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Glacial erosion model

The ice thickness, h, is computed by solving the equation of mass conservation

(Cuffey and Paterson 2010):

oh
E_M_ Vq

where q is the vertically averaged ice flux (q=hu, where u is the vertically
integrated horizontal ice velocity) and M the surface mass balance. The ice
velocity, u, is the sum of the deformation and the sliding velocities. The shallow
ice approximation is used (Mahaffy 1976, Hutter 1983) to compute Equation 1

with efficiency,

oh -
=M= V- [(Z (09)"h™E 4 By (pg)"h") IV(h + D"V (h + 2)]

where B is the ice flow-law parameter (6.8x1072* Pa-3s-1), Bs the sliding law
parameter (3.4 x10718Pa-3m2s1), p the density of the ice (910 kg/m), g the
gravitational acceleration (9.81 m/s), n Glen’s Flow parameter (3), and z the
bedrock topography. Equation 2 is solved using the finite difference method.
The model is run until steady state is reached. We use the GEBCO One Minute
Grid digital elevation model for the topography, which was re-interpolated at a 5
km resolution to make sure the shallow ice approximation remains valid. The

sliding velocity, us, is then calculated
us = B; (pg)"h" HV(h + 2)[""*V(h + 2)

where the temperature of the ice at the ice-bedrock interface is at melting point
(see below for the treatment of the temperature). Finally, erosion rates are

computed as follows
e = Kg|us|l

where é is the erosion rate, K, is an erosion constant (5x10-5) and [ the erosion law

exponent set equal to 1 (Humphrey and Raymond 1994).

(1)

(2)

(3)

(4)
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Finally, we reduce the complexity of the model to concentrate on the
effects of precipitation and temperature. The model does not include calving or a
grounding line, which may modify the model extent, particularly for the western
regions. Our goal is solely to highlight the impact of a shift of southern Westerly
winds and its effect on precipitation using a simple model. We show that higher
precipitation rates about 44°S are required to explain the ice extent. It implies

higher flux and higher erosion rates.
Ice surface mass balance calculation

The surface mass balance model is specified using an empirical parameterization
(Oerlemans 1997, Giesen and Oerlemans 2012), with mass gain resulting from
snow precipitation, P;, and mass loss due to the surface energy balance, Q, and is

computed as follows
— : -Q
M= [P+ mm(O,prf)dt
where p,, is the density of water (1000 kg/m3) and L, (3.34x10°J/Kg) is the
latent heat of fusion. Q is computed as follows
Q = max(—25,—-25+20T,)

where T is the surface temperature (see treatment of temperature below). Total
precipitation accounts for changes in altitude and Westerly wind direction

through a heuristic parameterization of orographic precipitation,

p= [Co—fo P(x’)dx'] ,

C1

where

_|w|
Co=ae ' ¢ | +3x10°

in which y is the distance along the latitudinal direction, C; is a constant
(0.25x10% m?) and ¢ sets the width of peak precipitation (150 km). y,, is chosen
such that peak precipitation is centered about 44°S in the first two experiments,

and about 50°S in the third one. @ is an ad hoc, adjustable parameter that

(5)

(6)

(7)

(8)
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controls the magnitude of precipitation. It is set to 9x10® m?/yrin the first
experiment, 3x10°m? /yr in the second and 2.5x10° m?/yr in the third one. The
difference in precipitation between the first and third simulation is slightly
higher than the 2-fold increase suggested in the literature (Moreno et al. 1999,
Rojas et al. 2009). However, a was adjusted to produce comparable max
accumulation rates for both simulations. Keeping high precipitation rates by
setting o to 4.5x10° m?/yr in the third simulation leads to accumulation rates
higher than 10 m/yr because of the energy term in the mass balance model
(Equation 5). It produces an even larger ice sheet in the southern parts of the

model, but it leads to the same conclusions.

Precipitation only falls as snow (P;) where T is less than 2°C (Auer 1974).
We assume wind comes from the west, although in reality it was more likely
coming in a northwest direction. Ultimately, M is filtered using a local regression
method and then shifted 30 km to the west to resemble mass balance typically
observed on large ice sheets and to better fit the ice extent. The resulting ice
mass balance is shown in Figure DR1. We also show in Figure DR2, the
distributions of ice thickness, surface temperature and mass balance estimate for

Experiment 1 (Figure 2a and Figure DR1a).
Surface and basal temperature

The ice surface and basal temperatures are required to compute the mass
balance and estimate where the ice is sliding, or not sliding. Annual surface
temperature accounts for altitudinal and latitudinal variations and is computed

as follows
Ts=To—v1y— v2(z+h)

where y, is the latitudinal temperature gradient (5.9x107%°C/m), y, the
altitudinal lapse rate (5x1073 °C/m) and T, the temperature at sea level in the
top left corner of the model domain (see calculation below). The basal
temperature is computed using a 1D analytical solution of the heat transfer
equation (Robin 1955, Clarke et al. 1977). In the accumulation area, the basal

temperature is given by

(9)
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and in the ablation area by
hM
T,=Ts+h % fol e (1=9)? dé

where q is the surface heat flow (70 mW.m2), k is the thermal conductivity of the
underlying bedrock (2.35 W/(mK)) and x is the thermal diffusivity of ice
(1.22x10-°m?/s). Note, this is not an accurate model for ice temperature because
the ice cannot exceed the melting point and horizontal conduction and advection
are ignored. Sliding is computed where T, is greater than the melting

temperature T,
T,= —8710"*h

Finally, we use the Precis-DFG climate data to calculate Ty at the LGM. This is a
0.25° gridded data set including precipitation, surface temperature, surface
humidity, and wind speed and direction for the period 1960-1990. It currently
shows a mean annual temperature of about 15 °C at 40°S. Assuming that the
mean annual temperature was about 5 to 6°C lower during glacial maxima (e.g.
Porter 1981, Clapperton 1994, Hulton et al. 1994), we set Ty equal to 9.4°C at
40°S. The resulting basal conditions (i.e. frozen- vs. warm-based) are shown in

Figure DR3.

To further assess the whether the ice was frozen to its bed in the southern
Patagonian Andes, we ran three additional simulations in which vary Ty, keeping
all other parameters constant to Experiment 1. The results are shown in Figure
DR4. It shows it was unlikely that the ice was frozen in valleys during glacial

maxima.
Data compilation

The compilation of thermochronometric data includes published apatite (U-
Th)/He, apatite fission track, zircon (U-Th)/He and zircon fission track ages. We

modified data compared to the available global database (Herman et al. 2013),

(10)

(11)

(12)
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including corrections for mislocated samples and screened for samples that may
have been affected by recent volcanic activity. Finally, we included Al-in
hornblende geobarometry data (Hervé 1995, Seifert et al. 2005, Leuthold et al.
2012). In that case, we only used the depth of emplacement and associated age in

the inversion approach described below. The data are shown in Figure DR5.
Inversion of thermochronometric data

We use a modified version of the method recently developed by Fox et al. (2014),
and used in Herman et al. (2013), to invert thermochronometric datasets. This
method exploits the information contained in both age-elevation profiles and
multi-thermochronometric systems strategies. In this approach, the depth to the
closure temperature is expressed as the integral of erosion rate from the

thermochronometric age to present-day,
Z, = foré dt
where z, is the closure depth, 7 is the thermochronometric age and é the erosion

rate. To impose a positivity constraint on our inverse problem, we perform a

change of variable in the logarithmic space where

¢ =In(z)
e=In(é)

which we include in Equation 13 that becomes

{=In (fOT exp(e) dt)

This forms the inverse problem we wish to solve for €. This can be achieved

given that { is estimated. To compute {, we first compute z, using the same

method as described in detail in Fox et al. (2014), and then take the logarithm of
the solution. This inverse problem is weakly non-linear and can be solved using
the least-squares method (e.g. Tarantola 2005). We achieve this by first
discretizing the integral in Equation 16. It then becomes a summation in which
the erosion rate (i.e. exponential of €) is parameterized as a piecewise constant

function over fixed time intervals. Similarly to Fox et al.(2014), we impose the

(13)

(14)
(15)

(16)
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condition that ¢ is correlated in space by defining an a priori model covariance

matrix, CM. This matrix is constructed for all time intervals using the horizontal

distance between the ith and jth data points, d, and a Gaussian correlation

function,

Cuti) = a%exn (= (£))

where L is a specified correlation length, d the distance between samples, and o°
is the a priori variance, which serves primarily as a weighing factor. It is worth
noting that this covariance matrix simply implies that samples close to each
other must follow the same erosion history and that samples far apart follow
independent histories. Finally, both the temperature field and closure depth
calculations depend on the solution (i.e. estimated erosion rates), which implies

a second non-linearity (Fox et al. 2014).

The non-linear problem is solved using the steepest descent algorithm

(Tarantola 2005, p.70),
Em+1=Em T+ U (CMGtClsl((m - (obs) + (&m — £pr))

where m is the number of iterations, CD is the data covariance matrix (which is a

diagonal matrix) and u is an ad hoc parameter chosen by trial and error. The
model and data covariance are chosen to minimize tradeoff between model and
data variance, 2, (e.g. Aster et al. 2012) (o4 = 0.6, L=30 km and o = 1.8). We

start the iterative process using the a priori expected value of epr (&pr =

In (0.4)) and G corresponds to:

dln (¥ exp(e) At)
an

G(i,j) =
which can be computed analytically,

G(i,j) = 22D

cJ

Ultimately, the erosion rates, é, are computed by taking the exponential of «.

(17)

(18)

(19)

(20)
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The misfit function, S, that we minimize during the iterative process (Figure

DR6) corresponds to
25(8) = (§m = $obs) €5 (§m = Sobs) + (Em — €pr) Cif' (Em — Epr)
Finally, the posterior covariance, C, corresponds to
C = Cy—CnGH(GCy Gt + Cp) 1GCy

where the diagonal elements of C give the a posteriori variance, 0po” (Figure
DR?7). The a posteriori variance is a measure of the uncertainty on the parameter
estimate with respect to the a priori variance. The ratio between a priori and a
posteriori variance indicates whether the inclusion of data allows gaining

information on the estimated exhumation rate.

(21)

(22)
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Figure DR1. Prescribed mass balance. (a) Prescribed surface mass balance
from Experiment 1, (b) for Experiment 2 and (c) for Experiment 3. The blue zone
in (a) highlights the effect of increased precipitation on the surface mass balance.
Red contours highlight the region where erosion rates are higher than 0.6

mm/yr (i.e. erosion hotspot) in the inversion results shown in Figure 4.
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Figure DR2. Distribution of ice thickness, surface temperature and mass
balance for Experiment 1. Relative frequency (blue bars) and cumulative
distribution (red line) for (a) surface temperature, (b) accumulation rate and (c)
ice thickness in the accumulation area for the ice model shown in Figure 2a

(Experiment 1).
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Figure DR3. Basal temperature conditions. The panels show where the ice is
frozen- or warm-based. The three panels correspond to the numerical

experiments shown in Figure 2.
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199  Figure DR5. Thermochronometric and geobarometric data.
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Figure DR6. Inversion residuals. The standard error on the residuals is nearly
twice smaller than the data standard error. 25 corresponds to y?, and the degree
of freedom is set by the amount of data used in the inversion (Tarantola 2005,
p.74), i.e. 495. (To avoid computing the inverse of the covariance matrix, we only
include the diagonal terms, which lead to a slight underestimation of the y2. The

actual reduced y?is close to 1.)
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