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INTRODUCTION 

The presence of fossilized organic molecules has been documented with various 

geochemical and imaging technology, which is both a strength and a perceived problem for this 

field. First, the fact that detection of taxon-specific organic molecules is, in general, technique 

independent is a strength. Alternatively, varying techniques between labs has raised questions 

(Wolkenstein, 2014; O’Malley, 2014), which needlessly add doubt to the basic result of the 

relatively common existence of fossilized organic molecules in echinoderms. Extracts are the 

geologically stable products of original organic molecules in most, if not all, instances. This 

raises new, interesting questions and is a fruitful area of future research, but it does not detract 

from the fact that taxon-specific organic molecules can be extracted directly from individual 

Mesozoic and Paleozoic fossils. The present paper is a contribution building on previous 

research of preserved organic molecules in Paleozoic echinoderms. 

 

ECHINODERM MORPHOLOGICAL DISPARITY 
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 Because of their multi-plated, mesodermal skeletons, the morphological disparity of 

echinoderms is very high. Symmetries include bilateral, pentaradiate, radial, helically twisted, 

and irregular. Adult body size varies from less than 2 mm to crinoids with stems in excess of 20 

m in height (Hess et al., 1999). Skeletons vary from firmly cemented plates to flexible plating to 

the absence of plating. Consequently, much effort has been expended to document and 

understand morphological disparity both among echinoderm classes and within echinoderm 

clades (Foote, 1992, 1994; Sumrall and Wray, 2007; Villier and Eble, 2004; Lefebvre et al., 

2006; Deline and Ausich, 2011; Zamora et al., 2012; Deline, 2015). Morphological disparity 

between clades may be sufficiently high that virtually no discrete homologous characters can be 

identified other than synapomorphies for the Echinodermata as a whole (e.g., compare 

helicoplacoids to blastoids). This lack of discrete characters was also critical for comparing 

crinoids, blastozoans, and other pentaradiate echinoderms until the work of Sumrall and Waters 

(2012) and Kammer et al. (2013). Disparity of this magnitude leaves little information for an 

objective basis for phylogeny.  

 

FOSSIL ORGANIC MOLECULES 

 A substantial body of knowledge has been amassed to understand organic molecules 

preserved in sedimentary rocks. Preserved molecules have been an essential component of 

understanding the evolution of Proterozoic life (e.g., Summons and Walter, 1990; Brocks et al., 

1999; Knoll, 2003; Gaines et al., 2009; Love et al., 2009) and have been essential for 

fingerprinting hydrocarbons (e.g., Tissat et al., 1978; Barakat et al., 2002). These studies have 

principally relied on isolated molecules from whole rock samples, which contrast with the 

present study that has isolated organic molecules directly from the fossil skeletons. In the former, 
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better-studied field, the structure of molecules is used, among other things, to infer the potential 

host organism or to characterize specific petroleum deposits. In contrast, the extractions of this 

study reveal the molecules still preserved within a fossil. Besides the work on fossil 

echinoderms, relatively few studies have extracted organic fossils directly from fossil. One 

example is Taylor et al. (2006), who extracted organic molecules from fossil plates. They 

identified oleanane from Cretaceous Bennettitales and Permian Gigantopteridales.   

The biogeochemical pathways to preserve organic molecules in fossil echinoderms are, as 

yet, not fully understood. However, the fact that an original biological signal is preserved is 

demonstrated by the presence of fossil occurrences with different species of crinoids preserved in 

different colors (Bather, 1892; Laudon and Beane, 1937; Blumer, 1965; Lane, 1973; 

Wolkenstein, 2005; Wolkenstein et al., 2008; O’Malley, 2005, 2013).  

 

LIVING ECHINODERM BIOMOLECULES  

Echinoderms are the only animal phylum to produce anthraquinones and 

naphthoquinones (Stonik and Elyakov, 1988). At least 53 different naphthoquinones, 

anthraquinones, bianthrones, naphthopyrones, and complex related quinones have been identified 

in living echinoderms (e.g., Fox and Vevers, 1960; Fox, 1976; Gough and Sutherland, 1970; 

Kent et al., 1970; Francesconi, 1980; Rideout and Sutherland, 1981, 1985; Stonik and Elyakov, 

1988; DeRiccardis et al., 1991; Takahasi et al., 2002). Some of these molecules are thought to 

function as defensive ingestion deterrents in modern echinoderms, i.e., it causes them to taste bad 

to potential predators.  

 In pioneering studies, Blumer (1951, 1960, 1962a, 1962b, 1965), Blumer and Omenn 

(1961), and Thomas and Blumer (1964) extracted polycyclic aromatic quinones (PAQ) 
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(fringelites) from Jurassic crinoids. Subsequently, various PAQs have been extracted from 

Triassic and Jurassic crinoids, and fringelites are now recognized as fossil hypericinoids 

(Wolkenstein et al., 2006, 2008; Wolkenstein, 2014). O’Malley et al. (2005, 2008, 2013) 

extracted organic molecules from Mississippian crinoids. Extracts were a mixture of organic 

molecules and were characterized using various techniques. Although the exact identity of 

individual molecules remains unknown in these mixtures, the extracts were compared with 

chemical standards that suggested that diagenetically altered quinone-like molecules were 

present. Regardless of the identity of each molecule in extract mixtures, O’Malley (2013) 

successfully used fluorescence excitation-emission spectroscopy (EEM) spectra to elucidate 

phylogenetic relationships among these fossil crinoids. Fluorescence spectroscopy is a non-

destructive (with respect to the extracts), fast, and convenient approach to “fingerprint” the 

fluorophoric signature of extracts.  

 

 

METHODS  

Extraction of organic molecules was accomplished by placing finely ground solid sample 

into a glass fiber thimble within a Soxhlet apparatus, and methanol was continuously refluxed 

through the sample through dissolving echinoderm plates in hydrochloric acid and Soxhlet 

extraction. Extracts were concentrated into a pellet with a centrifuge. The solid pellet was further 

extracted in a 4:1 vol./vol. solution of acetone:methanol, decanted, and extracted again in 

methanol. 

Fossil echinoderm extracts are water soluble and were subjected to various analytical 

measurements. In O’Malley et al. (2013) a combination of the Fluorescence Excitation Emission 
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Matrix Spectroscopy (EEM) and ESI-tandem mass spectroscopy were used. In contrast, here we 

demonstrate that robust data are derived using only EEM, which is relatively less expensive and 

less labor. Further, we demonstrate the potential of using EEMsfor addressing paleobiological 

problems. 

 EEM results are presented here. EEMs are an effective method to measure fluorescing 

compounds, such as PAQ. EEMs are collected by measuring emission scans with increasing 

excitation wavelengths, resulting in a contour plot that is highly detailed and can be used to 

distinguish and identify fluorescent compounds in complex mixtures (Christian et al., 1981; 

Lochmuller and Saavedra, 1998; Leiner and Wolfbeis, 1988; Coble, 1996; Stedmon et al., 2003; 

Cory and McKnight, 2005). The peaks in an EEM plot represent compound(s) with similar 

fluorescent properties and provide information on types of fluorophores present. EEM plots were 

generated using the MatLab code written by Rose Cory (Cory et al., 2005, 2010; Stedmon and 

Bro, 2008).  

Fluorescence spectroscopy was conducted on a Varian Cary Eclipse. EEMs analyses 

were performed on samples such that absorbance at 254 nm was less than 0.05 (Lackowicz, 

2006) and scanned with excitation wavelengths (λex) = 240-450 nm (5 nm increments). Emission 

wavelengths (λem) were recorded in 2 nm increments between 300-600 nm. All EEMs were blank 

subtracted, corrected using correction files specific to the instrument, and normalized to Raman 

areas of DI water using a λex=350 nm. 

With Mississippian crinoids, O’Malley et al. (2008, 2013) demonstrated that the same 

organic molecules were consistently extracted from different positions (e.g., calyx and stem) 

along a single crinoid individual, and the extracts from fossil echinoderm specimens were 

different than extracts from the enclosing rocks. Because analyses of multiple specimens and 
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multiple parts of the anatomy of a specimen yielded the same results for Mississippian crinoids 

(O’Malley, et al., 2013), single specimens were evaluated in this study. Specimens are deposited 

in the Orton Geological Museum, The Ohio State University, as indicated in Table DR1. 

 

 

 

Table DR1. Names, stratigraphy, locations, and specimen numbers for echinoderms from 

which organic molecules were extracted for the present analysis. 

 

  Class     Taxon   Geologic Period Location 

Asteroidea  Stenaster sp.  Bobcaygen Fm.; Kirkfield, Ontario  

   OSU 54434  Ordovician 

 

Blastoidea  Pentremites sp. Indian Springs Shale, Sulpher, Indiana; 

   OSU 54435  Mbr., Big Clifty Fm.; NE¼ NE¼ SW¼, 

Mississippian  sec. 24. T3S, R1W 

 

Crinoidea  Elegantocrinus  Edwardsville Fm.; Boy Scout Camp, 

hemisphaericus Mississippian  Monroe Co, Indiana; 

   OSU 54436     SW¼ SE¼ SW¼, 

        sec., 8, T7N, R1E 
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Diploporita  Holocystites sp. Massie Fm.;  Napoleon, Indiana; 

   OSU 54437  Silurian  N39° 12’ 31.39”, 

         W85° 18’ 53.75” 

 

Echinoidea  cidaroid  unknown provenance 

   OSU 54438 

 

Edrioasteroidea Isorophus  Bellevue Fm.;  Stonelick Creek, 

   cincinnatiensis Ordovician  Cincinnati, Ohio; 

   OSU 54439     N39° 10’ 23”, 

         W84° 07’ 35” 
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