1-1). After crack extension the new stress intensity factor Knew,Secor then becomes 

Knew,Secor = (Pf,o (1 – V/V)– lith) √(l/2 + l/2)       

  = K0 + (Pf,o – lith) √( l/2) - (c-1V/V) √(l/2 + l/2).   (DR1-8) 

If we assume again that crack extension happens when K0 ≈ Kc, then the reduction in fluid 

pressure at the crack tip is likely to cause halting of the crack propagation since Knew,Secor < Kc 

due to the negative third term in equation (DR1-8). Crack propagation continues when new 

fluids have reverted the fluid pressure within the additional volume V to the original fluid 

pressure Pf,o, and the third term becomes close to zero again. In addition, if the new fluid pressure 

Pf,new becomes less than the lithostatic stress lith then the net pressure P at the crack tip 

becomes negative, causing again partial crack closure, as indicated by equation (DR1-1).  

Equation (DR1-8) implies there is a trade-off between increased stress intensity due to 

the increased crack length and reduced stress intensity due to volume increase and thus  drop in 

fluid pressure at the crack tip. In practice, the third term in equation (DR1-8), reduced stress 

intensity due to a local pressure drop, is likely to be somewhat tempered since (1) the height of 

most hydraulic fractures is substantially smaller than their length, whereas the above analysis 

assumes a crack that is infinite in one direction, and (2) the pressure drop only occurs at the 

crack tip, not across the entire crack length. A constricted height limits the total moment (that is, 

force times crack length) exerted on the crack tip, thus reducing the effective crack length. 

Likewise, the effective crack length is reduced since only the portion where the pressure drop 

occurs should be taken into account. Nonetheless, considering some representative numbers such 

as a reservoir around 2km depth with 10MPa net pressure (Pf,o = 60MPa, lith = 50MPa) and a 

5m effective fracture that extends by 1 meter (l=5m,  l=1m) with merely a 1% increase in 

volume (V/V= 0.01) demonstrates the third term is generally dominant. The importance of the 

second term increases with decreasing depth, that is, decreasing lithostatic stresses, , pointing 

again at the possibility of continuous fracture growth at shallow depths. 

Aki et al. (1977) and Secor (1969) invoke different causal mechanisms, yet both analyses 

predict episodic instead of continuous crack growth for anthropogenic hydraulic fracturing 

treatments at common depths due to reduced fluid pressures at the crack tip. Secor’s (1969) 



 

 

model does not involve a fluid lag zone, that is, a fluid-free zone at the crack tip. A fluid lag zone 

has been seen in laboratory investigations (Medlin and Masse, 1984; Groeneboom et al., 2003). 

The size of the fluid lag zone is however unclear and subject to theoretical investigations 

(Garagash and Detournay, 2000); yet its existence will encourage temporal halting of fracture 

propagation due to a local pressure drop with associated partial closing. 

Continuous fracture growth is often inferred in case of natural hydraulic fracturing (Bahat 

and Engelder, 1984; Savalli and Engelder, 2005). The above analysis points to several conditions 

under which this might occur at critical stress intensities, including very high net pressures P, 

shallow depths and thus small lithostatic stresses lith, fracturing due to inflow of gas which is 

highly compressible, growth into mechanically weak zones or into areas with low effective 

stresses (that is, due to elevated pore pressures or reduced lithostatic stresses, for instance, 

because of upward growth), and finally a reduction in critical stress intensity Kc during fracture 

propagation, equations (DR1-2), (DR1-4) and (DR1-8). See also Lacazette and Engelder (1992) 

who discuss the effect of fluid infiltration into the hydraulic fracture, compressibility of the fluid 

inside the hydraulic fracture, and the effect of fluid flow velocities (in particular, Secor’s 1969 

model) on episodic versus continuous fracture growth at critical stress intensities.  

A reduction in critical stress intensity Kc during tensile fracture propagation would imply 

the existence of a larger, static and a smaller, dynamic critical stress intensity for tensile failure, 

analogous to static and dynamic shear friction coefficients governing shear failure (Marone, 

1998; Rubinstein et al., 2004). Tests however show that the dynamic tensile strength of rocks 

(measured at high strain rates) is larger than the quasi-static strength (Rubin and Ahrens, 1991), 

likely due to stress redistribution within samples and crack arrests because of increasing 

microcrack densities with increasing strain rates (Cho et al., 2003). The mathematical analysis 

thus confirms the numerical results of stick-split behavior and repeated opening and closing 

(hand clapping) near anthropogenic hydraulic fracture tips. 

 

 

 

 

 

 



 

 

APPENDIX DR2 

 

Far-field body wave spectra radiated from a small circular crack can be represented using a 

variant of the Brune source model (Walter and Brune, 1993). Eaton et al. (2014b) analyzed 

microseismic data from a hydraulic fracturing treatment targeting the Montney formation in 

British Columbia, Canada (Eaton et al., 2013). Their Figure 13 shows one microseismic event 

displaying spectral notching. We analyzed microseismic events that occurred during a fracturing 

treatment into a tight-sand formation in Alberta, Canada at ~1860m depth (Eaton et al., 2014a). 

The microseismic events were recorded using a 12-level triaxial geophone array installed in a 

vertical monitor well, in a depth range from 1606m to 1835 m.  

The procedure used to process each microseismic dataset is similar to Oye and Roth 

(2003) and includes the following steps: 1) application of an instrument-response correction to 

convert recorded signals into units of displacement; 2) rotation of 3-component traces into ray-

centered co-ordinates, thereby isolating P, Sfast and Sslow signals; 3) stacking of P, Sfast and Sslow 

waveforms by beam forming using an iterative cross-correlation approach with static shifts and 

polarity checking, similar to the method of De Meersman et al. (2009); 4) calculation of P and S 

displacement spectra by computing the Fourier transform of the recorded waveforms within a 

250ms window centered on the body-wave arrival, where anisotropy of the radiated S wave 

spectrum is accounted for using the vector sum of the Sfast and Sslow signals. The noise spectrum 

is extracted from a 250ms pre-event window. The best-fitting Brune spectrum and clapping 

spectrum are obtained using a least-squares fitting approach (Eaton et al., 2014b), which is 

parameterised based on quality factor (Q) for P and S waves, corner frequency, low-frequency 

plateau amplitude and time interval  between opening and closing. The S/P amplitude ratio is 

measured using the fitted low-frequency plateau amplitudes for P and S waves.   

Following Eaton et al. (2014b), the tensile crack radius a is estimated using  

log10(a) = 3.05 - (1/6)log10 (22) + Mw/2 – (1/3)log10(Ps),    (DR2-1) 

where Ps is the static fluid pressure drop, equation DR1-6, which for simplicity we take to be 

equal to the net pressure P (fluid pressure minus minimum principal stress, equation DR1-1). 

The latter is the pressure that is required to keep the fracture open. Equation DR2-1 is derived by 

taking the logarithm of equation DR1-6 and combining this with Mw = (2/3)log10(M0)-6.1. 



 

 

The tensile aperture E can be obtained from equation (3) in Walter and Brune (1993), 

yielding  

E = 3a P /(),         (DR2-2) 

with  the shear modulus of the intact rock. 
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Table DR1: Parametric inputs used in the numerical model for stick-split verification, based on 
in situ conditions in an underground mine in New South Wales, Australia, after Preisig et al., 
(2015). 
Natural fracture network properties 

 Dip direction [degrees] Dip angle [degrees] Spacing [m] 

Family 1 (only natural fractures) 090 81 2.4 

Family 2 (only natural fractures) 270 63 3.6 

Family 3 (natural and incipient fractures) 270 15 4.2 

Persistence of fractures: fully or variable (see Fig. 3) 

Rock properties Fractures properties 

Young modulus E [Pa] 60 · 109  Incipient Natural 

Poisson ratio ν [-] 0.25 Normal stiffness kn [Pa/m] 1.3 · 1011 1.3 · 1011 

Density ρ [kg/m3] 2700 Shear stiffness [Pa/m] 1.3 · 1010 1.3 · 1010 

  Tensile strength T [Pa] -0.5 · 106 0.0 

  Cohesion C [Pa] 1.0 · 106 0.0 

Fluid properties and constants Frictional angle Φ [ ˚] 30 45 

Viscosity μ [Pa s] 0.001 Aperture at zero effective  2.0 · 10-5 2.0 · 10-5 

Density ρw [kg/m3] 1000 normal stress a0 [m]   

Bulk modulus Kw [Pa] 0.1 · 109 Residual aperture ares [m] 4.0 · 10-6 4.0 · 10-6 

Gravity g [m/s2] 9.81 Dilation angle Ψ [ ˚] 20 20 

In-situ stress state  

Stress σ [MPa] at depth: 1415 [m] Orientation 

σ1 = 73 Horizontal E-W 

σ3 = 42 Vertical 

 

 


