Evolution of recycled crust within the mantle: constraints from the garnet pyroxenites in the mantle section of the External Ligurian ophiolites (N Apennine, Italy)

## Alessandra Montanini<sup>1</sup> and Riccardo Tribuzio<sup>2,3</sup>

<sup>1</sup> Dipartimento di Fisica e Scienze della Terra, Università di Parma, Parco Area delle Scienze 157a, 43124 Parma, Italy

<sup>2</sup> Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, Via Ferrata 1, 27100, Italy

<sup>3</sup> CNR - Istituto di Geoscienze e Georisorse - UOS Pavia, via Ferrata 1, 27100 Pavia, ItalySample location

# Supplementary Material

# **Sample locations**

GPS Coordinates of the investigated samples are N 44°38'55", E 10°4'59" (samples AM288A, AM403, AM404, AM483, AM393, Northeastern side of Monte Prinzera) and N 44°41'47", E 10°4'24" (samples BA3-W, AM353, AM387, AM397, Valceno quarry). Websterite AM393 was collected along the margin of a thick Type-C layer, close to Type-C pyroxenite AM483

# **Analytical Methods**

Whole-rock major and trace element compositions were obtained by ICP-MS at Activation Laboratories (Ancaster, W Ontario, Canada, <u>http://www.actlabs.com</u>).

Trace element analyses of clinopyroxene were carried out by laser ablation inductively coupled plasma-mass spectrometry at C.N.R.-Istituto di Geoscienze e Georisorse, U.O. di Pavia. Reproducibility and accuracy of concentration values were assessed on the BCR-2g (USGS) reference glass and are mostly <7% and <10%, respectively. Further analytical details are reported in Tiepolo et al. (2003) and Montanini et al. (2012). Sm-Nd and Lu-Hf isotope compositions were determined at the Department of Geology, Royal Holloway, University of London. All errors are 2SD and relate to the last significant digits. Elemental abundances have been determined by isotope dilution. Details of sample digestion and ion exchange chromatography were presented in Anczkiewicz et al. (2004). Elemental separation was undertaken in four column steps (details have been given by Anczkiewicz and Thirlwall, 2003). Total procedure analytical blanks for Hf and Nd were

<30 pg. Hf isotopic analyses were carried outin static mode on a IsoProbe multicollector ICP-MS (2000 GV Instruments) using the approach of Thirlwall & Anczkiewicz (2004). Nd isotope analyses were performed using a multi-collector VG354 mass spectrometer for all samples but E181, that was analyzed by Isoprobe. All measurements were conducted on a single day to minimize correction for secular variation in static <sup>176</sup>Hf/<sup>177</sup>Hf of JMC47. <sup>147</sup>Sm/<sup>144</sup>Nd errors are 0.3%. Reproducibility of Aldrich Nd standard on the day of analyses was <sup>143</sup>Nd/<sup>144</sup>Nd = 0.511420 (2SD = 0.000010, n = 8). Daily variations in <sup>143</sup>Nd/<sup>144</sup>Nd ratios were normalized to <sup>143</sup>Nd/<sup>144</sup>Nd = 0.511421. <sup>176</sup>Lu/<sup>177</sup>Hf errors are 0.5%; JMC475 standard on a day of analyses yielded 0.282165 (2SD = 0.000013, n = 7). Daily variation in <sup>176</sup>Lu/<sup>177</sup>Hf ratios were normalized to <sup>176</sup>Lu/<sup>177</sup>Hf = 0.7325.

## **Trace element modeling**

Calculations of melts in equilibrium with clinopyroxene of Type-C garnet clinopyroxenite AM403 and websterite BA3-W were carried out through the clinopyroxene/melt partition coefficients determined experimentally by Barth et al. (2002). Calculation of the parental liquid in equilibrium with whole-rock (garnet clinopyroxenite AM403, Table DR1) was carried out according to the procedure of Bédard (1994); assumed mineral mass fractions in the original cumulus assemblage of the garnet clinopyroxenite: cpx = 0.60, garnet = 0.40. Melting calculations were performed for an eclogite derived from a troctolite protholith (Godard et al., 2009) assuming a simple batch melting model of an eclogite assemblage composed of cpx = 70 vol%, garnet = 30 vol%. D values for garnet and clinopyroxene adopted in the melting model after Barth et al. (2002).

# **Isotopic calculations**

Nd-Hf isotopic compositions of recycled oceanic rocks were calculated assuming that their initial isotopic composition was equal to those of the MORB source at the time of recycling (2.0-0.5 Ga).  $^{147}$ Sm/ $^{144}$ Nd and  $^{176}$ Lu/ $^{177}$ Hf values of the MORB source were obtained assuming that present-day depleted mantle has the the isotopic composition of average present-day MORB and is derived from Bulk Earth (BE, data in Stracke et al., 2003) at 3.0 Ga. Values of parent/daughter ratios of oceanic olivine gabbro ( $^{147}$ Sm/ $^{144}$ Nd =0.183,  $^{176}$ Lu/ $^{177}$ Hf = 0.027) from Hart et al. (1999), average N-MORB ( $^{147}$ Sm/ $^{144}$ Nd =0.203,  $^{176}$ Lu/ $^{177}$ Hf = 0.028) from Stracke et al. (2003), oceanic troctolite ( $^{147}$ Sm/ $^{144}$ Nd = 0.240,  $^{176}$ Lu/ $^{177}$ Hf =0.064) from Godard et al. (2009) and Perk et al. (2007).

| Type C garnet clinenyrovenites Websterites |         |        |          |         |       |        |         |       |       |
|--------------------------------------------|---------|--------|----------|---------|-------|--------|---------|-------|-------|
| Sampla                                     |         |        | AM 492   | AM252   | AM207 | AM207  |         |       |       |
| Sample                                     | Alvi403 | AIM404 | AIVIZOOA | Alvi403 | AW355 | AWI397 | AIVI307 | BA3-W | AW393 |
| (wt%)                                      |         |        |          |         |       |        |         |       |       |
| SiO <sub>2</sub>                           | 47.19   | 46.90  | 47.73    | 46.58   | 42.76 | 49.08  | 48.77   | 47.99 | 46.86 |
| TiO <sub>2</sub>                           | 0.14    | 0.26   | 0.18     | 0.20    | 0.46  | 0.45   | 0.25    | 0.28  | 0.36  |
| Al <sub>2</sub> O <sub>3</sub>             | 15.81   | 15.45  | 14.31    | 15.19   | 11.73 | 10.80  | 8.11    | 9.94  | 7.18  |
| FeO                                        | 7.19    | 6.71   | 6.15     | 7.14    | 9.91  | 6.17   | 5.79    | 5.43  | 8.26  |
| MnO                                        | 0.14    | 0.12   | 0.13     | 0.13    | 0.21  | 0.17   | 0.14    | 0.16  | 0.15  |
| MqO                                        | 14.44   | 16.09  | 17.83    | 17.26   | 24.75 | 22.99  | 29.86   | 27.92 | 30.76 |
| CaO                                        | 13.68   | 13.20  | 12.56    | 12.42   | 9.64  | 9.57   | 6.54    | 7.86  | 5.45  |
| Na <sub>2</sub> O                          | 1.37    | 1.22   | 1.03     | 1.06    | 0.26  | 0.72   | 0.51    | 0.43  | 0.84  |
| F₂O                                        | <0.01   | <0.01  | 0.05     | <0.01   | 0.04  | 0.01   | 0.01    | <0.01 | 0.01  |
| $P_2O_5$                                   | 0.01    | 0.02   | 0.02     | <0.01   | 0.02  | 0.03   | 0.01    | <0.01 | 0.02  |
| LOI                                        | 0.38    | 1.55   | 0.35     | 2.44    | 8.53  | 1.81   | 4.84    | 5.18  | 5.05  |
| Mg#                                        | 78.3    | 81.2   | 83.9     | 81.3    | 81.8  | 87.0   | 90.3    | 90.3  | 87.0  |
| (ppm)                                      |         |        |          |         |       |        |         |       |       |
| V                                          | 167     | 141    | 119      | 140     | 245   | 248    | 159     | 138.5 | 124   |
| Cr                                         | 909     | 1370   | 1440     | 1560    | 763   | 1440   | 2990    | 2230  | 1820  |
| Ni                                         | 271     | 527    | 393      | 520     | 392   | 660    | 760     | 554   | 1360  |
| Со                                         | 53      | 56     | 54       | 72      | 61    | 46     | 62      | 51    | 86    |
| Sc                                         | 44      | 34     | 35       | 38      | 46    | 40     | 31      | 30    | 21    |
| Sr                                         | 37      | 189    | 81       | 137     | 55    | 166    | 189     | 146   | 49    |
| Y                                          | 5.6     | 6.4    | 5.4      | 7.3     | 18    | 14.6   | 9.6     | 6.7   | 11.5  |
| Nb                                         | 0.3     | <0.1   | 3.7      | 0.3     | <0.1  | 0.3    | 0.48    | 0.35  | 0.9   |
| Zr                                         | 7       | 18     | 18       | 10      | 18    | 22     | 9       | 12    | 16    |
| Hf                                         | 0.109   | 0.5    | 0.36     | 0.3     | 0.7   | 0.6    | 0.5     | 0.435 | 0.5   |
| La                                         | 0.18    | 0.25   | 0.88     | 0.36    | 0.3   | 0.42   | 0.35    | 0.37  | 0.39  |
| Ce                                         | 0.48    | 1.03   | 3.06     | 1.19    | 1.30  | 1.61   | 1.18    | 1.49  | 1.53  |
| Pr                                         | 0.08    | 0.24   | -        | 0.20    | 0.19  | 0.31   | 0.19    | 0.26  | 0.29  |
| Nd                                         | 0.48    | 1.59   | 1.98     | 1.13    | 1.80  | 2.00   | 1.38    | 1.88  | 2.11  |
| Sm                                         | 0.23    | 0.65   | 0.52     | 0.38    | 0.90  | 0.95   | 0.67    | 0.78  | 0.82  |
| Eu                                         | 0.18    | 0.30   | 0.25     | 0.24    | 0.42  | 0.39   | 0.28    | 0.33  | 0.34  |
| Gd                                         | 0.47    | 0.88   | 0.69     | 0.66    | 1.80  | 1.73   | 1.11    | 1.13  | 1.32  |
| Tb                                         | 0.12    | 0.17   | 0.13     | 0.14    | 0.40  | 0.37   | 0.24    | 0.22  | 0.26  |
| Dy                                         | 0.86    | 1.12   | 0.91     | 1.04    | 2.80  | 2.68   | 1.57    | 1.28  | 1.75  |
| Но                                         | 0.20    | 0.24   | 0.20     | 0.24    | 0.60  | 0.63   | 0.35    | 0.25  | 0.39  |
| Er                                         | 0.65    | 0.74   | 0.59     | 0.73    | 2.30  | 1.80   | 1.15    | 0.78  | 1.26  |
| Tm                                         | 0.10    | 0.11   | 0.08     | 0.11    | 0.36  | 0.30   | 0.18    | 0.12  | 0.19  |
| Yb                                         | 0.63    | 0.65   | 0.54     | 0.72    | 2.30  | 1.88   | 1.17    | 0.70  | 1.24  |
| Lu                                         | 0.11    | 0.10   | 0.08     | 0.11    | 0.36  | 0.28   | 0.18    | 0.11  | 0.19  |
| (Ce/Sm) <sub>N</sub>                       | 0.51    | 0.39   | 1.43     | 0.76    | 0.35  | 0.41   | 0.43    | 0.47  | 0.46  |
| (Sm/Yb) <sub>N</sub>                       | 0.40    | 1.10   | 1.06     | 0.58    | 0.43  | 0.56   | 0.63    | 1.22  | 0.73  |
| Lu <sub>N</sub>                            | 4.5     | 4.1    | 3.3      | 4.5     | 14.8  | 11.5   | 7.4     | 4.3   | 7.8   |
| Eu/Eu*                                     | 1.6     | 1.2    | 1.3      | 1.4     | 1.0   | 0.9    | 1.0     | 1.1   | 1.0   |
| Sr/Sr*                                     | 5.1     | 9.3    | 2.2      | 7.9     | 2.3   | 6.0    | 9.7     | 5.7   | 1.7   |

#### Table DR1. WHOLE ROCK MAJOR AND TRACE ELEMENT ANALYSES

#### Table DR2. MAJOR AND TRACE ELEMENT COMPOSITION OF CLINOPYROXENE

| Rock type                                   | ck type Type-C garnet clinopyroxenites |       |       |       |        |        | Websterites |        |       |        |       |       |       |
|---------------------------------------------|----------------------------------------|-------|-------|-------|--------|--------|-------------|--------|-------|--------|-------|-------|-------|
| sample                                      | ΔM288Δ                                 |       | ΔM403 | ΔM403 | AM483A | AM483A | AM404       | RA3-W  | RA3-W | AM387  | AM397 | AM353 | AM393 |
| Sumple                                      | n-c                                    | n1-c  | n1-r  | n2-c  | n1-c   | n2-c   | n-c         | n1-c   | n2-c  | n-c    | D-C   | n-c   | n-c   |
| p c pro |                                        |       |       |       |        |        |             |        |       |        |       |       |       |
| SiO <sub>2</sub>                            | 48.77                                  | 49.47 | 49.30 | 49.47 | 48.57  | 49.65  | 48.75       | 49.93  | 50.36 | 50.68  | 49.61 | 50.24 | 50.06 |
| TiO <sub>2</sub>                            | 0.32                                   | 0.28  | 0.25  | 0.30  | 0.21   | 0.41   | 0.76        | 0.57   | 0.71  | 0.49   | 0.90  | 0.70  | 1.02  |
| Al <sub>2</sub> O <sub>3</sub>              | 11.33                                  | 8.95  | 9.32  | 8.79  | 10.83  | 8.96   | 8.73        | 10.59  | 8.30  | 7.83   | 8.52  | 8.30  | 7.90  |
| Cr <sub>2</sub> O <sub>3</sub>              | 0.32                                   | 0.21  | 0.31  | 0.58  | 0.10   | 0.31   | 0.40        | 0.33   | 0.46  | 0.87   | 0.43  | 0.34  | 0.36  |
| FeO <sub>t</sub>                            | 5.02                                   | 5.05  | 4.64  | 5.00  | 5.91   | 5.85   | 5.45        | 3.22   | 3.17  | 3.02   | 3.53  | 3.01  | 3.71  |
| MnO                                         | 0.16                                   | 0.11  | 0.10  | 0.05  | 0.24   | 0.14   | 0.16        | 0.11   | 0.17  | 0.14   | 0.14  | 0.07  | 0.14  |
| MgO                                         | 12.43                                  | 12.82 | 12.87 | 12.87 | 12.66  | 13.29  | 12.66       | 15.65  | 13.87 | 14.38  | 13.84 | 13.55 | 13.44 |
| CaO                                         | 20.34                                  | 21.22 | 21.76 | 21.50 | 20.05  | 20.36  | 22.24       | 19.12  | 21.16 | 21.83  | 22.07 | 21.62 | 20.61 |
| Na <sub>2</sub> O                           | 0.90                                   | 1.06  | 1.05  | 1.03  | 1.02   | 0.97   | 0.92        | 0.78   | 0.94  | 1.13   | 0.92  | 0.92  | 1.49  |
| Σ                                           | 99.59                                  | 99.17 | 99.60 | 99.58 | 99.58  | 99.94  | 100.07      | 100.30 | 99.14 | 100.37 | 99.96 | 98.75 | 98.74 |
| Ma#                                         | 81.5                                   | 81.9  | 83.3  | 82.3  | 79.2   | 80.3   | 80.7        | 89.6   | 88.7  | 89.5   | 87.5  | 88.9  | 86.6  |
| 0                                           |                                        |       |       |       |        |        |             |        |       |        |       |       |       |
| Trace elements (ppm)                        |                                        |       |       |       |        |        |             |        |       |        |       |       |       |
| Sc                                          | 9.4                                    | 16.4  | 27.5  | 37.1  | 36.8   | 75.0   | 51.7        | 21.4   | 48.1  | 39.4   | 64.9  | 70.3  | 47.9  |
| Ti                                          | 916                                    | 1091  | 1260  | 1453  | 1194   | 2313   | 3556        | 3012   | 3987  | 3175   | 4248  | 5165  | 5098  |
| V                                           | 101.9                                  | 175   | 169   | 133   | 197    | 167    | 371         | 236    | 251   | 338    | 380   | 269   | 331   |
| Cr                                          | 1304                                   | 1287  | 1161  | 2513  | 592    | 1231   | 2062        | 2540   | 2480  | 4830   | 1724  | 3108  | 2818  |
| Со                                          | 24.5                                   | 47.5  | 24.7  | 28.0  | 31.3   | 31.7   | 33.3        | 14.2   | 19.4  | 22.3   | 20.1  | 27.6  | 28.8  |
| Sr                                          | 78.0                                   | 9.8   | 5.9   | 6.3   | 5.3    | 8.7    | 7.4         | 33.5   | 21.0  | 55.4   | 10.0  | 18.1  | 63.4  |
| Y                                           | 1.4                                    | 1.5   | 8.7   | 6.4   | 6.8    | 15.5   | 22.8        | 4.6    | 10.4  | 14.4   | 53.4  | 29.5  | 21.5  |
| Zr                                          | 4.37                                   | 3.2   | 5.5   | 5.9   | 2.7    | 13.4   | 24.8        | 12.8   | 21.6  | 24.7   | 45.9  | 50.1  | 44.9  |
| Nb                                          | 0.65                                   | 0.12  | 0.27  | 0.14  | 0.13   | 0.12   | 0.07        | 0.05   | 0.09  | 0.08   | 0.23  | 0.04  | 0.08  |
| La                                          | 2.62                                   | 0.49  | 0.58  | 0.67  | 0.46   | 0.48   | 0.52        | 0.51   | 0.70  | 0.93   | 0.73  | 1.14  | 1.31  |
| Ce                                          | 8.77                                   | 1.59  | 1.93  | 2.08  | 1.25   | 1.91   | 3.03        | 2.12   | 3.55  | 3.27   | 4.00  | 5.96  | 6.48  |
| Pr                                          | 1.32                                   | 0.25  | 0.31  | 0.26  | 0.19   | 0.33   | 0.70        | 0.44   | 0.73  | 0.66   | 0.87  | 1.28  | 1.10  |
| Nd                                          | 4.55                                   | 1.11  | 1.43  | 1.19  | 0.98   | 1.90   | 4.65        | 2.76   | 4.91  | 4.21   | 5.58  | 7.56  | 6.13  |
| Sm                                          | 0.54                                   | 0.33  | 0.51  | 0.61  | 0.52   | 1.12   | 1.67        | 1.03   | 1.63  | 1.86   | 2.58  | 3.12  | 2.51  |
| Eu                                          | 0.28                                   | 0.19  | 0.39  | 0.31  | 0.28   | 0.55   | 0.61        | 0.56   | 0.69  | 0.61   | 1.21  | 1.20  | 1.21  |
| Gd                                          | 0.38                                   | 0.35  | 0.87  | 0.84  | 0.84   | 1.49   | 2.36        | 1.35   | 2.07  | 2.84   | 5.00  | 3.95  | 3.24  |
| Tb                                          | 0.05                                   | 0.05  | 0.17  | 0.18  | 0.13   | 0.33   | 0.49        | < 0.26 | 0.37  | 0.5    | 1.18  | 0.74  | 0.53  |
| Dy                                          | 0.29                                   | 0.34  | 1.40  | 1.14  | 1.10   | 2.34   | 3.62        | 1.11   | 2.33  | 3.01   | 8.12  | 5.59  | 4.21  |
| Ho                                          | 0.06                                   | 0.06  | 0.31  | 0.25  | 0.24   | 0.55   | 0.88        | 0.21   | 0.45  | 0.59   | 2.05  | 1.22  | 0.93  |
| Er                                          | 0.11                                   | 0.16  | 0.85  | 0.77  | 0.81   | 1.58   | 2.82        | 0.58   | 1.23  | 1.82   | 5.90  | 3.67  | 2.59  |
| Tm                                          | 0.02                                   | 0.02  | 0.15  | 0.10  | 0.12   | 0.23   | 0.43        | 0.08   | 0.16  | 0.25   | 0.98  | 0.50  | 0.34  |
| Yb                                          | 0.15                                   | 0.12  | 1.09  | 0.80  | 0.82   | 1.59   | 3.09        | 0.39   | 1.17  | 1.68   | 7.36  | 3.45  | 2.44  |
| Lu                                          | 0.03                                   | 0.03  | 0.14  | 0.10  | 0.12   | 0.23   | 0.40        | 0.04   | 0.15  | 0.26   | 1.08  | 0.42  | 0.34  |
| Hf                                          | 0.130                                  | 0.17  | 0.21  | 0.38  | 0.09   | 0.65   | 0.93        | 0.42   | 0.76  | 0.85   | 1.38  | 1.97  | 1.54  |
| Pb                                          | 0.069                                  | 0.036 | 0.041 | 0.045 | 0.045  | 0.035  | 0.044       | 0.086  | 0.060 | 0.107  | 0.063 | 0.060 | -     |
| Th                                          | 0.082                                  | 0.026 | 0.036 | 0.004 | 0.008  | 0.009  | 0.006       | 0.014  | 0.022 | 0.028  | 0.040 | 0.028 | -     |
| U                                           | 0.035                                  | 0.004 | 0.007 | 0.013 | 0.006  | 0.011  | 0.005       | 0.003  | 0.009 | 0.013  | 0.023 | 0.003 | -     |
| Eu/Eu*                                      | 1.76                                   | 1.72  | 1.78  | 1.30  | 1.28   | 1.29   | 0.94        | 1.45   | 1.14  | 0.80   | 1.01  | 1.04  | 1.29  |
| (Ce/Sm) <sub>N</sub>                        | 3.92                                   | 1.17  | 0.92  | 0.83  | 0.59   | 0.41   | 0.44        | 0.50   | 0.53  | 0.43   | 0.38  | 0.46  | 0.63  |
| (Ce/Yb) <sub>N</sub>                        | 16.13                                  | 3.57  | 0.48  | 0.70  | 0.41   | 0.32   | 0.26        | 1.46   | 0.82  | 0.52   | 0.15  | 0.46  | 0.71  |
| (Gd/Yb) <sub>N</sub>                        | 2.14                                   | 2.41  | 0.66  | 0.87  | 0.86   | 0.77   | 0.63        | 2.87   | 1.47  | 1.40   | 0.56  | 0.95  | 1.10  |
| Yb <sub>N</sub>                             | 0.90                                   | 0.74  | 6.71  | 4.90  | 5.02   | 9.78   | 19.02       | 2.40   | 7.17  | 10.34  | 45.29 | 21.23 | 15.00 |
|                                             |                                        |       |       |       |        |        |             |        |       |        |       |       |       |

p = porphyroclast, c = core

#### Table DR3. Nd-Hf ISOTOPE COMPOSITION

| Sample |                     | Sm (ppm) | Nd (ppm) | <sup>147</sup> Sm/144Nd              | <sup>143</sup> Nd/ <sup>144</sup> Nd | E <sub>Nd(0)</sub> | E <sub>Nd(220)</sub> |
|--------|---------------------|----------|----------|--------------------------------------|--------------------------------------|--------------------|----------------------|
| AM403  | grt clinopyroxenite | 0.399    | 0.212    | 1.1380                               | 0.513471 ± 4                         | + 16.3             | + 12.8               |
| BA3-W  | websterite          | 0.688    | 1.698    | 0.2450                               | 0.513030 ± 4                         | + 7.7              | + 6.3                |
|        |                     |          |          |                                      |                                      |                    |                      |
|        |                     | Lu (ppm) | Hf (ppm) | <sup>176</sup> Lu/ <sup>177</sup> Hf | <sup>176</sup> Hf/ <sup>177</sup> Hf | EHf(0)             | EHf(220)             |
| AM403  | grt clinopyroxenite | 0.101    | 0.109    | 0.1300                               | 0.284080 ± 30                        | + 46.3             | + 32.2               |
| BA3-W  | websterite          | 0.101    | 0.435    | 0.0327                               | 0.282995 ±9                          | + 7.9              | + 8.0                |
|        |                     |          |          |                                      |                                      |                    |                      |

All errors are 2SE and relate to the last significant digits



Figure DR1. Chondrite-normalized rare earth element (REE) patterns for re-equilibrated clinopyroxenes after garnet breakdown in Type-C garnet clinopyroxenites.



Figure DR2. Chondrite-normalized rare earth element (REE) patterns for re-equilibrated clinopyroxenes after garnet breakdown in websterites.

## **References Cited**

- Anczkiewicz, R., and Thirlwall, M. F., 2003. Improving precision of Sm-Nd garnet dating by H2SO4 leaching a simple solution to the phosphate inclusion problem. In: Vance, D., Muller, W., Villa, I. M. (Eds), Geochronology: Linking the Isotopic Record with Petrology and Textures, Geological Society, of London, Special Publications. v. 220, p.83-91.
- Anczkiewicz, R., Platt, P., Thirlwall, M.F., and Wakabayashi, J., 2004. Franciscan subduction off to a slow start: evidence from high precision Lu-Hf garnet ages on high grade blocks. Earth and Planetary Science Letters, v. 225, p. 147-161.
- Barth, M.G., Foley, S.F., and Horn, I., 2002. Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Research, v. 113, p. 323-340.
- Bedard, J.H., 1994. A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chemical Geology v. 118, p. 143-153.
- Godard, M., Awaji, S., Hansen, H., Hellebrand, E., Brunelli, D., Johnson, K., Yamasaki, T., Maeda, J., Abratis, M., Christie, D., Kato Y., Mariet, C., and Rosner, M., 2009, Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth and Planetary Science Letters, v. 279, p. 110-122.
- Hart, S.R., Blusztajn, J., Dick, H.J.B., Meyer, P.S., and Muehlenbachs, K., 1999. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochimica et Cosmochimica Acta, v. 63, p. 4059–4080.
- Montanini, A., Tribuzio, R., and Thirlwall, M., 2012. Garnet clinopyroxenite layers from the mantle sequences of the Northern Apennine ophiolites (Italy): evidence for recycling of crustal material. Earth and Planetary Science Letters, v. 351-352, p. 171-181.
- Perk, N.W., Coogan, L.A., Karson, J.A., Klein, E.M., and Hanna, H.D., 2007. Petrology and geochemistry of primitive lower oceanic crust from Pito Deep: implications for the accretion of the lower crust at the Southern East Pacific Rise. Contributions to Mineralogy and Petrology, v. 154, p. 575–590.

- Salters, V.J.M., Mallick, S., Har, S.R., Langmuir, C.E., and Stracke, A., 2011. Domains of depleted mantle: new evidence from Hafnium and Neodymium isotopes. Geochemistry, Geophysics and Geosystems, v. 8, doi:10.1029/2011GC003617.
- Thirlwall, M. F., and Anczkiewicz, R., 2004. Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. International Journal of Mass Spectrometry, v. 235, p. 9-81.
- Tiepolo, M., Bottazzi, P., Palenzona, M., and Vannucci, R., 2003. A laser probe coupled with ICP-double focusing sector-field mass spectrometer for in situ analysis of geological samples and U–Pb dating of zircon. Canadian Mineralogist, v. 41, p. 259-272.