GSA Data Repository 2016094

Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering

Zibo Li, Lianwen Liu, Jun Chen, and H. Henry Teng

SI Methods

Detection of siderophore activity. The CAS-Fe-HDTMA dye solution was prepared as follows: for 100 mL of solution, 0.0027 g of ferric chloride (FeCl₃·6H₂O) was dissolved in 10 mL of 10 mM HCl as solution 1; 0.0605 g of Chromeazurol S (CAS; Sigma-Aldrich 72687, Japan) was dissolved in 49 mL of ddH₂O as solution 2; 0.0729 g of hexadecyl-trimethyl-ammonium bromide (HDTMA; \geq 99%, Sigma-Aldrich, USA) was dissolved in 40 mL of ddH₂O with constant stirring over low heat as solution 3. Solutions 1 and 2 were mixed to create the Fe-CAS solution, which was then mixed with solution 3 to obtain the CAS-Fe-HDTMA dye solution (blue in color). This solution was stored in the dark at room temperature until use. A calibration curve was constructed using siderophore standard solutions containing 0-100 µM DFAM ($r^2 > 0.992$). To detect the siderophore concentration in the samples, 99 µL of the filtrate was mixed in a 1:1 ratio with the liquid CAS-Fe-HDTMA dye solution, and then mixed with 2 µL of 0.2 M 5-sulfosalicylic acid (shuttle solution). After incubation in dark for 15 min, the mixtures were measured at a wavelength of 630 nm. In the presence of siderophores, the absorbance of the dye is quenched. Absorbance in all the analyses was done by a SpectraMax[®] M2 Microplate Reader (Molecular Devices, USA).

Calculations for the mass of lizardite dissolved by the fungus

(i) Cellular removal of materials from the CMI

Material loss by the channels (Mass_{channel}) or pits (Mass_{pit}) can be estimated as:

$$Mass_{channel/pit} = \frac{SSA \times P \times H}{2} \times D$$

Where

SSA =specific surface area (m²)

P = percentage of the surface channel or pit (%)

H = height of the channel or pit (10⁻⁹ m)

D = density of the mineral (kg·m⁻³)

(ii) Mineral selective dissolution below CMI

Mineral selective dissolution below channel (Selective dissolution_{channel}) or pit

(Selective dissolution_{pit}) can be estimated as:

*Selective dissolution*_{channel/pit} =

$$\frac{SSA \times P \times (H_{x}-H_{y})}{2} \times D \times [1 - \frac{\frac{Counts_{S1}}{Counts_{Fresh}} + \frac{Counts_{S2}}{Counts_{Fresh}} + \frac{Counts_{S3}}{Counts_{Fresh}} + \dots + \frac{Counts_{Sn}}{Counts_{Fresh}}]}{n}$$

Where

 $SSA = \text{specific surface area } (\text{m}^2)$

P = percentage of the surface channel or pit (%)

 H_x = depth of altered layers below the channel or pit (10⁻⁹ m)

 $H_{\rm y}$ = height of the channel or pit (10⁻⁹ m)

D = density of the mineral (kg·m⁻³)

*Counts*_{Si} = raw counts of Mg at the site of i (a.u.)

 $Counts_{Fresh}$ = raw counts of Mg at the fresh site (a.u.)

MgO	SiO ₂	Fe ₂ O ₃	CaO	Al ₂ O ₃	K ₂ O	NiO	Cr ₂ O ₃	MnO	TiO ₂
37.35	40.70	4.61	1.16	1.51	0.19	0.17	0.21	0.07	0.03

Table DR1 Chemical (from XRF) compositions (%) of the lizardite sample

Reactor	Experiment	Lizardite	T. flavus	Dialysis bag (0.22 um)	Solution
	Exp-mix	+	+	-	Cza+Glu
	Exp-bag	+	+	+	Cza+Glu
Erlenmeyer flask	Exp-Czapek	+	-	-	Cza+Glu
	Exp-DDW	+	-	-	DDW
	Exp-fungi	-	+	-	Cza+Glu
Microplete	Exp-mixP	+	+	-	Cza-M-F+Glu
wheroptate	Exp-fungiP	-	+	-	Cza-M-F+Glu

Table DR2 Summary of the experimental settings.

Cza+Glu: Czapek mineral medium supplemented with 2% (w/v) glucose; DDW: distilled deionized water;

Cza-M-F+Glu: Mg- and Fe-free Czapek mineral medium supplemented with 2% (w/v) glucose

Area	Channel Area	Pit Area	Regular Area	Total Area	
A1	$6,388^{a}$	26,914	73,160	106,462	
	(6.00%) ^b	(25.28%)	(68.72%)	(100%)	
A2	13,152	59,129	29,913	102,194	
	(12.87%)	(57.86%)	(29.27%)	(100%)	
A3	5,472	7,907	50,695	64,074	
	(8.54%)	(12.34%)	(79.12%)	(100%)	
Average	8,337	31,317	51,256	90,910	
	(9.17%)	(34.45%)	(56.38%)	(100%)	

Table DR3 Percentage of surface pitting in selected regions on fungal dissolved mineral flake.

^a Area in μ m². ^b Percent relative to the total area of the selected region.

Li et al., Figure DR1, TIFF

Fig. DR1 Accumulative release of Mg and Fe over 30-day incubation period during bulk dissolution. Error bars indicate the standard deviations (SD) of three replicas for individual measurements.