GSA DATA REPOSITORY 2016136

"Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy", DOI:10.1130/G37734.1.

ADDITIONAL DETAIL ON METHODS AND RESULTS:

The full results of our analysis, including paleolake valley morphology and basin degradation state for our entire catalog of 425 basins is shown in **Table DR1**. Our complete methods for obtaining these results are described further below.

Paleolake Valley Morphology

We assessed the morphology of the inlet and outlet valleys associated with our catalog of paleolakes based on their level of regional fluvial integration, amount of degradation, and their similarity in morphology to ancient valley networks (e.g., Howard et al., 2005; Irwin et al., 2005; Hynek et al., 2010). A primary metric used for determining the level of regional fluvial integration is the Strahler order, which is related to the number and scale of valley tributaries. A valley with no tributaries is assigned a value of 1, and when two 1st order valleys join they become a 2nd order valley. When two 2nd order valleys join, they become a 3rd order valley, and so on. Therefore, valleys with higher Strahler orders have more tributaries and are more integrated with the landscape (Strahler, 1952). Where possible, Strahler order values were taken from the Hynek et al. (2010) global catalog of valley networks, as referenced in **Table DR1**.

For our analysis, we determined the maximum Strahler order for the valley systems associated with the basin (**Table DR1**). We focused primarily on the Strahler order of the inlet valley; however, for many of the studied open-basin lakes, the basin

watershed is too heavily eroded to confidently identify all inlet valleys and their tributaries. In many of these cases, we instead opted to use the Strahler order of the valley system that the basin outlet valley joins downstream. Such cases are noted in **Table DR1**. For open-basin lakes with eroded watersheds and outlet valleys that do not join major valley network systems downstream, we instead used the inlet valley Strahler order, although note that the values are uncertain and should be viewed as a lower-bound due to potential erosion of lower order valleys in the catchment.

In addition to the Strahler order, we also looked at the qualitative degradation state of the inlet and outlet valleys (i.e., how steep/sharp are the valley walls? do they display evidence for post-incision erosion, modification, or burial by younger material?). Using a combination of these two metrics, we assigned each of the basins in our catalog one of two classes: isolated inlet valleys (e.g., **Figures 1A, DR2**) or valley network-fed (e.g., **Figures 1B,C, DR1, DR3**).

Isolated inlet valley paleolakes are fed by valleys with sharply defined walls and minimal evidence for post-incision modification. Approximately 95% of these valleys have a Strahler order of 1, with the other ~5% having values of 2 (**Figure DR5A**). In the latter cases, the tributaries are often very short and do not extend further than a few kilometers from the main trunk valley.

Valley network-fed paleolakes are fed by more heavily eroded and modified valleys with less sharply defined walls. Approximately 90% of these valleys have a Strahler order ≥ 2 , including over a dozen basins with values ≥ 5 (Figure DR5A). For valley network-fed paleolakes with a Strahler order of 1, the valleys are: (1) heavily eroded, and so the identification of all the related tributaries is highly uncertain, (2) the

outlet of an open-basin lake directly upstream, i.e., they are contained within an integrated lake chain (Fassett and Head, 2008b), or (3) visibly buried by younger material.

We also note that our classification system is distinct from the inlet valley classification for closed-basin lakes presented by Goudge et al. (2015), which is based only on the length of the inlet valley. Goudge et al. (2015) classified basins as having either "long" (>20 km in length) or "short" (<20 km in length) inlet valleys. The classification presented here is instead based on the level of regional integration and degradation state of the valleys. While many of our isolated inlet valleys are classified as "short" by Goudge et al. (2015), and many of our valley network inlets are classified as "long" by Goudge et al. (2015), the relationship is not universal. The catalog presented here contains examples of both "short" (<20 km) inlet valleys classified as valley networks, and "long" (>20 km) inlet valleys classified as isolated inlet valleys.

Paleolake Basin Degradation State

We assessed the degradation state of the basins that host the 425 paleolakes in our catalog to help constrain the relative ages of these paleolakes. As the majority (~85%) of paleolake basins in our catalog are hosted by impact craters, a primary metric we used was the crater degradation state presented by Robbins and Hynek (2012). This degradation state is a qualitative assessment of the erosion and modification of the crater rim, ejecta, and interior, and is divided into four classes, with a value of 1 being assigned to the most degraded craters and 4 being assigned to the morphologically freshest craters (Robbins and Hynek, 2012). As younger craters tend to be less degraded than older craters of approximately the same diameter (e.g., Craddock et al., 1997; Craddock and

Howard, 2002; Mangold et al., 2012; Robbins and Hynek, 2012), higher Robbins and Hynek (2012) degradation state values tend to indicate geologically younger craters. The degradation state of the host basin for a paleolake acts as an upper bound on the relative age of that paleolake – no lake can be older than the basin in which it was contained.

Several (65) open-basin lakes in our catalog are not defined by single impact craters in the Robbins and Hynek (2012) database. Nine of these basins are contained within eroded, circular basins that appear to be heavily eroded craters not mapped by Robbins and Hynek (2012). However, the majority (56) of these basins are contained within heavily eroded inter-crater basins, such as the Eridania basin (Irwin et al., 2002).

Our results (**Figure DR5B**; **Table DR1**) show that approximately 90% of valley network-fed paleolakes are contained within: (1) craters with a Robbins and Hynek (2012) degradation state of 1, (2) an unmapped, heavily eroded impact crater, or (3) a heavily eroded inter-crater basin. This observation is consistent with our conclusion that valley network-fed paleolakes formed early in martian history, during the major era of valley network formation.

In contrast, >40% of isolated inlet valley paleolakes have a Robbins and Hynek (2012) basin degradation state of >1. This is consistent with our conclusion that isolated inlet valley paleolakes formed later in martian history, subsequent to the major era of valley network formation. Although a slight majority of isolated inlet valley paleolakes are contained within craters with a Robbins and Hynek (2012) basin degradation state of 1, this is still consistent with late fluvial activity – old craters can easily be breached by valleys associated with young fluvial activity (i.e., isolated inlet valleys). The important observation is that there are numerous less degraded (i.e., geologically younger) craters

breached by isolated inlet valleys, which requires fluvial activity later in martian history, after these craters formed.

FIGURES:

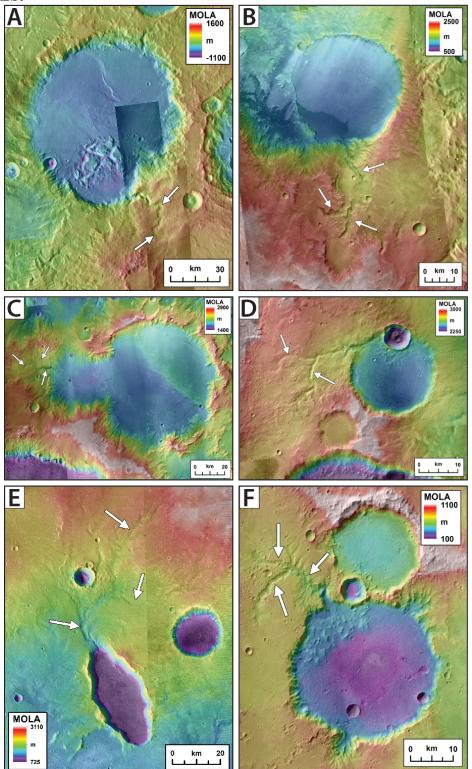


Figure DR1. Additional examples of valley network-fed closed-basin lakes. White arrows indicate inlet valleys. North is up in all images. A: Valley network-fed closed-basin lake at 7.1°N, 38.5°E. MOLA gridded topography overlain on a mosaic of CTX images D03_028576_1839 and P03_002072_1865 and the THEMIS ~100 m/pixel global

daytime infrared mosaic. **B:** Valley network-fed closed-basin lake at -9.7° N, 129.4°E. MOLA gridded topography overlain on a mosaic of CTX images P22 009769 1686, P17 007765 1671, P16 007119 1701, P08 003994 1700, G13 023153 1702, and B17 016349 1690 and the THEMIS ~100 m/pixel global daytime infrared mosaic. C: Valley network-fed closed-basin lake at -11.3°N, 131.4°E. MOLA gridded topography overlain on a mosaic of CTX images B11 013738 1680, P22 009769 1686, P07_003928_1675, G14_023865_1699, G06_020674_1686, D21_035469_1695, D02 028032 1693, D02 027821 1713, B19 016850 1685, and B16 016072 1685 and the THEMIS ~100 m/pixel global daytime infrared mosaic. D: Valley network-fed closed-basin lake at -16.2°N, 45.9°E. MOLA gridded topography overlain on a mosaic of CTX images G22 026756 1645, D18 034259 1638, and B17 016418 1648 and the THEMIS ~100 m/pixel global daytime infrared mosaic. E: Valley network-fed closedbasin lake at -19.4°N, 53.8°E. MOLA gridded topography overlain on a mosaic of HRSC nadir images h2144 0000 and h7200 0000. F: Valley network-fed closed-basin lake at -19.7°N, 75.7°E. MOLA gridded topography overlain on a mosaic of CTX images P17 007767 1603, G21 026478 1603, and D16 033559 1585.

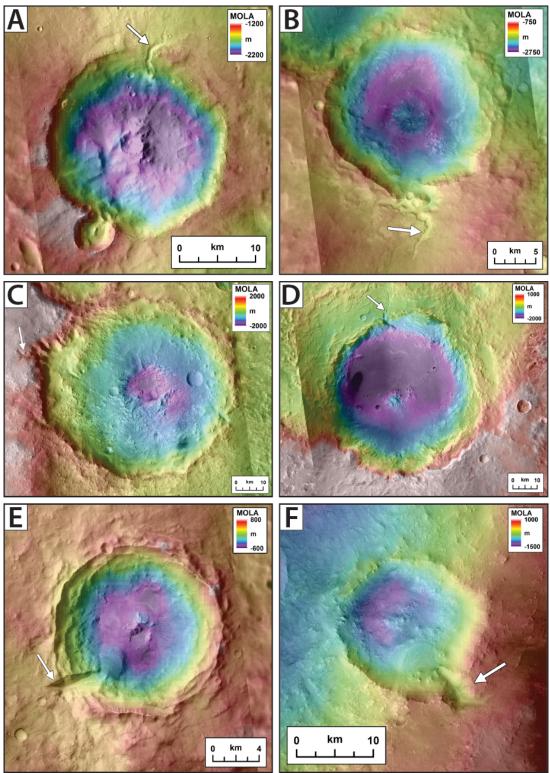


Figure DR2. Additional examples of isolated inlet valley closed-basin lakes. White arrows indicate inlet valleys. North is up in all images. **A:** Isolated inlet valley closed-basin lake at 26.2°N, 24.1°E. MOLA gridded topography overlain on a mosaic of CTX image G23_027350_2042 and the THEMIS ~100 m/pixel global daytime infrared mosaic. **B:** Isolated inlet valley closed-basin lake at 16.2°N, -53.2°E. MOLA gridded

topography overlain on a mosaic of CTX image G14_023687_1963 and the THEMIS ~100 m/pixel global daytime infrared mosaic. **C:** Isolated inlet valley closed-basin lake at 21.4°N, 58.1°E. MOLA gridded topography overlain on a mosaic of CTX images P17_007807_2010, P16_007161_2011, P15_006871_2020, P14_006660_1996, P13_005948_2017 and the THEMIS ~100 m/pixel global daytime infrared mosaic. **D:** Isolated inlet valley closed-basin lake at 2.4°N, -51.6°E. MOLA gridded topography overlain on a mosaic of CTX image P06_003539_1825, G20_026166_1816, G18_025243_1835, and D04_028909_1829 and the THEMIS ~100 m/pixel global daytime infrared mosaic. **E:** Isolated inlet valley closed-basin lake at 1.5°N, 116.3°E. MOLA gridded topography overlain on a mosaic of CTX image B16_015967_1814 and the THEMIS ~100 m/pixel global daytime infrared mosaic. **F:** Isolated inlet valley closed-basin lake at 22.1°N, 66.8°E. MOLA gridded topography overlain on a mosaic of CTX images P14_006541_2031 and G02_019107_2021.

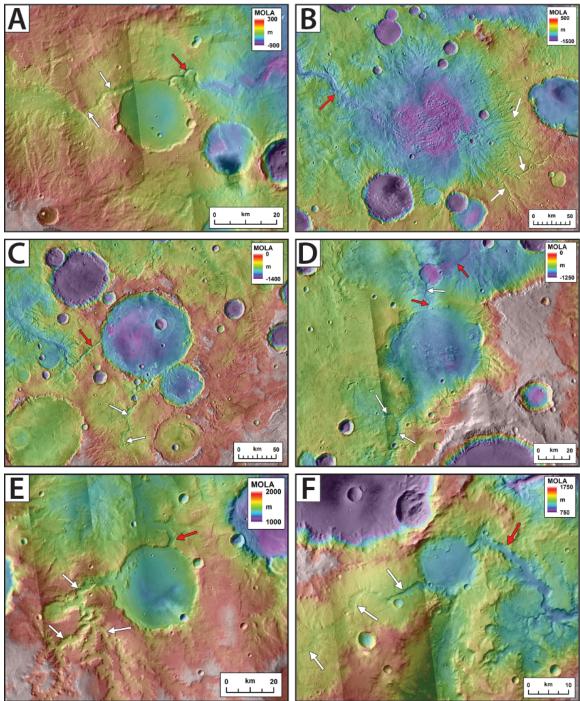


Figure DR3. Additional examples of valley network-fed open-basin lakes. White arrows indicate inlet valleys and red arrows indicate outlet valleys. North is up in all images. A: Valley network-fed open-basin lake at -12.4° N, 157.1°E. MOLA gridded topography overlain on a mosaic of CTX images P19_008555_1676, P12_005839_1672, G04_019750_1675, B22_018049_1678, and B20_017627_1676 and the THEMIS ~100 m/pixel global daytime infrared mosaic. B: Valley network-fed open-basin lake at -21.7° N, -12.3° E. MOLA gridded topography overlain on the THEMIS ~100 m/pixel global daytime infrared mosaic. C: Valley network-fed open-basin lake at -10.6° N,

2.8°E. MOLA gridded topography overlain on the THEMIS ~100 m/pixel global daytime infrared mosaic. **D**: Valley network-fed open-basin lakes at -23.1° N, -23.5° E (main basin) and -22.3° N, -23.6° E (smaller basin to north). Note that the outlet of the main basin directly feeds the smaller basin to the north. MOLA gridded topography overlain on a mosaic of CTX images G18_025163_1588, G16_024596_1573, B20_017515_1569, and B17_016170_1572 and the THEMIS ~100 m/pixel global daytime infrared mosaic. **E**: Valley network-fed open-basin lake at -6.4° N, 42.0°E. MOLA gridded topography overlain on a mosaic of CTX images P22_009759_1735, P05_002784_1732, G22_026822_1737, and D19_034536_1754 and the THEMIS ~100 m/pixel global daytime infrared mosaic. **F**: Valley network-fed open-basin lake at -7.3° N, 131.1°E. MOLA gridded topography overlain on a mosaic of CTX images G14_023865_1699, G04_019896_1734, G03_019474_1713, D13_032423_1735, D04_028665_1736, D02_027821_1713, and B21_017773_1752 and the THEMIS ~100 m/pixel global daytime infrared mosaic.

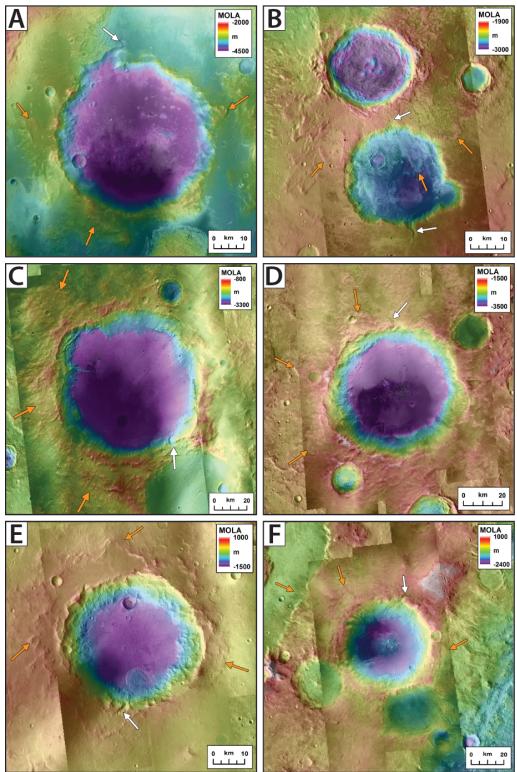


Figure DR4. Additional examples of closed-basin lakes with isolated inlet valleys (white arrows) hosted by, or crosscutting, impact craters with continuous ejecta deposits (orange arrows). A: Isolated inlet valley closed-basin lake at 22.1°N, -8.2°E. MOLA gridded topography overlain on a mosaic of CTX images P19_008495_2015, P17_007704_2014, P17_007493_2022, and P12_005845_2021. B: Isolated inlet valley closed-basin lake at

34.4°N, 3.2°E. MOLA gridded topography overlain on a mosaic of CTX images B18 016749 2126, B16 015971 2144, and B02 010591 2152 and the THEMIS ~100 m/pixel global daytime infrared mosaic. C: Isolated inlet valley closed-basin lake at 10.9°N, -14.0°E. MOLA gridded topography overlain on a mosaic of CTX images P22 009761 1897, P22 009550 1916, D01 027457 1902, B20 017475 1901, B08 012596 1930, B02 010473 1885, and B02 010328 1898 and the THEMIS ~100 m/pixel global daytime infrared mosaic. D: Isolated inlet valley closed-basin lake at 8.5°N, -15.8°E. MOLA gridded topography overlain on a mosaic of CTX images P19 008614 1892, P16 007467 1875, P12 005542 1864, D14 032771 1886, D08 030490 1890, and B11 013796 1898 and the THEMIS ~100 m/pixel global daytime infrared mosaic. E: Isolated inlet valley closed-basin lake at 7.0°N, -53.5°E. MOLA gridded topography overlain on a mosaic of CTX images B10 013626 1882, G14 023753 1841, G04 019784 1869, and B07 012281 1881 and the THEMIS ~100 m/pixel global daytime infrared mosaic. F: Isolated inlet valley closed-basin lake at 20.7°N, 75.8°E. MOLA gridded topography overlain on a mosaic of CTX images P15 006778 2002, D15 033137 1996, and B02 010272 2009 and the THEMIS ~100 m/pixel global daytime infrared mosaic.

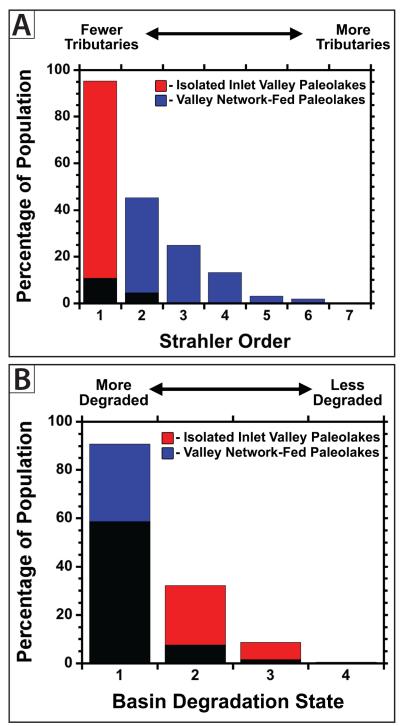


Figure DR5. A: Histogram of associated valley Strahler order for isolated inlet valley paleolakes (red) and valley network-fed paleolakes (blue). See also **Table DR1**. B: Histogram of host basin degradation state from Robbins and Hynek (2012) for isolated inlet valley paleolakes (red) and valley network-fed paleolakes (blue). Paleolakes not contained in impact craters classified by Robbins and Hynek (2012) are primarily contained within heavily degraded inter-crater basins, so are assigned a value of 1 for this histogram. See also **Table DR1**.

TABLES

TABLE DR1. CATALOG OF STUDIED PALEOLAKES.

Basin Type [*]	Basin # [†]	Lat. (°N)	Lon. (°E)	Valley Type [§]	Basin Degradation State [#]	Notes on Basin Degradation	Strahler Order	Notes on Strahler Order	Strahler Order Reference
CBL	1	36.0	-8.1	II	1		1		
CBL	2	22.1	-8.2	II	2		1		
CBL	3	14.8	-51.7	II	2		1		
CBL	4	12.0	-52.7	II	1		1		Hynek et al., 2010
CBL	5	10.2	-16.6	II	2		1		Hynek et al., 2010
CBL	6	7.1	38.5	VN	1		2		Hynek et al., 2010
CBL	7	5.3	-58.6	VN	3		2		Hynek et al., 2010
CBL	8	-3.3	88.3	VN	1		4		Hynek et al., 2010
CBL	9	-5.8	42.8	VN	1		2		Hynek et al., 2010
CBL	10	-5.9	- 149.5	II	1		1		Hynek et al., 2010
CBL	11	-7.0	31.8	II	1		1		
CBL	12	-7.8	25.3	II	2		1		Hynek et al., 2010
CBL	13	-8.3	128.7	VN	1		6		Hynek et al., 2010
CBL	14	-9.7	129.4	VN	2		3		Hynek et al., 2010
CBL	15	-13.3	176.6	VN	1		2		Hynek et al., 2010

CBL	16	-13.8	142.5	II	1		1	Hynek et al., 2010
CBL	10	-13.8	142.3	11	1		1	Hynek et al.,
CBL	17	-15.2	61.3	VN	1		2	2010
CBL	18	-18.8	59.2	VN	2		3	Hynek et al., 2010
CBL	19	-19.4	52.0	VN	1		2	Hynek et al., 2010
CBL	20	-20.2	172.0	II	2		1	
CBL	21	55.0	-84.4	II	3		1	
CBL	22	47.5	-68.7	VN	1		2	Hynek et al., 2010
CBL	23	44.2	-57.1	II	1		1	Hynek et al., 2010
CBL	24	41.1	-2.9	II	3		1	Hynek et al., 2010
CBL	25	38.0	38.0	II	1		1	
CBL	26	38.4	47.4	VN	1		2	
CBL	27	37.9	54.6	VN	1		2	
CBL	28	37.1	12.5	II	1		1	
CBL	29	35.8	-12.1	II	1		1	
CBL	30	35.7	-55.2	II	1		1	
CBL	31	36.0	- 141.8	II	2		1	
CBL	32	34.7	- 137.4	II	1		1	
CBL	33	34.7	-55.3	II	1		1	
CBL	34	33.3	-54.7	II	1		1	
CBL	35	33.1	-9.2	II	1		1	
CBL	36	34.4	3.2	II	1	Basin is more heavily degraded than inlet valley.	1	

CBL	37	33.6	37.9	VN	1		2		Hynek et al., 2010
CBL	38	32.2	52.0	II	1		1		Hynek et al., 2010
CBL	39	32.3	40.1	II	1		1		
CBL	40	31.6	-5.7	II	2		1		
CBL	41	29.1	17.1	II	1		1		
CBL	42	29.6	56.5	II	1		1		
CBL	43	26.5	43.9	II	2		1		
CBL	44	26.2	37.5	II	2		1		
CBL	45	26.2	24.1	II	2		1		
CBL	46	27.1	21.4	II	2		1		Hynek et al., 2010
CBL	47	26.5	19.1	II	2		1		
CBL	48	26.1	10.0	II	2		1		Hynek et al., 2010
CBL	49	27.7	- 124.5	II	3		1		
CBL	50	25.1	-97.5	II	3		2	Valley formation associated with geothermal heat from Ceraunius Tholus (Fassett and Head, 2007).	Hynek et al., 2010
									Hynek et al.,
CBL	51	31.4	-12.9	II	3		1		2010
CBL	52	26.3	-7.8	II	1		1		
CBL	53	23.8	42.0	II	1		1		
CBL	54	21.4	58.1	II	2		1		_
CBL	55	21.4	37.8	II	2		1		_
CBL	56	20.4	-20.9	II	1		1		
CBL	57	18.1	-23.0	II	1	Basin is more heavily	1		

						degraded than inlet		
						valley.		
CBL	58	19.2	-18.6	II	1		1	
CBL	59	17.7	3.8	VN	1		2	Hynek et al., 2010
CBL	60	19.0	4.9	II	2		1	
CBL	61	19.9	12.0	II	2		2	Hynek et al., 2010
CBL	62	16.7	26.9	II	1		1	
CBL	63	16.2	-53.2	II	2		1	Hynek et al., 2010
						Basin is more heavily degraded than inlet		
CBL	64	14.3	-24.4	II	1	valley.	1	
CBL	65	13.0	-14.2	II	1		1	
CBL	66	13.2	9.2	II	3		2	
CBL	67	12.8	56.4	II	1		1	
CBL	68	10.6	39.5	VN	1		2	Hynek et al., 2010
CBL	69	10.9	-14.0	II	2		1	
CBL	70	12.5	-49.0	II	1	Basin is more heavily degraded than inlet valley.	1	
CBL	70	11.6	-51.3	II	2	vancy.	1	
CBL	72	8.4	-56.9	II	1		1	
CBL	72	8.2	-49.3	II	2		1	
-	73	8.2 9.9			3			
CBL			-46.6	II			1	
CBL	75	7.8	-39.1	II	2		1	Hynek et al.,
CBL	76	8.0	-26.2	II	1		1	2010
CBL	77	8.5	-15.8	II	2		1	
CBL	78	5.8	107.4	II	2		1	

		1						
CBL	79	7.0	106.8	II	2	1		
CBL	80	5.0	28.2	II	1	1		
CBL	81	5.1	-50.8	II	1	1		
CBL	82	7.0	-53.5	II	3	1		
CBL	83	2.4	-51.6	II	3	2	Inlet valley has only very minor tributaries.	
CBL	84	4.1	-40.5	II	1	1		
CBL	85	3.5	-40.2	II	1	1		
CBL	86	4.0	-38.6	II	1	1		
CBL	87	3.1	35.2	VN	1	2		
CBL	88	3.9	33.3	II	1	1		
CBL	89	3.0	45.5	VN	1	2		Hynek et al., 2010
CBL	90	3.2	101.4	II	2	1		
CBL	91	3.7	113.5	II	3	1		
CBL	92	1.5	116.3	II	4	1		
CBL	93	-1.7	-49.2	II	1	1		
CBL	94	-1.4	-39.7	II	2	2	Inlet valley has only very minor tributaries.	Hynek et al., 2010
CBL	95	-1.4	-36.9	II	2	1		
CBL	96	-2.9	67.7	II	2	1		
CBL	97	-5.2	137.8	VN	2	4		Hynek et al., 2010
CBL	98	-6.3	40.6	II	1	1		
CBL	99	-4.8	2.0	II	2	1		Hynek et al., 2010
CBL	100	-6.3	-4.4	II	1	1		
CBL	101	-9.3	- 159.4	II	1	1		
CBL	102	-8.2	- 159.4	II	1	1		

		T						
CBL	103	-9.9	- 158.1	II	2		1	
CBL	104	-9.5	- 148.0	II	1		1	
CDL	101	7.5	-		1		1	
CBL	105	-7.7	146.6	II	1		1	
CBL	106	-10.0	-53.7	II	2		1	
CBL	107	-9.6	-11.1	II	2		1	
CBL	108	-8.2	3.0	II	1		1	
CBL	109	-7.8	30.4	II	1		1	
CBL	110	-9.0	38.1	II	1		1	
CBL	111	-9.6	144.1	II	3		1	Hynek et al., 2010
CBL	112	-9.4	148.8	II	2		1	Hynek et al., 2010
CBL	113	-10.6	139.7	II	2		1	Hynek et al., 2010
CBL	114	-10.8	136.4	II	1		1	
CDI	115	11.2	121.4	VN	2	Level of basin degradation is more consistent with a Robbins and Hynek (2012) basin degradation	2	Hynek et al.,
CBL	115	-11.3	131.4	VN	2	state of 1.	2	2010
CBL	116	-11.5	124.6	II	1		1	
CBL	117	-12.0	123.7	II	1		1	
CBL	118	-10.8	91.2	II	2		1	
CBL	119	-11.1	18.8	II	1		1	
CBL	120	-11.6	16.5	II	1		1	Hynek et al., 2010
CBL	121	-11.6	12.0	II	2		1	
CBL	122	-12.2	-17.0	II	1		1	

		1	1				1	1
CBL	123	-12.1	- 163.4	II	2		1	
CBL	124	-13.7	6.8	II	1		1	
CBL	125	-13.9	40.4	II	1		1	
CBL	126	-13.3	50.5	VN	2		3	
CBL	127	-13.9	78.5	II	2		1	
CBL	128	-13.8	99.1	II	1		1	
CBL	129	-13.4	124.9	II	1		1	
CBL	130	-16.7	169.4	II	2		1	
CBL	131	-15.6	79.3	II	1		1	
CBL	132	-16.2	45.9	VN	1		2	
CBL	133	-16.9	45.9	II	2		1	
CBL	134	-17.5	44.9	II	1		1	
CBL	135	-16.7	28.9	II	1		1	
CBL	136	-16.5	25.7	II	1		1	
CBL	137	-16.9	-37.8	II	1		1	
CBL	138	-15.5	- 155.5	II	2		1	
CBL	138	-19.5	-13.3	II	1		1	
CBL	139	-19.5	-13.5	II	1		1	
CBL	140	-19.9	46.2	II	2		2	
CBL	141	-19.6	46.2	11	2	Level of basin	2	
CBL	142	-19.4	53.8	VN	3	degradation is more consistent with a Robbins and Hynek (2012) basin degradation state of 2.	3	Hynek et al., 2010
CBL	143	-19.7	75.7	VN	1		3	Hynek et al., 2010
CBL	144	-18.2	79.8	II	1		1	

		1			1			T]
CBL	145	-19.6	84.3	II	2		1	
CBL	146	-20.4	176.9	II	1		1	
CBL	147	-21.8	162.7	VN	1		2	
CBL	148	-20.5	47.4	II	1		1	Hynek et al., 2010
CBL	149	-22.6	-56.6	II	2		1	Hynek et al., 2010
CBL	150	-23.4	- 169.1	II	1		1	
CBL	151	-24.2	-44.9	II	1		1	
CBL	152	-25.1	-8.4	II	1		1	
CBL	153	-23.8	52.6	II	3		1	
CBL	154	-25.3	71.8	II	1		1	Hynek et al., 2010
CBL	155	-24.4	86.6	II	2		1	Hynek et al., 2010
CBL	156	-27.6	141.5	II	1		1	Hynek et al., 2010
CBL	157	-27.3	127.7	VN	1		3	Hynek et al., 2010
GDI	1.50		07.6			Level of basin degradation is more consistent with a Robbins and Hynek (2012) basin degradation		Hynek et al.,
CBL	158	-25.7	97.5	VN	3	state of 1.	3	2010
CBL	159	-27.4	67.5	II	1		1	
CBL	160	-25.8	173.8	II	1		1	
CBL	161	-28.6	- 167.2	II	1		1	
CBL	162	-29.3	-32.1	II	1		1	
CBL	163	-28.8	-6.6	II	1		1	Hynek et al., 2010

CBL	164	-29.0	139.1	II	1	1		
CDI	1.65	21.5	100.0		1	2		Hynek et al.,
CBL	165	-31.5	128.3	VN	l	2		2010
CBL	166	-30.9	35.8	II	1	1		
CBL	167	-30.1	32.5	II	1	1		
CBL	168	-31.3	20.1	II	1	1		
CBL	169	-32.5	10.6	II	1	2	Inlet valley has only very minor tributaries.	Hynek et al., 2010
CBL	170	-31.4	-10.9	II	1	1		
CBL	171	-31.5	-20.3	II	1	1		
CBL	172	-32.0	-22.2	II	1	1		
CBL	173	-30.7	- 102.9	II	1	1		
CBL	174	-33.8	-48.6	II	1	1		Hynek et al., 2010
CDI	1.7.5	24.0	40.0		1			Hynek et al.,
CBL	175	-34.9	-48.0	II	1	1		2010
CBL	176	-33.2	-32.4	II	1	1		
CBL	177	-34.6	-31.9	II	1	1		TT 1 / 1
CBL	178	-34.4	-13.0	II	2	 1		Hynek et al., 2010
CBL	179	-34.3	15.2	II	2	1		
CBL	180	-34.2	18.2	II	2	1		
CBL	181	-33.9	45.3	II	2	1		
CBL	182	-33.6	48.1	II	2	1		
CBL	183	-37.7	37.5	II	1	1		
CBL	184	-37.4	10.5	II	1	1		
CBL	185	-36.4	-7.5	II	1	1		
CBL	186	-37.9	-69.1	II	2	1		
CBL	187	-36.6	-72.8	II	1	1		Hynek et al., 2010

CBL	188	-39.5	-12.6	II	1		1		Hynek et al., 2010
CBL	189	-39.1	23.9	II	2		1		
CBL	190	-40.7	43.6	II	2		1		Hynek et al., 2010
CBL	191	-41.5	-0.5	II	1		1		
CBL	192	-41.3	-62.5	II	2		2		Hynek et al., 2010
CBL	193	-41.4	-76.3	II	2		1		
CBL	194	-42.5	- 150.7	II	1		1		
CBL	195	-45.3	122.8	II	1		1		
CBL	196	-46.3	- 163.8	II	1		1		
CBL	197	-48.3	-13.2	II	1		1		Hynek et al., 2010
CBL	198	-54.4	- 100.4	II	1		1		
CBL	199	22.1	66.8	II	3		1		
CBL	200	-9.9	144.5	VN	1		2		Hynek et al., 2010
CBL	201	-12.0	125.1	II	1		1		
CBL	202	-37.5	- 158.8	II	3		1		
CBL	203	-24.0	-33.3	VN	1		3		
CBL	204	-26.0	-34.0	VN	2		4		Hynek et al., 2010
CBL	205	20.7	75.8	II	3		1		
		1.5	116.0			Paleolake is contained within a heavily eroded			Hynek et al.,
OBL	1	1.5	116.9	VN	N/A	inter-crater basin.	3	Value taken from outlet	2010
OBL	2	-9.3	151.8	VN	1		3	valley system.	
OBL	3	-15.2	166.8	VN	N/A	Paleolake is contained	2		Hynek et al.,

						within a heavily eroded			2010
						inter-crater basin.			
			-						Hynek et al.,
OBL	4	-14.6	174.9	VN	1		2		2010
						Level of basin			
						degradation is more			
						consistent with a			
						Robbins and Hynek			
	_		-			(2012) basin degradation			Hynek et al.,
OBL	5	-10.3	161.6	VN	2	state of 1.	4		2010
									Hynek et al.,
OBL	6	-11.5	152.8	VN	1		2		2010
	_						_		Hynek et al.,
OBL	7	-12.4	157.1	VN	1		5		2010
						Paleolake is contained			
	_				/ .	within a heavily eroded		Value taken from outlet	Hynek et al.,
OBL	8	18.3	42.2	VN	N/A	inter-crater basin.	4	valley system.	2010
						Paleolake is contained			
	_				/ .	within a heavily eroded		Value taken from outlet	Hynek et al.,
OBL	9	27.5	59.7	VN	N/A	inter-crater basin.	3	valley system.	2010
								Insufficient image	
							/ .	coverage to confidently	
OBL	10	21.1	60.9	VN	1		N/A	assign a Strahler order.	
								Paleolake is directly fed	
								by the outlet of open-	
OBL	11	26.6	63.0	VN	1		1	basin lake #10.	
						Paleolake is contained			
						within a heavily			
						degraded crater not			
0.77					27/1	mapped by Robbins and			Hynek et al.,
OBL	12	-1.3	101.0	VN	N/A	Hynek (2012).	3		2010
						Paleolake is contained			
ODI	10		100.0	101		within a heavily eroded	2		Hynek et al.,
OBL	13	0.9	102.0	VN	N/A	inter-crater basin.	3		2010
						Paleolake is contained			
ODI	1.4		100 (101		within a heavily eroded	2		Hynek et al.,
OBL	14	2.4	102.4	VN	N/A	inter-crater basin.	2		2010

OBL	15	-18.3	- 169.2	VN	1		3	Value taken from outlet valley system.	Hynek et al., 2010
						Paleolake is contained			
						within a heavily			
						degraded crater not			
ODI	1.6		10.0	. D. I	27/4	mapped by Robbins and	6		Hynek et al.,
OBL	16	-21.7	-12.3	VN	N/A	Hynek (2012).	6		2010
OBL	17	25.0	-8.6	VN	1		2		Hynek et al., 2010
OBL	1 /	25.6	-8.0	VIN	1		2		Hynek et al.,
OBL	18	-8.8	-7.2	VN	1		3		2010
ODL	10	-0.0	-7.2	VIN	1		5		Hynek et al.,
OBL	19	-10.6	2.8	VN	1		5		2010
	- /								Hynek et al.,
OBL	20	31.3	60.1	VN	1		2		2010
								Value taken from outlet	Hynek et al.,
OBL	21	30.9	63.0	VN	1		3	valley system.	2010
						Paleolake is contained			
						within a heavily eroded		Value taken from outlet	Hynek et al.,
OBL	22	-3.7	78.4	VN	N/A	inter-crater basin.	2	valley system.	2010
						Paleolake is contained			TT 1 (1
OBL	22	2.4	85.0	VN	NT/A	within a heavily eroded inter-crater basin.	4		Hynek et al., 2010
OBL	23	-2.4	85.0	VIN	N/A	Paleolake is contained	4		2010
						within a heavily eroded			
OBL	24	-4.5	85.0	VN	N/A	inter-crater basin.	2		
OBE		1.0	00.0		10/11				Hynek et al.,
OBL	25	-0.1	89.7	VN	1		2		2010
	-								Hynek et al.,
OBL	26	-4.6	90.0	VN	1		5		2010
									Hynek et al.,
OBL	27	-2.8	108.2	VN	1		3		2010
								Value taken from outlet	Hynek et al.,
OBL	28	-4.0	109.2	VN	1		3	valley system.	2010
ODI	•		110.0	TDI					Hynek et al.,
OBL	29	-2.7	110.9	VN	1		4		2010

OBL	30	-11.7	144.1	VN	1		2		Hynek et al., 2010
								Inlet valley is clearly buried by younger	Hynek et al.,
OBL	31	-10.8	154.5	VN	1		1	material.	2010
OBL	32	-23.1	-23.5	VN	1		2		Hynek et al., 2010
OBL	33	-5.5	-5.3	VN	1		2		Hynek et al., 2010
						Paleolake is contained within a heavily eroded		Inlet valleys are heavily eroded/modified, so	
OBL	34	-3.4	102.3	VN	N/A	inter-crater basin.	3	value is uncertain.	
OBL	35	-27.9	3.9	VN	N/A	Paleolake is contained within a heavily eroded inter-crater basin.	4	Value taken from outlet valley system.	Hynek et al., 2010
_						Paleolake is contained			
						within a heavily eroded			Hynek et al.,
OBL	36	13.2	31.0	VN	N/A	inter-crater basin.	3		2010
						Paleolake is contained			
						within a heavily eroded			Hynek et al.,
OBL	37	10.0	31.6	VN	N/A	inter-crater basin.	6		2010
OBL	38	1.3	35.5	VN	1		4		Hynek et al., 2010
OBL	39	-6.4	42.0	VN	1		4		Hynek et al., 2010
								Paleolake is directly fed by the outlet of open-	Hynek et al.,
OBL	40	29.9	25.6	VN	1		1	basin lake #117.	2010
								Inlet valleys are heavily	
								eroded/modified, so	Hynek et al.,
OBL	41	24.4	31.7	VN	1		2	value is uncertain.	2010
OBL	42	20.0	36.4	VN	1		4		Hynek et al., 2010
OBL	43	19.0	35.1	VN	1		2		Hynek et al., 2010
OBL	44	16.7	33.6	VN	N/A	Paleolake is contained	3		

						within a heavily eroded			
						inter-crater basin.			Calcar et al
OBL	45	18.4	77.7	VN	1		3		Schon et al., 2012
OBL	45	10.4	//./	VIN	1	Paleolake is contained	5		2012
						within a heavily			
						degraded crater not			
						mapped by Robbins and			Hynek et al.,
OBL	46	-10.3	127.2	VN	N/A	Hynek (2012).	3		2010
									Hynek et al.,
OBL	47	-10.4	128.0	VN	1		3		2010
									Hynek et al.,
OBL	48	-7.3	131.1	VN	1		3		2010
									Hynek et al.,
OBL	49	-4.6	127.1	VN	1		5		2010
ODI	-0		1.5.5.4				-		Hynek et al.,
OBL	50	-14.4	175.4	VN	l		5		2010
						Paleolake is contained			Harrals at al
OBL	51	-30.1	176.6	VN	N/A	within a heavily eroded inter-crater basin.	3		Hynek et al., 2010
OBL	51	-30.1	1/0.0	VIN	IN/A	Inter-crater basin.	5		Hynek et al.,
OBL	52	8.5	-48.0	VN	1		3		2010
ODL	52	0.5	10.0	11	1				Hynek et al.,
OBL	53	33.8	17.1	VN	1		3		2010
_									Hynek et al.,
OBL	54	34.6	18.2	VN	1		2		2010
									Hynek et al.,
OBL	55	34.2	18.0	VN	1		2		2010
								Inlet valley is clearly	
			-					buried by younger	Hynek et al.,
OBL	56	-12.1	155.8	VN	1		1	material.	2010
						Paleolake is contained			TT 1 . 1
ODI		1.5.4	-		NT/A	within a heavily eroded	2		Hynek et al.,
OBL	57	-15.4	158.6	VN	N/A	inter-crater basin.	2	Tulat collectional act	2010
OBL	58	27.9	26.6	VN	1		1	Inlet valley is clearly	Hynek et al., 2010
OBL	38	27.9	20.0	VIN	1		1	buried by younger	2010

								material.	
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	59	-20.3	59.6	VN	1		3	value is uncertain.	
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	60	-21.0	60.6	VN	1		2	value is uncertain.	
									Hynek et al.,
OBL	63	-0.8	125.2	VN	1		4		2010
									Hynek et al.,
OBL	64	-1.6	126.6	VN	1		4		2010
									Hynek et al.,
OBL	65	-23.4	-12.3	VN	1		2		2010
									Hynek et al.,
OBL	66	-19.4	-6.3	VN	1		4		2010
									Hynek et al.,
OBL	67	-21.5	4.1	VN	1		2		2010
						Paleolake is contained			
						within a heavily eroded		Value taken from outlet	
OBL	68	-10.3	151.4	VN	N/A	inter-crater basin.	1	valley system.	
								Paleolake is directly fed	
								by the outlet of open-	
OBL	69	27.3	61.4	VN	1		1	basin lake #11.	
							_		Hynek et al.,
OBL	70	-6.9	135.4	VN	1		3		2010
						Paleolake is contained			
ODI			126.5	TDI		within a heavily eroded			Hynek et al.,
OBL	71	-6.7	136.5	VN	N/A	inter-crater basin.	4		2010
									Hynek et al.,
OBL	72	-9.4	134.9	VN	1		4		2010
						Paleolake is contained			
ODI	70	11.0	124.1	101		within a heavily eroded			Hynek et al.,
OBL	73	-11.2	134.1	VN	N/A	inter-crater basin.	4		2010
								Inlet valleys are heavily	
0.51	<i></i>		-	101	_			eroded/modified, so	
OBL	74	-9.5	167.2	VN	2		2	value is uncertain.	

OBL	75	-10.2	- 165.6	VN	1		3		Hynek et al., 2010
OBL	76	-5.9	- 162.9	VN	N/A	Paleolake is contained within a heavily degraded crater not mapped by Robbins and Hynek (2012).	2		Hynek et al., 2010
OBL	77	-23.2	134.5	VN	1		3	Inlet valleys are heavily eroded/modified, so value is uncertain.	
OBL	78	0.1	123.3	VN	2		4	Value taken from outlet valley system.	Hynek et al., 2010
OBL	79	-14.0	161.1	VN	1		2	Inlet valleys are heavily eroded/modified, so value is uncertain.	
OBL	80	-22.8	159.5	VN	1		2		Hynek et al., 2010
OBL	81	-4.2	-1.7	VN	1		4		Hynek et al., 2010
OBL	82	-2.6	62.2	VN	2	Level of basin degradation is more consistent with a Robbins and Hynek (2012) basin degradation state of 1.	4	Value taken from outlet valley system.	Hynek et al., 2010
OBL	83	-26.9	-18.3	VN	1		3		Hynek et al., 2010
OBL	84	-20.5	87.0	VN	1		4		Hynek et al., 2010
OBL	85	-13.3	96.5	VN	N/A	Paleolake is contained within a heavily eroded inter-crater basin.	2		Hynek et al., 2010
OBL	86	-21.6	56.2	VN VN	N/A	Paleolake is contained within a heavily eroded inter-crater basin.	2	Value taken from outlet valley system.	Hynek et al., 2010
OBL	87	-6.3	94.3	VIN	1		4	Value taken from outlet	Hynek et al.,

								valley system.	2010
								Value taken from outlet	Hynek et al.,
OBL	88	-8.7	149.4	VN	1		1	valley system.	2010
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	89	-16.0	167.3	VN	1		2	value is uncertain.	
									Hynek et al.,
OBL	90	-20.0	170.7	VN	1		3		2010
								Paleolake is directly fed	
ODI		1.5.4	1 = 1 0	T D I				by the outlet of open-	Hynek et al.,
OBL	91	-17.4	171.3	VN	1		1	basin lake #92.	2010
						Paleolake is contained			TT 1 (1
OBL	02	10.2	171.2	V AT		within a heavily eroded	1	Value taken from outlet	Hynek et al., 2010
OBL	92	-18.2	171.3	VN	N/A	inter-crater basin.	1	valley system.	
OBL	93	-12.8	16.4	VN	1		2		Hynek et al., 2010
OBL	93	-12.0	10.4	V IN	1		2		Hynek et al.,
OBL	94	-53.4	-13.7	VN	1		2		2010
ODL	7	-33.4	-15.7	VIN	1		2		Hynek et al.,
OBL	95	-22.5	-20.5	VN	1		4		2010
OBL	96	-29.8	147.2	VN	1		2		2010
OBL	90	-29.0	14/.2	VIN	1		2	Paleolake is directly fed	
								by the outlet of open-	
OBL	97	-29.9	147.6	VN	1		1	basin lake #96.	
0.02		_>.>	1.7.0	, , , ,	-		-		Hynek et al.,
OBL	98	-19.7	78.1	VN	1		2		2010
						Paleolake is contained			
						within a heavily eroded			Hynek et al.,
OBL	99	-18.9	77.6	VN	N/A	inter-crater basin.	3		2010
									Hynek et al.,
OBL	100	-23.4	71.0	VN	1		2		2010
OBL	101	-23.1	76.5	VN	1		2		
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	102	-23.2	75.6	VN	1		2	value is uncertain.	
OBL	103	-22.1	75.9	VN	N/A	Paleolake is contained	2	Inlet valleys are heavily	

Hynek et al., 2010 Hynek et al., 2010 Hynek et al., 2010 Hynek et al., 2010
2010 Hynek et al., 2010 Hynek et al., 2010 Hynek et al.,
2010 Hynek et al., 2010 Hynek et al., 2010 Hynek et al.,
Hynek et al., 2010 Hynek et al., 2010 Hynek et al.,
2010 Hynek et al., 2010 Hynek et al.,
2010 Hynek et al., 2010 Hynek et al.,
Hynek et al., 2010 Hynek et al.,
2010 Hynek et al.,
2010 Hynek et al.,
2010 Hynek et al.,
2010 Hynek et al.,
Hynek et al.,
2010
ed .
Hynek et al.,
2010
Hynek et al.,
2010
Hynek et al.,
2010
Hynek et al., 2010
red
let Hynek et al.,
f

								Inlet valleys are heavily eroded/modified, so	
OBL	115	26.8	74.4	VN	1		2	value is uncertain.	
OBL	116	-3.8	93.4	VN	1		2		Hynek et al., 2010
OBL	117	28.7	26.2	VN	N/A	Paleolake is contained within a heavily eroded inter-crater basin.	1	Value taken from outlet valley system.	Hynek et al., 2010
OBL	118	32.0	68.9	VN	1		2	Inlet valleys are heavily eroded/modified, so value is uncertain.	
OBL	120	30.3	68.0	VN	1		1	Inlet valleys are heavily eroded/modified, so value is uncertain.	Hynek et al., 2010
OBL	121	-16.1	- 174.5	VN	1		2	Value taken from outlet valley system.	Hynek et al., 2010
OBL	122	-60.1	-31.7	VN	N/A	Paleolake is contained within a heavily degraded crater not mapped by Robbins and Hynek (2012).	2		Hynek et al., 2010
OBL	123	-20.4	-21.7	VN	N/A	Paleolake is contained within a heavily eroded inter-crater basin.	6		Hynek et al., 2010
OBL	124	26.7	33.1	VN	1		2	Inlet valleys are heavily eroded/modified, so value is uncertain.	
OBL	125	18.9	36.1	VN	1		2	Value taken from outlet valley system.	
OBL	126	-21.6	57.6	VN	1		2		Hynek et al., 2010
OBL	127	2.2	115.9	VN	1		2	Inlet valleys are heavily eroded/modified, so value is uncertain.	
OBL	128	-33.8	80.9	VN	1		2		Hynek et al., 2010

OBL	129	-11.9	-4.9	VN	1		3	Value taken from outlet valley system.	Hynek et al., 2010
0.02		11.5		, 11	-	Level of basin			2010
						degradation is more			
						consistent with a			
						Robbins and Hynek			
			-			(2012) basin degradation			Hynek et al.,
OBL	130	-12.0	177.9	VN	2	state of 1.	3		2010
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	131	-5.0	22.3	VN	1		2	value is uncertain.	
									Hynek et al.,
OBL	132	-18.0	24.7	VN	1		3		2010
									Hynek et al.,
OBL	133	31.0	19.0	VN	1		3		2010
						Paleolake is contained			
						within a heavily eroded			Hynek et al.,
OBL	134	-13.4	161.3	VN	N/A	inter-crater basin.	2		2010
			-		_				Hynek et al.,
OBL	135	-39.2	103.3	VN	2		2		2010
						Paleolake is contained			
0.01			-		27/1	within a heavily eroded		Value taken from outlet	Hynek et al.,
OBL	136	-38.6	100.7	VN	N/A	inter-crater basin.	2	valley system.	2010
								Inlet valleys are heavily	
ODI	107	26.1	05.4	I.D.I			2	eroded/modified, so	
OBL	137	-26.1	85.4	VN	1		2	value is uncertain.	
						Paleolake is contained			
						within a heavily		Delevisite discord. Col	
						degraded crater not		Paleolake is directly fed	II-mal- et al
OBL	138	-19.0	-6.3	VN	N/A	mapped by Robbins and	1	by the outlet of open- basin lake #66.	Hynek et al., 2010
OBL	138	-19.0	-0.3	VIN	IN/A	Hynek (2012).	1	basin lake #60.	Hynek et al.,
OBL	139	0.0	28.8	VN	1		4		2010 Hynek et al.,
OBL	139	0.0	20.0	V IN	1		4	Value taken from outlet	Hynek et al.,
OBL	140	-0.4	38.1	VN	1		4	valley system.	2010
OBL	141	-15.0	-22.2	VN	2	Level of basin	3		Hynek et al.,

						degradation is more			2010
						consistent with a			
						Robbins and Hynek			
						(2012) basin degradation			
						state of 1.			
						Paleolake is contained			
			-			within a heavily eroded		Value taken from outlet	Hynek et al.,
OBL	142	-48.5	151.0	VN	N/A	inter-crater basin.	4	valley system.	2010
								Insufficient image	
								coverage to confidently	Hynek et al.,
OBL	143	-53.9	14.7	VN	1		N/A	assign a Strahler order.	2010
						Paleolake is contained			
ODI		262		T D I	27/4	within a heavily eroded			Hynek et al.,
OBL	144	-36.3	-11.5	VN	N/A	inter-crater basin.	3		2010
						Paleolake is contained			TT 1 . 1
ODI	1.4.5	21.5	14.0	V DT		within a heavily eroded	6	Value taken from outlet	Hynek et al.,
OBL	145	-31.5	-14.0	VN	N/A	inter-crater basin.	6	valley system.	2010
OBL	146	-22.3	-23.6	VN	1		2		Hynek et al., 2010
OBL	140	-22.3	-23.0	VIN	1		3		Hynek et al.,
OBL	147	-26.5	-4.0	VN	1		2		2010
ODL	14/	-20.3	-4.0	V I N	1		2	Inlet valleys are heavily	2010
								eroded/modified, so	
OBL	148	-26.8	-11.1	VN	1		2	value is uncertain.	
ODL	140	-20.0	-11.1	V 1 V	1		2		Hynek et al.,
OBL	149	-10.0	41.1	VN	1		2		2010
ODL	117	10.0			-		_		Hynek et al.,
OBL	150	-9.0	41.5	VN	1		4		2010
						Paleolake is contained		Inlet valleys are heavily	
						within a heavily eroded		eroded/modified, so	
OBL	151	26.4	66.7	VN	N/A	inter-crater basin.	2	value is uncertain.	
								Paleolake is directly fed	
								by the outlet of open-	
OBL	152	27.7	67.2	VN	1		1	basin lake #151.	
OBL	153	3.1	86.6	VN	1		2		

OBL	154	-18.7	174.9	VN	1		3		Hynek et al., 2010
OBL	155	-11.6	- 159.6	VN	1		3		
						Paleolake is contained			
						within a heavily			
						degraded crater not		Paleolake is directly fed	
			-			mapped by Robbins and		by the outlet of open-	
OBL	156	-11.2	159.8	VN	N/A	Hynek (2012).	1	basin lake #155.	
						Paleolake is contained			
						within a heavily eroded			
OBL	157	-40.4	-54.9	VN	N/A	inter-crater basin.	2		
						Paleolake is contained			
						within a heavily eroded			Hynek et al.,
OBL	158	-45.2	-58.4	VN	N/A	inter-crater basin.	2		2010
						Paleolake is contained			
						within a heavily eroded			Hynek et al.,
OBL	159	-37.5	-45.7	VN	N/A	inter-crater basin.	3		2010
						Paleolake is contained			
ODI	1.00	267	45.0			within a heavily eroded	2		
OBL	160	-36.7	-45.2	VN	N/A	inter-crater basin.	2		
						Paleolake is contained			II and stat
OBL	161	-36.2	-44.6	VN	N/A	within a heavily eroded inter-crater basin.	2		Hynek et al., 2010
OBL	101	-30.2	-44.0	VIN	IN/A	Paleolake is contained	3		2010
						within a heavily eroded			Hymoly at al
OBL	162	-35.7	-44.6	VN	N/A	inter-crater basin.	3		Hynek et al., 2010
OBL	102	-33.7	-44.0	VIN	IN/A	Paleolake is contained	5		2010
						within a heavily eroded			
OBL	163	-37.4	-45.3	VN	N/A	inter-crater basin.	2		
	105	- <i>31.</i> - T		¥ 1 1	1 1/ 2 1		2		Hynek et al.,
OBL	164	-11.2	15.7	VN	1		3		2010 2010
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	165	20.8	39.1	VN	1		2	value is uncertain.	

OBL	166	-6.4	24.4	VN	1		2		Hynek et al., 2010
						Paleolake is contained within a heavily eroded			
OBL	167	-1.9	102.8	VN	N/A	inter-crater basin.	2		
						Level of basin degradation is more			
						consistent with a			
						Robbins and Hynek			
ODI	1.60	0.6		TDI		(2012) basin degradation			Hynek et al.,
OBL	168	9.6	-46.2	VN	3	state of 1.	2	Tulat alls in stand	2010
								Inlet valley is clearly buried by younger	
OBL	169	-8.6	139.7	VN	1		1	material.	
ODL	105	0.0	137.7	111	1		1		Hynek et al.,
OBL	170	-10.3	142.4	VN	1		3		2010
									Hynek et al.,
OBL	171	-21.3	-5.3	VN	1		4		2010
								Value taken from outlet	Hynek et al.,
OBL	172	-10.1	131.8	VN	1		3	valley system.	2010
ODI	1.72	10.5	101.4	101	2		2	Value taken from outlet	Hynek et al.,
OBL	173	-10.5	131.4	VN	2		3	valley system.	2010
OBL	174	-10.7	132.5	VN	1		4	Value taken from outlet valley system.	Hynek et al., 2010
UBL	1/4	-10.7	132.3	V IN	1		4	valley system.	Hynek et al.,
OBL	175	-22.0	132.5	VN	1		3		2010
OBL	176	-27.1	142.1	VN	1		2		Hynek et al., 2010
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	177	-26.9	141.3	VN	1		1	value is uncertain.	
						Paleolake is contained			
						within a heavily eroded	_	Value taken from outlet	Hynek et al.,
OBL	178	27.3	37.1	VN	N/A	inter-crater basin.	2	valley system.	2010
ODI	170	20.6	22.2		3.7/4	Paleolake is contained	~	Inlet valleys are heavily	
OBL	179	20.6	32.3	VN	N/A	within a heavily eroded	2	eroded/modified, so	

						inter-crater basin.		value is uncertain.	
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	180	-34.0	179.1	VN	1		2	value is uncertain.	
								Value taken from outlet	Hynek et al.,
OBL	181	-5.7	46.6	VN	1		4	valley system.	2010
									Hynek et al.,
OBL	182	-5.6	57.3	VN	1		2		2010
								Value taken from outlet	Hynek et al.,
OBL	183	-5.1	43.8	VN	1		5	valley system.	2010
									Hynek et al.,
OBL	184	-2.8	33.6	VN	1		4		2010
							_		Hynek et al.,
OBL	185	2.2	45.5	VN	1		2		2010
OBL	186	0.5	42.9	VN	1		2		
									Hynek et al.,
OBL	187	-7.2	43.0	VN	1		4		2010
								Inlet valleys are heavily	
								eroded/modified, so	Hynek et al.,
OBL	188	13.1	36.1	VN	1		3	value is uncertain.	2010
								Value taken from outlet	
OBL	189	14.9	38.4	VN	1		1	valley system.	
						Paleolake is contained			
						within a heavily eroded		Value taken from outlet	Hynek et al.,
OBL	190	-16.5	-18.1	VN	N/A	inter-crater basin.	7	valley system.	2010
						Paleolake is contained			
					/ .	within a heavily eroded	_	Value taken from outlet	Hynek et al.,
OBL	191	-24.9	6.1	VN	N/A	inter-crater basin.	3	valley system.	2010
ODI	100	.							Hynek et al.,
OBL	192	-23.5	6.7	VN	1		3		2010
								Paleolake is directly fed	
ODI	102	4.5	22.0		1		1	by the outlet of open-	Hynek et al.,
OBL	193	-4.5	22.0	VN	1		1	basin lake #131.	2010
ODI	104	2.0	06.0		1		1	Value taken from outlet	
OBL	194	3.0	86.9	VN	1		1	valley system.	
OBL	195	3.5	83.2	VN	1		2		

						Paleolake is contained		Inlet valleys are heavily	
						within a heavily eroded		eroded/modified, so	
OBL	196	0.6	91.3	VN	N/A	inter-crater basin. 2		value is uncertain.	
						Level of basin			
						degradation is more			
						consistent with a			
						Robbins and Hynek			
						(2012) basin degradation		Value taken from outlet	
OBL	197	3.3	89.8	VN	2	state of 1.	2	valley system.	
						Paleolake is contained			
						within a heavily eroded		Value taken from outlet	
OBL	198	5.8	94.6	VN	N/A	inter-crater basin.	1	valley system.	
								Value taken from outlet	Hynek et al.,
OBL	199	-22.9	158.5	VN	1		2	valley system.	2010
								Value taken from outlet	
OBL	200	1.1	102.5	VN	1		1	valley system.	
						Paleolake is contained			
						within a heavily eroded			Hynek et al.,
OBL	201	-2.4	112.1	VN	N/A	inter-crater basin.	3		2010
								Value taken from outlet	Hynek et al.,
OBL	202	5.2	39.7	VN	1		2	valley system.	2010
								Value taken from outlet	Hynek et al.,
OBL	203	-3.8	126.6	VN	1		5	valley system.	2010
						Paleolake is contained			
						within a heavily eroded		Value taken from outlet	Hynek et al.,
OBL	204	-41.2	-23.2	VN	N/A	inter-crater basin.	2	valley system.	2010
								Value taken from outlet	Hynek et al.,
OBL	205	-31.1	25.5	VN	1		2	valley system.	2010
								Value taken from outlet	
OBL	206	-30.6	21.2	VN	1		2	valley system.	
						Level of basin			
						degradation is more			
						consistent with a			
						Robbins and Hynek			
						(2012) basin degradation			
OBL	207	-32.8	25.3	VN	2	state of 1.	2		

								Value taken from outlet	
OBL	208	-17.1	161.0	VN	1		2	valley system.	
								Value taken from outlet	Hynek et al.,
OBL	209	-0.9	101.6	VN	1		3	valley system.	2010
OBL	210	-5.1	-4.5	VN	1		2		Hynek et al., 2010
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	211	-28.3	73.7	VN	1		2	value is uncertain.	
						Paleolake is contained			
						within a heavily eroded			Hynek et al.,
OBL	212	-27.7	76.1	VN	N/A	inter-crater basin.	2		2010
						Paleolake is contained		Inlet valleys are heavily	
						within a heavily eroded		eroded/modified, so	
OBL	214	-27.0	-32.1	VN	N/A	inter-crater basin.	2	value is uncertain.	
								Paleolake is directly fed	
								by the outlet of open-	
OBL	215	-30.1	73.4	VN	2		1	basin lake #211.	
								Inlet valleys are heavily	
								eroded/modified, so	
OBL	216	35.1	21.7	VN	1		2	value is uncertain.	
								Value taken from outlet	
OBL	217	35.6	24.8	VN	1		2	valley system.	
									Hynek et al.,
OBL	219	-37.2	102.3	VN	1		2		2010
						Paleolake is contained		Inlet valleys are heavily	
						within a heavily eroded		eroded/modified, so	Hynek et al.,
OBL	221	-36.5	164.5	VN	N/A	inter-crater basin.	2	value is uncertain.	2010
						Level of basin			
						degradation is more			
						consistent with a			
						Robbins and Hynek			
						(2012) basin degradation			Hynek et al.,
OBL	222	-3.2	-26.4	VN	2	state of 1.	2		2010
								Value taken from outlet	Hynek et al.,
OBL	223	-2.9	-26.3	VN	1		4	valley system.	2010

OBL	224	-38.2	102.2	VN	1	2	Hynek et al., 2010
OBL	225	35.2	21.2	VN	2	3	Hynek et al., 2010
OBL	226	-29.8	-77.1	VN	1	2	

*CBL = closed-basin lake, OBL = open-basin lake. *Closed-basin lake basin numbers are from Goudge et al. (2015), open-basin lake basin numbers are from Fassett and Head (2008b) and Goudge et al. (2012). [§]II = isolated inlet valley, VN = valley network. [#]Values are from Robbins and Hynek (2012).

TABLE DR2. CLOSED-BASIN LAKES WITH STRATIGRAPHIC RELATIONSHIPS TO CONTINUOUS EJECTA DEPOSITS.

				Crater Ejecta
Basin Number [*]	Inlet Type	Lat. (°N)	Lon. (°E)	Degradation State
2	Isolated Inlet	22.1	-8.2	Largely eroded.
3	Isolated Inlet	14.8	-51.7	Largely eroded.
5	Isolated Inlet	10.2	-16.7	Minimally eroded.
12	Isolated Inlet	-7.8	25.3	Largely eroded.
21	Isolated Inlet	55.0	-84.4	Partially eroded.
24	Isolated Inlet	41.1	-2.9	Partially eroded.
36 [†]	Isolated Inlet	34.4	3.2	Minimally eroded.
40	Isolated Inlet	31.6	-5.7	Largely eroded.
44	Isolated Inlet	26.2	37.5	Largely eroded.
45	Isolated Inlet	26.2	24.1	Largely eroded.
46	Isolated Inlet	27.1	21.4	Largely eroded.
49	Isolated Inlet	27.7	-124.5	Minimally eroded.
50	Isolated Inlet	25.1	-97.5	Minimally eroded.
51	Isolated Inlet	31.4	-13.0	Minimally eroded.
54	Isolated Inlet	21.4	58.1	Largely eroded.
55	Isolated Inlet	21.4	37.8	Largely eroded.
61	Isolated Inlet	19.9	12.0	Largely eroded.
63	Isolated Inlet	16.2	-53.2	Minimally eroded.
				Almost completely
66	Isolated Inlet	13.2	9.2	eroded.
69	Isolated Inlet	10.9	9.2 -14.0	Minimally eroded.
				Almost completely
73	Isolated Inlet	8.2	-49.3	eroded.
				Almost completely
74	Isolated Inlet	9.9	-46.6	eroded.
				Almost completely
75	Isolated Inlet	7.8	-39.1	eroded.
77	Isolated Inlet	8.5	-15.8	Partially eroded.
82	Isolated Inlet	7.0	-53.6	Largely eroded.
83	Isolated Inlet	2.4	-51.6	Minimally eroded.
92	Isolated Inlet	1.5	116.3	Minimally eroded.
94	Isolated Inlet	-1.4	-39.7	Largely eroded.
96	Isolated Inlet	-2.9	67.7	Largely eroded.
97	Valley Network	-5.2	137.8	Largely eroded.
99	Isolated Inlet	-4.8	2.0	Partially eroded.
103	Isolated Inlet	-10.0	-158.1	Largely eroded.
113	Isolated Inlet	-10.6	139.7	Largely eroded.
117	Isolated Inlet	-12.0	123.7	Largely eroded.
118	Isolated Inlet	-10.8	91.2	Partially eroded.
138	Isolated Inlet	-15.5	-155.5	Largely eroded.

149	Isolated Inlet	-22.6	-56.6	Partially eroded.
154	Isolated Inlet	-25.3	71.9	Largely eroded.
196	Isolated Inlet	-46.3	-163.8	Largely eroded.
199	Isolated Inlet	22.1	66.8	Largely eroded.
202	Isolated Inlet	-37.5	-158.8	Minimally eroded.
203 [†]	Valley Network	-24.0	-33.3	Largely eroded.
204	Valley Network	-26.0	-34.0	Largely eroded.
205	Isolated Inlet	20.7	75.8	Minimally eroded.

^{*}Basin number is from Goudge et al. (2015).

[†]Inlet valley incises ejecta from nearby crater.

ADDITIONAL REFERENCES CITED

- Fassett, C.I., and Head, J.W., 2007, Valley formation on martian volcanoes in the Hesperian: Evidence for melting of summit snowpack, caldera lake formation, drainage and erosion on Ceraunius Tholus: Icarus, v. 189, p. 118–135, doi:10.1016/j.icarus.2006.12.021.
- Irwin, R.P., Maxwell, T.A., Howard, A.D., Craddock, R.A., and Leverington, D.W., 2002, A large paleolake basin at the head of Ma'adim Vallis, Mars: Science, v. 296, p. 2209–2212, doi:10.1126/science.1071143.
- Schon, S.C., Head, J.W., and Fassett, C.I., 2012, An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate: Planetary and Space Science, v. 67, p. 28-45, doi:10.1016/j.pss.2012.02.003.
- Strahler, A.N., 1952, Hypsometric (area-altitude) analysis of erosional topography: Bulletin of the Geological Society of America, v. 63, p. 1117–1142, doi:10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.