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GSA	Data	Repository	2016005	 	 	 	 	 	 Brodsky	et	al.	

Documentation	of	Faults	

Table	DR1.	Scanned	faults	and	roughness	processing	

Name	 Scanner	 Location	 Lithology Sense Slip Processing	

Cascia#	 LiDAR	 42.719°	N	
13.002°	E	

Carbonate	 Normal 50m	 Small	patchesb	+	Taper	5%d	

Gubbio	
Upper#	

LiDAR	 43.344°	N	
12.597°	E	

Carbonate	 Normal 50‐100m	 Small	patchesb	+	Taper	5%d	

Gubbio	
Lower#	

LiDAR	 43.344°	N	
12.597°	E	

Carbonate	 Normal 200m	 Small	patchesb	+	Taper	5%d	

Monte	
Coscerno#	 LiDAR	

42.692°	N	
12.887°	E	 Carbonate	 Normal 250m	 Small	patchesb	+	Taper	5%d	

Monte	
Maggio#	 LiDAR	

42.762°	N	
12.941°	E	 Carbonate	 Normal 650m	 Small	patchesb	+	Taper	5%d	

Val	Casana#	 LiDAR	 42.718°	N	
12.857°	E	

Carbonate	 Normal 150m	 Small	patchesb	+	Taper	5%d	

Venere	
Large#	 LiDAR	

41.971°	N	
13.664°	E	 Carbonate	 Normal >20m	 Small	patchesb	+	Taper	5%d	

Venere	
Small#	

LiDAR	
41.971°	N	
13.664°	E	

Carbonate	 Normal 4m	 Small	patchesb	+	Taper	5%d	

West	
Fucino#	

LiDAR	
41.940°	N	
13.362°	E	

Carbonate	 Normal ~80m	 Small	patchesb	+	Taper	5%d	

Vasquez	
rocks#	

LiDAR	
34.483°	N	
118.316°	W	

Sandstone Normal 10±5cm	 Small	patchesb	+	Taper	5%d	

Yeelim#	 LiDAR	 31.223°	N	
35.354°	E	

Carbonate	 Normal 50‐80m	 Small	patchesb	+	Taper	5%d	

Split	
Mountain#	

LiDAR	 33.014°	N	
116.112°	W	

Sandstone Strike‐
slip	

30±15cm	 Small	patchesb	+	Taper	5%d	

Mecca	Hills#	 LiDAR	
33.605°	N	
115.918°	W	 Carbonate	

Strike‐
slip	 20±10cm	 Small	patchesb	+	Taper	5%d	

Flowers	Pit#	 LiDAR	
42.077°	N	
121.856°	W	 Andesite	 Normal

100‐
300m	 Small	patchesb	+	Taper	5%d	

Chimney	
Rock#	 LiDAR	

39.227°	N	
110.514°	W	 Carbonate	 Normal 8m	 Small	patchesb	+	Taper	5%d	

Lake	Mead#	 LiDAR	
36.062°	N	
114.831°	W	

Dacite	 Normal
500‐
1000m	

Small	patchesb	+	Taper	5%d	

Corona	
Heights*	

LiDAR	+	
LPa	

37.765°	N	
122.437°	E	

Chert	
Strike‐
slip	

Several	m	
to	>1km	

Small	patchesb	+	Large	
patchesc	+	Taper	3%d	

Vuache‐
Sillingy*	

LiDAR	+	
LPa	

45.920°	N	
6.049°	E	

Carbonate	
Strike‐
slip	

10‐30m	 Small	patchesb	+	Taper	3%d	

Dixie	Valley*	
LiDAR	+	
LPa	

39.947°	N	
117.945°	E	

Rhyolites	 Normal
Several	m	
to	>3‐
6km	

Small	patchesb	+	Taper	3%d	

Bolu*	 LiDAR	
40.685°	N	
31.568°	E	 Carbonate	

Strike‐
slip	

20m‐
85km	 Small	patchesb	+	Taper	3%d	

Klamath##	 LiDAR	
42.135°	N	
121.678°	W	

Basalt	
+andesite	

Normal 50‐300m	 Large	patchesc	+	Taper	3%d	
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Arkitsa§	 LiDAR	
38.733°	N	
23.000°	E	

Carbonate	 Normal
>300‐
400m	

Large	patchesc	+	Taper	3%d	

Sources:	#	Brodsky	et	al.	(2011),	*Candela	et	al.	(2012),	##	Sagy	et	al.	(2007),	§	Resor	and	Meer	(2009)	
Notes:	a	Laser	Profilometer,	b	Small	clean	fault	patches	free	of	unwanted	objects	are	selected	from	the	original	
cloud	of	points,	c	Large	clean	fault	patches	are	obtained	by	removing	locally	non‐faulting	features	from	the	
original	cloud	of	points,	d	During	the	processing	of	individual	profiles	for	computing	the	Fourier	spectra	we	
either	apply	a	cosine	taper	of	3%	or	5%.	

	

Scale‐dependent	roughness	in	spatial	maps	

Figure	DR1	demonstrates	that	the	scale‐dependent	roughness	is	a	feature	of	individual	
profiles	of	the	raw	data	in	the	spatial	domain.	The	parameterization	in	the	Fourier	domain	
usefully	captures	the	same	phenomenon	shown	in	Figure	DR1.	

	

	

Figure	DR1.	Example	cross	sectional	profiles	at	different	magnifications	showing	the	
scale	dependence	of	the	aspect	ratio,	H/L.	Profiles	are	taken	from	a	ground‐based	LiDAR	
scan	of	the	Corona	Heights	fault	surface.	Panels	show	sections	through	the	fault	at	different	
magnifications	(Note	the	scale	bar	is	different	in	each	panel).		
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Fourier	Transform	Computation	

From	each	fault	patch	(LiDAR	or	profilometer),	hundreds	to	thousands	of	profiles	are	
extracted	in	the	slip	direction.	Most	fault	patches	have	more	than	500	profiles	in	the	slip	
direction	and	all	patches	have	at	least	100.	The	four	steps	in	the	procedure	to	compute	the	
spectrum	of	each	profile	are	as	follows:	(1)	Each	profile	is	detrended	by	subtracting	the	
best‐fit	trend.	(2)	Either	a	3%	or	5%	cosine	taper	is	applied	to	each	rough	profile	to	ensure	
that	there	are	no	step	functions	at	the	end	of	the	finite	window.	(3)	The	discrete	Fourier	
transform	is	calculated,	and	the	power	spectrum	is	equal	to	the	square	of	the	amplitudes	of	
the	coefficients.	(4)	The	power	spectrum	is	normalized	by	the	profile	length	to	obtain	the	
power	spectral	density.	The	mean	Fourier	spectrum	of	each	fault	patch	is	then	computed	
by	averaging	the	spectra	of	the	profiles	and	restricting	the	results	to	well‐resolved	
wavelengths	that	are	more	than	a	factor	of	2	less	than	the	profile	length.	Finally	we	smooth	
the	spectra	in	frequency	space	by	binning	each	averaged	spectrum	into	20	logarithmically‐
spaced	intervals	in	the	well‐resolved	frequency	space	and	averaging	the	power	spectral	
density	within	the	bin.	Logarithmic	binning	provides	a	constant	density	of	data	points	in	
the	logarithmic	representation	and	therefore	avoids	giving	more	weight	to	smaller	scales	in	
subsequent	fitting	procedures.		

	

Maximum	Shear	Strain	in	Hertzian	Contacts		

	

Figure	DR2.	Cartoon	of	elastic	interaction	between	two	spheres.	Dashed	lines	show	
undeformed	outlines.		
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The	elastic	deformation	between	two	identical	spheres	was	first	modeled	by	Hertz	
(Hertz,	1881).	We	use	the	solution	to	illustrate	the	general	form	of	the	elastic	stress	field	
between	contacting	asperities	starting	from	the	general	results	summarized	by	Johnson,	
1985,	Appendix	3.		If	two	elastic	spheres	of	radius	R	are	in	contact	as	shown	in	Figure	DR2	
and	the	contact	between	them	has	no	shear	stress,	the	solution	for	the	radius	a	of	the	
contact	area	is		

	

a	=	(3WR/4E’)1/3			 	 	 (A1)	

where	W	is	the	loading	force	on	the	sphere	and	E’	is	the	modified	Young’s	modulus	(2(1‐
2)/E)‐1	and	E	is	the	Young’s	modulus	and		is	the	Poisson	ratio.		The	approach	distance	
between	the	two	spheres	is	related	to	the	contact	radius	by		

=	a2/R	 	 	 	 	 (A2)	

Slightly	manipulating	eq.	A1	yields	

a/R	=	¾		W/(E’a2	)	 	 	 (A3)	

Since	W/a2	is	by	definition	average	normal	stress		on	the	contact,	then	combining	eq.	
(A2)	and	(A3)	yields.	

/a	=	¾		/E’	.	 	 	 (A4)	

Complete	solutions	show	that	the	maximum	shear	stress		within	the	asperity	is	0.31	
the	maximum	normal	stress,	and	the	maximum	normal	stress	is	3/2	(Johnson,	1985,	
Appendix	3).			For	complete	flattening	of	a	contact	of	height	H	and	length	L,	=H	and	a=L/2.	
The	shear	stress	is	related	to	the	shear	strain	by		=2G	where	G	is	the	shear	modulus.	
Therefore,	

H/L	=	/0.62				G/E’	 	 	 (A5)	

and	the	shear	strain	is	proportional	to	the	aspect	ratio	as	expected.	The	maximum	shear	
strain	occurs	in	the	interior	of	the	asperity	and	therefore	the	asperity	fails	rather	than	the	
contact	surface.	Including	friction	at	the	interface	does	significantly	affect	the	internal	
stress	field	of	the	contacting	spheres	(Johnson,	1985;	Sect.	5.4).	
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Similar	solutions	are	recovered	for	more	complex	geometries.	For	a	sinusoidal,	single‐
wavelength	surface,	the	normal	stress	required	for	complete	flattening	of	the	asperity	is	
21/2		E’	H/L,	which	implies	a	similar	scaling	with	strain	as	in	(A5)	(Johnson	et	al.,	1985).	
Multi‐scale	models	also	preserve	the	proportionality	between	calculated	stresses,	strains	
and	aspect	ratio	(Krithivasan	and	Jackson,	2007;	Jackson	et	al.,	2012).		

The	role	of	surface	slope	in	determining	surface	failure	during	shearing	has	long	been	
recognized	in	tribology.	For	instance,	the	plastic	yield	criteria	for	an	indentor	depends	on	
the	cotangent	of	the	apex	angle,	which	is	the	aspect	ratio	H/L	(Johnson	et	al.,	1985;	Sect.	
6.1).	As	a	result,	wear	mechanisms	are	predicted	by	using	the	plasticity	index	
(H/L)E’/H		where	H	is	the	hardness	(Mikic,	1974;	Johnson,	1985).	The	related	

approach	presented	here	focuses	on	the	inverse	problem	of	determining	strength	of	a	
material	given	the	observed	surface	roughness.	
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