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Figure DR1. SAF mantle xenoliths. A: Photograph of peridotite xenoliths within basalt matrix.
B: Photomicrograph of a lherzolite xenolith (crossed polars). The xenolith is characterized by
olivine porphyroclasts with planar internal subgrains and dynamically recrystallized grains
along the porphyroclast boundaries. Grain shapes are dominantly lobate. Polygonal grains
with 120° triple junctions between olivine grains (black arrows) and the smaller
(recrystallized) grains along olivine porphyroclasts margins, are also present.
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Figure DR2. FTIR spectra from olivine and orthopyroxenene. Polarized transmission FTIR
spectra collected from oriented crystal sections of olivine and orthopyroxene from a single
xenolith. Infrared spectra were collected using a Bruker Tensor 37 FTIR spectrometer and
Hyperion 2000 microscope. Sample preparation techniques and analysis conditions followed
those described in Withers et al. (2011). Polarized spectra were collected parallel to the a, b,
and c axes of olivine and orthopyroxene crystals. We used the calibration of Withers et al.
(2012) for determining the H content in olivine and Bell et al. (1995) for orthopyroxene.
Spectra are normalized to the sample thickness in cm and offset for clarity. A: Olivine (ol)
and orthopyroxene (opx) FTIR spectra in the OH stretching region. Spectra have been
baseline corrected. Opx spectra exhibit absorption bands at 3600 and 3425 cm™, and olivine
spectra show weak absorption at 3572 and 3523 cm™. Spectra are labeled with the
polarization direction of the electric vector of the infrared light (E), relative to the axes of
the infrared indicatrix. B: Principal spectra used for orientation for sample GRR997 (Asimow
et al., 2006) (dotted curves) and for olivine from this study (solid curves) in the region from
1200 to 2200 cm™. The most strongly absorbing peaks in the E| | and E| |y spectra are
clipped owing to near-complete infrared absorbance at these frequencies in a 470 um thick
crystal section. C: Principal spectra used for orientation for sample KBH-1 (Mosenfelder and
Rossman, 2013) (dotted curves) and for orthopyroxene from this study (solid curves) in the
region between 1300 and 2500 cm™.
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Figure DR3. Feedback loop of the Lithospheric Feedback model for western California, in
which both the viscous mantle and frictional crust contribute to system behavior. We
consider the deformation, both within the fault and within the borderlands, from two

points of view: 1) Displacement; and 2) Stresses. During a seismic cycle, the displacement
viewpoint is shown in blocks, representing horizontal slices through the upper crust and @

lithospheric mantle. The blocks with the Roman letters a-f describe the displacement in the
mantle, while the blocks with the Greek letters a-{ describe the displacement in the crust

during a seismic cycle. Distributed flow in the mantle causes displacement loading of the
crust, resulting in diffuse crustal deformation and ultimately seismic rupture on strike-slip
faults. Strain localization in the crust controls the stress cycle, as lithospheric mantle rocks
respond to rupture (a) by increasing strain rate and stress in the shear zone below the
crustal segment of the fault. As a response to this strain rate increase, the lithospheric
mantle undergoes viscous relaxation (e-f) and dissipates the localized deformation due to
fault rupture.
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Table DR1. Paleopiezometry results

Corrected (3D) recrystallized

Differential Stress (MPa)

Strain Rate (s7)

Viscosity (Pa-s)

Sample grain size (um)
Dchord Dmax Deq Dchord Dmax Deq Dchord Dmax Deq Dchord Dmax Deq

CAB18-2A 711.7 644.1 477.2 9.8 10.5 13.2 8210 1.1-10%  2.9-10" 3.0.10° 2.4-10° 1.1.10"
CAB18-6A 541.5 531.7 380.4 12.0 12.1 15.6  1.6-10™ 1.7.10"  2.110"®  1.9.10° 1.810° 7.1.10%
CAB18-7A 697.1 4495 323.7 9.9 13.8 17.6  8.110" 3610 1110 3.1.10° 9610° 3.9.10°
CAB18-12A 676.7 636.6 469.1 10.1 10.6 13.3  1510"% 1.8-10%® 4810"® 1.710° 1510° 7.0-10%
CAB18-18A 641.2 580.8 436.9 10.6 11.4 141 4.9-10™ 6.810™ 1710 5410 4.210® 2.010"°
CAB19-1 622.9 446.0 340.4 10.8 13.9 170  5.410™ 1610  4.010"® s5.010° 2210° 1110
CAB20-3 517.0 429.0 320.0 12.4 14.3 17.8  9.9-10™ 1.8.10® s5.010"® 3.1.10° 1.910° 8.9.10%

Notes: Dchord, Dmax, and Deq refer to the results of the linear intercept, maximum diameter and equivalent area diameter methods,

respectively.
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