
Worked examples of Optimal Cycle Analysis 

To demonstrate how this method works, two synthetic vertical successions (Fig 1A) have been 

constructed and analysed to identify what cyclicity they contain. The analyses successfully identify 

an optimal cyclic arrangement of facies classes in each succession. This is then the basis for further 

analysis to determine how much evidence of order in the form of cyclicity is present in each 

succession. Matlab code to carry out the analysis is available at 

https://csdms.colorado.edu/wiki/Model:OptimalCycleID. 

How the synthetic strata were generated 

Each synthetic succession of strata is 15m thick and composed of fifty lithological units, classified as 

five distinct facies (Fig. 1A) coded as shown in Table 1. Both successions were generated initially with 

a perfectly cyclical arrangement of five facies from mudstone (mst), to siltstone (slt), then limestone 

(lst), fine sandstone (fsst) and medium sandstone (msst). Note that the facies code is only the same 

as the position in the cycle for the limestone lithology facies; this significance of this for the 

depiction of the cyclicity in a transition probability matrix will become apparent. 

Taking as a starting point this 15m thick perfectly cyclical succession with 10 cycles composed of 50 

lithological units, the two synthetic vertical successions were constructed by introducing either 10 or 

20 randomly assigned facies codes and thicknesses at random points in the succession. For each 

randomly chosen facies code introduced, a check was conducted to ensure that this introduction did 

not lead to juxtaposition of the same facies, and if it did another random facies code was chosen 

randomly until juxtaposition did not occur. In the 10 substitution strata, there are still three 

complete examples of the original cycles starting at 1m, 9m and 14m (Fig. 1A). In the 20 substitution 

strata, there are no examples of the original cycles preserved; the longest remnant is an 

arrangement of four facies at 16.5m that is missing the medium sandstone at its top (Fig. 2A). 

These two synthetic examples simulate a situation where strata are being analysed to test a 

hypothesis that an optimum most cyclic arrangement of facies can be determined. Once this most 

cyclic arrangement of facies has been identified, the strata can be further analysed to determine if 

they represent an ordered arrangement of facies and thicknesses unlikely to have occurred by 

chance (Burgess, 2016). 

Constructing the transition probability matrices and calculating m and d values 

A transition probability (TP) matrix for a vertical succession of strata records the probability of 

transition from one facies class to each of the other facies classes. The TP matrix is constructed by 

recording all older-to-younger facies transitions in the matrix and converted these counts to 

probabilities by dividing by the total number of transitions from each facies class. An m statistic, 

indicative of the degree of order present in the vertical succession of strata (Burgess, 2016), can be 

calculated from a TP matrix such that 
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𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1..𝐹−1 {
∑ 𝑑𝑖𝑎𝑔(𝑇𝑗)+∑ 𝑑𝑖𝑎𝑔(𝑇−(𝐹−𝑗))

𝐹
} − 𝑎𝑟𝑔𝑚𝑖𝑛𝐽=1..𝐹−1 {

∑ 𝑑𝑖𝑎𝑔(𝑇𝑗)+∑ 𝑑𝑖𝑎𝑔(𝑇−(𝐹−𝑗))

𝐹
}

           eq. 1 

where F is the number of facies classes, in this case 5, j is the offset value from the main matrix 

diagonal, diag is a function to find all the elements in a diagonal of matrix T with offset j from the 

main matrix diagonal, and argmin and argmax are mathematical functions to find the minimum and 

maximum values in a series composed of each jth offset diagonal in the matrix (Fig. 1B). The 

algorithm represented by this equation calculates an average probability for each offset matrix 

diagonal, for j=1...4. For each diagonal offset value j the total number of cells being compared is 

always the same because it includes one or more cells from both side of the main matrix diagonal 

(Fig. 1B). Once the averages are calculated, m is calculated as the difference between the highest 

average probability found in an offset diagonal, and the lowest average probability found in a 

different offset diagonal. In the case of the 10-swap strata for the original facies class coding, the 

highest average probability in any diagonal is in the j=2 and j=-3 diagonal (Fig. 1B), and the lowest is 

in the j=1 and j=-4 diagonal, and the latter subtracted from the former gives m=0.1824 (Fig. 1B). 

Burgess (2016) showed that the value of the m statistic is sensitive to the order in which the facies 

classes are arranged in the TP matrix. For example, for the 10 substitution strata, two different facies 

class orders in the TP matrix give m= 0.1824 for one row ordering (Fig. 1B) and m=0.7124 for another 

row ordering (Fig. 1D). This sensitivity can be exploited to find the most cyclic arrangement of facies 

for the vertical succession. This is done by calculating a TP matrix for the vertical succession with 

each possible row and column order for the facies classes. Since in this case there are five facies 

classes in each succession, there are 5! or 120 possible combinations of the facies classes, so a TP 

matrix and a resulting m value is calculated for each of these 120 combinations. For each TP matrix a 

mean value of the j=1 and j=-4 diagonal is also calculated so 

𝜇 =  
∑ 𝑑𝑖𝑎𝑔(𝑇𝑗=1)+𝑑𝑖𝑎𝑔(𝑇𝑗=−(𝐹−1))

𝐹
     Eq. 2 

The one-offset diagonal, marked with blue outlined squares in each TP matrix in Figures 1B and 2B, is 

particularly important because any asymmetric cyclicity in the strata leads to high probability values 

on this diagonal (Fig. 1D). Note that symmetric cycles are slightly more complicated because the 

highest p values occur on both the j=1 and the j=-1 diagonals (Burgess, 2016), but this cyclicity is still 

amenable to analysis by this method. Finally, for each TP matrix, the product of m and the one-offset 

diagonal mean is calculated 

 𝑑 = 𝑚𝜇         Eq. 3 

The value of d will be high in cases where high probabilities occur on the one-offset diagonal, so d 

can be used to identify TP matrices that have both a high m value, indicating an element of order in 

the strata, and a high value of  which may be strong evidence for cyclicity. 

 

Using the m and d values to find optimally cyclical arrangements of facies classes 

From the 120 TP matrices, calculated from the 10 substitution strata for all the possible facies class 

row orders, three row and column orders show m values ranging from the lowest calculated, which 



is m=0.1824 (Fig 1C), to the highest value calculated, which is m=0.7124 (Fig. 1D). For this 10 

substitution succession the original facies class coding happens to also give the lowest m value (Fig. 

1B). However, for the 20 substitution succession the original facies coding gives m=0.0772 (Fig. 2B) 

and a different facies row order gives the lowest value m=0.0717 (Fig. 2C).  

For the 10 substitution vertical succession, most calculated TP matrices give m values between 0.1 

and 0.4 with only 20 of the total permutations giving values of 0.7124 (Fig. 1E). Similarly most 

permutations give d<1.5, with only five permutations giving d=5.0745 (Fig. 1F). These five 

permutations represent an ordering of the fives facies classes that defines the optimal cycle for the 

10 substitution succession of strata (e.g. Fig. 1D). Most importantly, this is the same order of facies 

classes that specifies the originally defined cycles in the strata prior to the random substitution of 10 

facies units (Table 1).  

For the 20 substitution vertical succession, the m values range between 0.07 and 0.32, with an equal 

number of permutations giving values between 0.15 and 0.40 (Fig. 2E). Most permutations give d < 

1.2 with only five permutations giving the highest value d=1.3689 (Fig. 2F). These five permutations 

represent an ordering of the five facies classes that defines the optimal cycle for the 20 substitution 

succession of strata (e.g. Fig 2D). Again, most importantly, this is the order of facies classes that 

specifies the originally defined cycles in the strata prior to the random substitution of 20 facies units 

(Table 1).  

These two examples demonstrate how this method can extract the most cyclic facies class order 

from a vertical succession of strata. With these two synthetic strata cases we know that there was a 

strongly ordered cyclical arrangement of facies classes present prior to the random substitutions. 

Elements of this order are still readily apparent in the 10 substitution succession (Fig. 1A), but less so 

in the 20 substitution succession where there is not one single case of a cycle as originally defined 

preserved in the strata (Fig. 2A). Nevertheless, in both cases, analysis of the successions by 

calculating m and d values from the TP matrices for all permutations of facies class row ordering 

reveals the originally cyclical succession of facies classes (Figs. 1D and 2D). Success with controlled 

synthetic cases suggests that the method could be usefully applied for the same purpose to vertical 

successions measured from outcrop or from subsurface data such as boreholes. 

 

The final step – testing for evidence of order 

Burgess (2016) presented a method to use the m value calculated from a TP matrix to determine 

what evidence strata contain for order, for example in the form of cyclicity. The optimal facies class 

order identified for a succession can be used in this method.  

Application of this analysis reveals strong evidence for order in the 10 substitution succession. The 

calculated m value is 0.712, related to high probabilities in the one offset TP matrix diagonal (Fig 3B). 

This m value lies well outside the range of m values produced for randomly shuffled versions of the 

strata (Fig. 3C), giving p=0.0000 (Table 2), showing that the strata are highly unlikely to have arisen 

by chance, and therefore providing strong evidence of order. This is hardly surprising since we know 

that the succession was produced from an originally perfectly cyclical section with only 10 random 

facies substitutions, leaving substantial remnants of cyclicity present (Fig. 3A). However, this is much 



more apparent from the analysis using the optimal facies class ordering; the p value from the same 

method used with the original facies class coding gave p=0.4046 which provides no evidence for 

order in the strata (Burgess, 2016). This indicates the utility of knowing the optimal arrangement of 

facies classes to yield most evidence for order in the analysis. 

Considering the 20 substitution strata, this should contain less evidence for order since the number 

of random substitutions is higher and therefore less cyclicity should be preserved in the strata. For 

the 20 substitution strata m=0.322 (Table 1), reflecting a less obviously ordered TP matrix (Fig 3E). 

This m value falls with the range m values produced for randomly shuffled versions of the strata (Fig. 

3F), giving p=0.0342 (Table 2), providing only weak evidence for order in the strata. However, even 

this weak evidence is more than provided by the same analysis with the original facies coding, from 

which m=0.077 and the p=0.9406. 

 

Conclusions 

These worked examples demonstrates that searching all permutations of the TP matrices to find the 

facies class row numbering that gives the highest m and d value can be used to define an order of 

facies classes that is optimal for defining and identifying any order that may be present in the strata. 

 

 

 

 

Table 1 

Lithology Position 
in Cycle 

Facies 
Code 

Mudstone 1 2 

Siltstone 2 1 

Limestone 3 3 

Fine sandstone 4 5 

Medium sandstone 5 4 

 

 

Table 2 

Name of succession M 
statistic 

P value Interpretation 

10 swap succession, optimal coding 0.712 0.0000 Strong evidence for order 

10 swap succession, original coding 0.182  0.4046 No evidence for order 

20 swap succession, optimal coding 0.322 0.0342 Weak evidence for order 

20 swap succession, original coding 0.077 0.9406 No evidence for order 

 



 

Figure 1. A. The 10 swap vertical succession of facies. Note the examples of preserved original cycles 

starting at 1m, 9m and 14m. B. A TP matrix calculated using the original facies coding, shown on the 

right, giving m = 0.1824 and d = 1.338. Note that the values of j indicate numbering of the offset 

matrix diagonals referred to in equations 1 and 2. The one-offset diagonal cells are indicated with a 

blue outline and include the single cell in the j=-4 diagonal due to the wrap-around effect in the 

matrix. C. A TP matrix calculated using a low-scoring facies coding, shown on the right, giving 

m=0.1824 and d=3.1. D. A TP matrix calculated with the optimal facies coding, shown on the right, 

giving m=0.7124 and d=7.1. A value of m this close to 1 is unlikely to occur by chance arrangement of 

facies. E. A histogram showing frequency of m values from the TP matrices calculated for all 120 

facies class permutations. Most m values are between 0.1 and 0.4 with only 20 of the total 

permutations giving the highest m values of 0.7124. F. A histogram showing the frequency of d 

values from the 120 TP matrices. Most permutations give d<1.5, with only five permutations giving 

d= 5.0745 and defining the optimal cycle shown in D. This is the same order of facies classes for the 

originally defined cycles in these strata (Table 1). 

 

Figure 2. A. The 20 swap vertical succession of facies. Note there are no examples of preserved 

original cycles in this succession. B. A TP matrix calculated using the original facies coding, shown on 

the right, giving m = 0.0772 and d = 2.083. C. A TP matrix calculated using a low-scoring facies 

coding, shown on the right, giving m=0.0.0717 and d=2.2. D. A TP matrix calculated with the optimal 

facies coding, shown on the right, giving m=0.3217 and d=4.3. E. A histogram showing frequency of 

m values from the TP matrices calculated for all 120 facies class permutations. All m values are 

between 0.05 and 0.40. F. A histogram showing the frequency of d values from the 120 TP matrices. 

Most permutations give d<1.2 with only five permutations giving the highest value d=1.3689 and 

defines the optimal cycle shown in D. Once again, this is the same order of facies classes for the 

originally defined cycles in these strata (Table 1) and it has been found despite no occurrences of 

this order of facies in the vertical succession (A). 

 

Figure 3. A. The 10 swap vertical succession of facies. B. The TP matrix calculated for the facies class 

row ordering that generated the highest m and d values. C. Results from the Monte Carlo analysis 

showing that this m value lies well outside the range of m values produced for randomly shuffled 

versions of the strata, giving a p value of 0.0000 (Table 2), showing that the strata are highly unlikely 

to have arisen by chance, and therefore providing strong evidence of order. D. The 20 swap vertical 

succession of facies. E. The TP matrix calculated for the facies class row ordering that generated the 

highest m and d values. F. Results from the Monte Carlo analysis showing that this m value lies 

within the tail of the m values produced for randomly shuffled versions of the strata, giving a p value 

of 0.0342 (Table 2), providing only weak evidence for order in the strata, even when the strata are 

analysed with this optimal facies class row ordering. 
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