GSA Data Repository 2015238

PART 1: THE DATA BASE

The following table summarizes the Mean Annual Temperature data used in this study. The paleolatitudes and paleolongitudes were initially generated using the Paleogeographic Information Systems (PGIS) program of Malcolm Ross and Christopher Scotese, and subsequently modified using the most recent version of Point Tracker by Christopher Scotese. The paleogeography used in the modeling study was generated with PGIS, and constitutes a modified version of that used by Upchurch et al. (Upchurch et al., 1999). We did our initial point rotations in PGIS to be compatible with model paleogeography, and modified them with updated data.

The data, calibrations, and sources of error are explained in the paragraphs following the table. Temperatures based on leaf margin analysis are explained more fully in Part 2.

				"Random"						
				Error, °C						
				(sampling,						
			Mean Annual	non-				Paleo-	Paleo-	
Record			Temperature	dissolution,		Modern	Modern	Lati-	Longi-	
No.	Locality	Data type	°C	error)	Error type	latitude	longitude	tude	tude	Source
	Alpha Ridge				1 S.D., modern					
	(uppermost				calibration error					Decalculated from
	Campanian to				for TEXH ₈₆ ^H (Kim					
4	lower		47		et al., 2010)	05	00	70	4.4	(Jenkyns et al.,
1	Maastrichtian)	IEXH ₈₆	1/	±2.5°		85	-98	78	14	2004)
	Colville				Calculated from					Calculated from
	(upper	10			95% C.I. shown					data in (Amiot et
2	Campanian)	Dinosaur δ ¹⁸ 0	3	+3.1/-3°	in paper	70	-151	81	-132	al., 2004)
	Prince Creek				MAT interval for					
	Formation,				extant					
	North Slope	Macroflora,			equivalent					
	lower	Life Form	5 (midpoint		vegetation					(Parrish and
3	Maastrichtian)	Analysis	of range)	2–8°	<u> </u>	70	-151	81	-132	Spicer, 1988)
	Prince Creek	Extrapolation			1 S.D., maximum					(Spicer and
4	Formation,	of CLAMP	6	±2.8°	error for CLAMP,	70	-151	81	-132	Herman, 2010)

	North Slope	latitudinal			extant data set					
	(Maastrichtian)	gradient for								
		Maastrichtian								
	Cantwell				1 S.D., maximum					
	Formation,				error for CLAMP,					
	Sable Mountain				extant data set					
	(lower	Macroflora,								(Tomisch et al.,
5a	Maastrichtian)	CLAMP	7	±2.8°		63.5	-149.8	74	-132	2010)
	Cantwell									
	Formation,									Calculated from
	Sable Mountain	Macrofiora,			1 S.D., sampling					data in (Tomisch,
-	(lower	Leaf margin			error for fossil	C 2 F	1 10 0		422	McCarthy et al.
50	Maastrichtian)	analysis	<8	>±2.6°	assemblage	63.5	-149.8	/4	-132	2010)
	Raryktin, NE				1 S.D., maximum					
6	Russia	Macrofiora,		12.08	error for CLAMP,	62	477		470	
6	(Maastrichtian)	CLAMP	11	±2.8°	extant data set	63	1//	75	179	(Goloneva, 2000)
	Kakanut, NE				1 S.D., maximum					
_	Russia	Macrofiora,			error for CLAMP,					
/	(Maastrichtian)	CLAMP	10	±2.8°	extant data set	63	174	75	1/4	(Goloneva, 2000)
	Koryak, NE				1 S.D., maximum					
	Russia	Macroflora,			error for CLAMP,		4.60		1.00	
8	(Maastrichtian)	CLAMP	4	±2.8°	extant data set	60	168	70	168	(Moiseeva, 2005)
					1 S.E. for mollusk					
					calibration data,					<i>(</i>
	Koryak Upland	Mollusc δ^{-0}	10–17 (12)		(Grossman and					(Zakharov et al.,
9	(Maastrichtian)	(aragonite)	n=4	±1.6°	Ku, 1986)	60	168	70	168	2006)
	Chignik flora,	Macroflora			1 S.D., sampling					
	Alaska	Loof morgin			error for fossils					
10	(upper		12	±2.2°		56.2	1E0 E	60	147	This report
10	Campanian)	allalysis	12	15.2	1 S E for	50.5	-136.5	09	-147	This report
	Lower				I J.E. IUI					
	Atanikerdiuk	Macroflora			Homisphoro					
	tiora,	Loof morgin			calibration data					
11	Greenland		24	±2°		70	E 2	61	10	This report
	(iviaastrichtian)	a11d1y515	24	<u>±∠</u>	1 S D mayimum	70	-52	01	-19	
	Edmonton,	Macroflara			I S.D., IIIdXIIIIUIII					
12	Alberta	iviacronora,	12	12.00	error for CLAIVIP,	52	112 5	60	00	(Coloreuro 2000)
12	(iviaastrichtian)	CLAIVIP	12	±2.8	extant data set	53	-113.5	60	-88	(Goloneva, 2000)

		Macroflora,			1 S.D., maximum					
		CLAMP,			error for CLAMP,					
		modified for			extant data set					(Spicer et al.,
		Maastrichtian								2008; Spicer and
13	Vilui, Siberia	(see part 3)	11	±2.8°		63.9	121.9	65	103	Herman, 2010)
	Alberta				Calculated from					Calculated from
	(upper	a w c ¹⁸ a			95% C.I. shown					data in (Amiot et
14a	Campanian)	Crocodile δ ¹⁰ 0	12	+1/-2.4°	in paper	50	-105	56	-80	al., 2004)
		Crocodile			Interval, MAT					
	Alberta	Modern			>14°					(Amiot et al.,
	(upper	Thermal				50	105	50		2004; Markwick,
140	Campanian)	Tolerances	>14	NA		50	-105	56	-80	1998)
	Alberta				Calculated from					Calculated from
1 -	(upper	Din	10	. 2 / 2 7 9	95% C.I. snown	50	105	FC	00	data in (Amiot et
15	Campanian)	Dinosauro U	10	+2/-3.7	In paper	50	-105	50	-80	al., 2004)
		Magnaflana			1 S.D., maximum					
16	Sakhalin, Russia	Macronora,	14	12.00	error for CLAIVIP	40	140	52	126	(Colonova, 2000)
10	(Maastrichtian)	CLAIVIP	14	12.8		49	145	55	130	(Golofieva, 2000)
	Sakrialiri,				1 S.E. Of modern					
	Kussid, Krasnovarka				for mollucks in					
	Formation				(Grossman and					
	(Maastrichtian	Mollusc δ ¹⁸ 0	7–11 (9)							(Zakharov et al
17	average)	(aragonite)	n=10	±1.6°	Ku, 1980)	47.3	142.5	51	136	2006)
	Montana	(***8*****)			Calculated from	-		-		Calculated from
	lupper				95% C.I. shown					data in (Amiot et
18	Campanian)	Crocodile δ^{18} 0	14	+1.1/-1°	in paper	46	-105	52	-82	al., 2004)
	Montana				Calculated from					Calculated from
	(upper				95% C.I. shown					data in (Amiot et
19	Campanian)	Dinosaur δ ¹⁸ 0	10	+2.8/-1.3°	in paper	46	-105	52	-82	al., 2004)
	Hell Creek,				1 S.D., maximum					
	North Dakota				error for CLAMP,					
	(upper	Macroflora,			extant data set					
20a	Maastrichtian)	CLAMP	12	±2.8°		46.3	-103.9	52	-80	(Goloneva, 2000)
	Hell Creek,	Macroflora,			1 S.E. for					
	North Dakota	Leaf margin			Northern					
	(upper	analysis,			Hemisphere					
20a	Maastrichtian)	lowest value	7	±2°	calibration data	46.3	-103.9	52	-80	(Wilf et al., 2003)

					of (Wilf, 1997)					
	Hell Creek	Macroflora,			1 S.D. sampling					
	North Dakota	Leaf margin			error for fossil					
	(upper	analysis,			assemblage					
20a	Maastrichtian)	highest value	18	±2.5°		46.3	-103.9	52	-80	(Wilf et al., 2003)
	Fox Hills North	Digital Leaf			1 S.D. of					
	Pox mills, North	Physiognomy			calibration data,					
	Jakula Junner not	North			North American					
	upper, not	American			regression					(Peppe et al.,
20b	Maastrichtian)	model	17	3.3°	model	46.3	-103.9	52	-80	2011)
	Fox Hills South				1 S.E. of modern					,
	FOX HIIIS, SOULI				calibration data					
					for mollusks in					
	(upper, not	Mollusc δ ¹⁸ 0	18-21 (19)		(Grossman and					(Zakharov et al
21	Maastrichtian)	(aragonite)	n=4	±1.6°	(u. 1986)	45.5	-100.7	50	-78	2006)
	Faultilla Cauth	(1 S.F. of modern					
	FOX HIIIS, SOUTH				calibration data					
	Dakota	Fish otolith			for mollusks in					
	(upper, but not	δ ¹⁸ 0			(Grossman and					(Carpenter et al
22	Maastrichtian)	(carbonate)	18	+1 6°	Ku 1986)	45	-100 7	50	-78	2003)
	Madicine Devu	(carbonace)			1 S D maximum	15	10017		70	2000)
		Macroflora			error for CLAMP					(Goloneva 2000)
23a	(upper Maastrichtian)	CLAMP	16–17	+2 8°	extant data set	41 9	-107	48	-86	Wolfe 1990)
250	Madicine Devu	Macroflora	10 1/		1 S D sampling	11.5	107	10	00	10000 10000
	Iviedicine Bow	Leaf margin			error for fossil					
23h	(upper Maastrichtian)	analysis	20	+2 4°	assemblage	41 9	-107	48	-85	This report
230		anarysis	20	<u> </u>	1 S D maximum	41.5	107	0	05	
	Lance	Macroflora			error for CLAMP					(Goloneva 2000:
2/12	(upper Maastrichtian)	CLAMP	14-16	+2.8°	error for claim,	/13 1	-104.6	10	-84	(0010110Va, 2000, Wolfe 1990)
240		Macroflora	14 10	±2.0	1 S D sampling	43.1	104.0		04	Wone, 1990)
	Lance	Leaf margin			arror for fossil					
24h	(upper Maastrichtian)	analysis	20	+2 /1°	assemblage	/13 1	-104.6	19	-84	This report
240			20	<u></u> ⊥2. 1		7.1	104.0	+5	04	
					modern					(Puceat et al
	Maastricht				calibration data					2007 (Lécuver et
	Nothorlands	Fish tooth			equation 2 of					2007), (Lecuyer et
25.2	(Maastrichtian)	anamal s ¹⁸ 0	14	+1.2°	(Lécuver et al	50.0	57	11	1	ai., 2013)
23b 24a 24b	(upper Maastrichtian) Lance (upper Maastrichtian) Lance (upper Maastrichtian) Maastricht, Netherlands (Maastrichtian)	Leaf margin analysis Macroflora, CLAMP Macroflora, Leaf margin analysis Fish tooth enamel δ^{18} 0	20 14–16 20 14	±2.4° ±2.8° ±2.4° ±1.2°	error for fossil assemblage 1 S.D., maximum error for CLAMP, extant data set 1 S.D. sampling error for fossil assemblage 1 S.E. for modern calibration data, equation 2 of (Lécuver et al	41.9 43.1 43.1	-107 -104.6 -104.6	48 49 49 49	-85 -84 -84	This report (Goloneva, 2000; Wolfe, 1990) This report (Puceat et al., 2007), (Lécuyer et al., 2013) recalibration

					2013)					
					1 S.E. for					
					modern					
					calibration data,					(Puceat et al.,
	Maastricht.				equation 2 of					2007), (Pucéat et
	Netherlands	Fish tooth			(Pucéat et al					al., 2010)
25b	(Maastrichtian)	enamel δ ¹⁸ 0	18	±2.7°	2010)	50.9	5.7	44	4	recalibration
					1 S.E. for					
					modern					
					calibration data.					(Puceat et al.,
	Nacilov Doland				equation 2 of					2007) (Lécuver et
	(Maastrichtian	Fish tooth	15-20 (17)		(Lécuver et al					al., 2013)
26a	Danian houndary)	enamel δ^{18} 0	n=3	+1 2°	2013)	51 3	22	44	19	recalibration
	Danian boandaryy				1 S F for	01.0				
					modern					
					calibration data					(Puceat et al
	Neelley, Deland				equation 2 of					2007) (Pucéat et
	Masilov, Polanu	Fish tooth	19-23 (20)		(Pucéat et al					al 2010)
26h	(Widdstrichtidh-	enamel δ ¹⁸ 0	n=3	+2 7°	2010)	51 3	22	44	19	recalibration
200	Daman Doandaryy				1 S F of modern	51.5			10	
	Couth				calibration data					
	South				for mollusks in					
	Netherlands				(Grossman and					(Zakharov et al
27	(uppermost Maastrichtian)	Mollusc 8 ¹⁸ 0	20	+1.6°	(0103311111111111 Ku 1986)	50.9	57	11	1	2006)
27		Wondse o o	20	1.0	1 SD maximum	50.5	5.7	44	4	2000)
	Littleton	Macroflora			arror for CLAMP					
202	(upper		17	+2 00	error for CLAIVIP	20.6	105	16	01	(Walfa 1000)
200	ividdstrittidil)	CLAIVIP	17	12.0	1 S E for North	39.0	-105	40	-04	(Wolle, 1990)
		Macroflora			1 S.E. IOI NOITH					
	Littleton	loof morgin			American calibration data					
20h	(upper		22	±2°	of (Wilf 1007)	20.6	105	16	01	This report
200	waastrichtian)	dildiysis	22	12		59.0	-105	40	-04	
	Laramie	Magrafiana			1 S.D., maximum					
20-	(upper	Macronora,	10	12.08	error for CLAIVIP	20 C	105	10	0.4	(Ma) = (1000)
298	iviaastrichtian)	CLAIVIP	13	±2.δ	extant data set	39.0	-102	40	-84	(wolle, 1990)
	Laramie, lower	Macroflora			1 S.E. for North					
	noras	Leaf margin			American					
29h	(upper Maastrichtian)	analysis	26	+2°	calibration data	39.6	-105	46	-84	This report
200	wiaastricittaiij	anarysis		- <u>-</u>	1	55.0	100			inis report

					of (Wilf, 1997)					
	Laramie,				1 S.D. sampling					
	Broomfield	Macroflora,			error for fossil					
	(upper	Leaf margin			assemblage					
29b	Maastrichtian)	analysis	23	±3.1°		39.6	-105	46	-84	This report
	Zaisan,				1 S.D., maximum					
	Kazakhstan	Macroflora,			error for CLAMP					
30	(Maastrichtian)	CLAMP	11	±2.8°	extant data set	48	84.9	45	67	(Goloneva, 2000)
	Vermejo				1 S.D., maximum					
	(upper	Macroflora,			error for CLAMP					
31a	Maastrichtian)	CLAMP	18	±2.8°	extant data set	37	-104.5	43	-85	(Wolfe, 1990)
					1 S.E. for North					
	Vermeio	Macroflora,			American					
	(upper	Leaf margin			calibration data					
31b	Maastrichtian)	analysis	23	±2°	of (Wilf, 1997)	37	-104.5	43	-85	This report
	Lower Raton				1 S.D., maximum					
	(uppermost	Macroflora,			error for CLAMP					
32a	Maastrichtian)	CLAMP	18	±2.8°	extant data set	37	-104.5	43	-85	(Wolfe, 1990)
	Lower Raton	Macroflora,			1 S.D., sampling					
	(uppermost	Leaf margin			error for fossil					
32b	Maastrichtian)	analysis	23	±2.1°	assemblage	37	-104.5	43	-85	This report
					1 S.E. for					
					modern					
		Fish tooth			calibration data,					(Puceat et al.,
	New Jersev	enamel δ^{18} 0,			equation 2 of					2007), (Lécuyer et
	(Maastrichtian	one or more	14–29 (19)		(Lécuyer et al.,					al., 2013)
33a	average)	sites	n = 10	±1.2°	2013)	40	-75	40	-52	recalibration
					1 S.E. for					
					modern					
		Fish tooth			calibration data,					(Puceat et al.,
	New Jersev	enamel δ^{18} 0,			equation 2 of					2007), (Pucéat et
	(Maastrichtian	one or more	17–32 (22)		(Pucéat et al.,					al., 2010)
33b	average)	sites	n = 10	±2.7°	2010)	40	-75	40	-52	recalibration
	McRae				1 S.D. sampling					
	Formation, Jose				error for fossil					
	Creek Member	Macroflora,			assemblage					
	(upper	Leaf margin								
34	Campanian or	analysis	22	±2.3°		33.2	-107.2	40	-88	This report

	lower Maastrictian)									
35a	Ripley (lower Maastrichtian)	Macroflora, CLAMP	17	±2.8°	1 S.D., maximum error for CLAMP extant data set	35	-88.4	38	-68	(Goloneva, 2000; Wolfe, 1990)
35b	Ripley, Cooper (lower Maastrichtian)	Macroflora, Leaf margin analysis	22	+2.4°	1 S.D. sampling error for fossil assemblage	36	-88	38	-68	This report
256	Ripley, Perry (lower	Macroflora, Leaf margin			1 S.D. sampling error for fossil	20		20	60	This report
350	Tennessee	anaiysis	23	±2.1*	1 S.E. of modern calibration data for mollusks in	36	-88	38	-08	
36	(upper Campanian)	Mollusc δ ¹⁸ 0	18–22 (20) n =4	±1.6°	(Grossman and Ku, 1986)	35.4	-88.4	39	-68	(Zakharov et al., 2006)
37	France (upper Campanian to lower Maastrichtian)	Crocodile δ ¹⁸ 0	21	+1°	Calculated from 95% C.I. shown in paper	43	3	36	1	Calculated from data in (Amiot et al 2004)
38	France (upper Campanian to lower Maastrichtian)	Dinosaur δ ¹⁸ 0	23	+2.1/-2°	Calculated from 95% C.I. shown in paper	43	3	36	1	Calculated from data in (Amiot et al., 2004)
39	Texas (upper Campanian to lower Maastrichtian)	Crocodile δ ¹⁸ 0	19	±1.1°	Calculated from 95% C.I. shown in paper	30	-103	36	-85	Calculated from data in (Amiot et al., 2004)
	Texas (upper Campanian to lower				Calculated from 95% C.I. shown in paper					Calculated from data in (Amiot et
40	Maastrichtian) Big Bend, Texas	Dinosaur δ ²⁰ 0 Soil carbonate	20	+1/-1.1°	Analytic error	30	-103	36	-85	al., 2004) (Dworkin et al.,
41 41	(Maastrichtian) Big Bend, Texas	δ ⁰ Soil carbonate	15 22	±0.5° ±0.5°	only Analytic error	30 30	-103 -103	36 36	-85 -85	2005) (Dworkin et al.,

	(Maastrichtian)	δ ¹⁸ 0			only					2005)
	Baja CA,				1 S.D. core top					
	Rosario Fm.,				error for					
	San Antonio del				Holocene					
	mar section ¹	High temp			planktonic					
	(upper	planktonic			foraminifera					
	Campanian to	foraminifera			(Crowley and					
	lower	$δ^{1\circ}$ 0, salinity			Zachos, 2000)					(Maestas et al.,
42	Maastrichtian)	corrected	26–30	±2.9°		31	-116.2	36 ¹	-96	2003)
	Olmos				1 S.D., maximum					
	(upper				error for CLAMP					
	Campanian to				extant data set					Jack Wolfe, oral
	lower	Macroflora,					101			communication,
43a	Maastrichtian)	CLAMP	24	±2.8°		27.5	-101	33	-83	2005
	Olmos				1 S F for North					Recalculation of
	(upper	Macroflora			American					data compiled by
	Campanian to	Leaf margin			calibration data					(Estrada-Ruiz et
12h	IOwer Maastrichtian)	analysis	25	+2°	of (M/ilf_{1007})	27 5	-101	22	_92	al 2008)
430	IVIddStrichtidit)	alialysis	25	12	15D modern	27.5	-101	33	-03	а., 2000) теу ^Н
					1 S.D., modern					
	Shuqualak									temperatures
	Core,				$1EXH_{86}$, (Kim et					calculated from
	Mississippi, USA				al., 2010)					supplementary
	(Maastrichtian	H	27–31 (30)							data of (Linnert et
44	average)	TEX ₈₆	n=9	±2.5°		33	-88.5	36	-67	al., 2014)
	Corsicana Fm.,									
	Brazos River									
	Cretaceous-									TTTY H
	Tertiary									1EX ₈₆
	boundary				1 S.D., modern					temperatures
	section				calibration for					provided by
	(upper	LI LI	30		TEXH ₈₆ " (Kim et					(Vellekoop et al.,
45	Maastrichtian)	TEX ₈₆	n= 7	±2.5°	al., 2010)	31	-97	36	-77	2014)
	Mullinax-1 and	Very well	27 (28 max)		1 S.D. core top					Calculated from
	Mullinax-3	preserved	(Maximum T,		error for					(Ashckenazi-
	cores, Falls	(non-	inferred SST,		Holocene					Polivoda et al.,
	County, Texas	recrystallized)	average for		planktonic					2014) using
	(upper	foraminifera	Pseudoguem		foraminifera					equation of (Hays
46	Maastrichtian)	encased in	belina	±2.9°	(Crowley and	31	-97	36	-77	and Grossman,

clay, δ^{-0} <i>costulata,</i> Zachos, 2000)	1991)
max. from	
Table 3)	
1 S.E. for	
modern	
Fish tooth calibration data,	(Puceat et al.,
enamel δ^{18} equation 2 of	2007) (Lécuver et
	2007, (Lecuyer et
(Maastrichtian one or more 24–31 (28) (Lecuyer et al.,	ai., 2013)
47a average) sites n=15 ±1.2° 2013) 31.7 -8 23 -10	recalibration
1 S.E. for	
modern	
Tick teeth	(Duraget at al
Fish tooth Calibration data,	(Puceat et al.,
Morocco enamel δ^{10} , equation 2 of	2007), (Pucéat et
(Maastrichtian one or more 27–34 (31) (Pucéat et al.,	al., 2010)
47b average) sites n=15 +2.7° 2010) 31.7 -8 23 -10	recalibration
ing declarge, side in the later later in the later later in the later la	
13.6.101	
modern	
calibration data,	(Ounis et al.,
Tupicia equation 2 of	2008). (Lécuver et
luinsia Eish tooth 21–30 (27)	al 2013)
	al., 2013)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	recalibration
1 S.E. for	
modern	
calibration data	(Ounis et al
Tunisia equation 2 of	2008), (Puceat et
(lower Fish tooth 28–33 (30) (Pucéat et al.,	al., 2010)
48b Maastrichtian) enamel $δ^{18}$ 0 n=2 ±2.7° 2010) 36 9 25 7	recalibration
1 S.F. for	
medern	
en la sub-	
Fish tooth	(Puceat et al.,
enamel δ^{10} , equation 2 of	2007), (Lécuyer et
Israel one or more 19–22 (21) (Lécuyer et al.,	al., 2013)
49a (Maastrichtian) sites n=3 +1.2° (2013) 32 34.5 18 29	recalibration
	(5)
Fish tooth modern	(Puceat et al.,
enamel δ^{18} 0, calibration data,	2007), (Pucéat et
Israel one or more 23–25 (24) equation 2 of	al., 2010)
49b (Maastrichtian) sites $n=3$ $\pm 2.7^{\circ}$ (Pucéat et al., 32 34.5 18 29	recalibration

					2010)					
					1 S.D., modern					TEX ₈₆ ^H
	Israel Aderet 1				calibration for					temperatures
	borehole				TEX ₈₆ ^H (Kim et					calculated from
	(Maastrichtian		26–30 (28)		al., 2010)					data in (Alsenz et
50	average)	TEX ₈₆ ^H	n=23	±2.5		32	34.5	19	29	al., 2013)
	Israel. PAMA				1 S.D., modern					TEX ₈₆ ^H
	Quarry (Ffe				calibration for					temperatures
	syncline)				TEXH ₈₆ ^H (Kim et					calculated from
	(Maastrichtian		24–29 (27)		al., 2010)					data in (Alsenz et
51	average)	TEX ₈₆ ^H	n=18	±2.5		32	34.5	19	29	al., 2013)
					?1 S.E. of					Calculated from
					modern					supplementary
					calibration data					data in (Steuber
					for mollusks in					et al., 2005) using
		Rudist δ ¹⁸ 0,			(Grossman and					the equation of
	Jamaica	midpoint of	32		Ku, 1986)					(Hays and
52	(66.0 & 69.1 myr)	seasonal range	n=2	±1.6°		18.1	-78	18	-78	Grossman, 1991)
					?1 S.E. of					Calculated from
					modern					supplementary
					calibration data					data in (Steuber
					for mollusks in					et al., 2005) using
	Oman, Jebel	Rudist δ ¹⁸ 0,			(Grossman and					the equation of
	Rawdah	midpoint of	31–34 (32)		Ku, 1986)					(Hays and
53	(69.1 myr)	seasonal range	n=2	±1.6°		24.7	54.8	6	46	Grossman, 1991)
					Precision for					Calculated from
					temperature in					(Wilson and
					proposed					Opdyke, 1996)
					modern analog					using their
					Arctica islandica					equation and the
	Wobejebato				(Weidman et al.,					equation of
	Guyot	Rudist δ ¹⁸ 0			1994)					(Grossman and
54	(69±1myr)	(aragonite)	30–32 (32)	±1.2°		12	164.9	0	-164	Ku, 1986)
	Bolivia				Calculated from					Calcluated from
	(middle			+3/-2.5°	95% C.I. shown					data in (Amiot et
55	Maastrichtian)	Crocodile δ^{18} 0	25		in paper	-18	-65	-21	-51	al., 2004)
	Southern	Glassy	31	±2.9°	1 S.D. core top	-8	39	-21	30	(Pearson et al.,

	coastal	foraminifera	(Warmest T,		error for					2001) and
	Tanzania	encased in	inferred SST)		Holocene					confirmed using
	(67±2 myr)	clay, δ ^{⊥®} 0			planktonic					equation of (Hays
					foraminifera					and Grossman,
					(Crowley and					1991)
					Zachos, 2000)					
	India, Lameta				Calculated from					
	Formation				95% C.I. shown					Coloulated from
	(Maastrichtian,			121/20	in paper					data in (Amint at
F7	not uppermost	Crossedile S ¹⁸ 0	10	+2.1/-3		16	76	25	F0	
57	waastrichtian)		18		1 C E for	10	70	-25	58	al., 2004)
	Chile, Las				1 S.E. IUI					
	Tablas									(Dueset at al
	(upper				calibration data,					(Puceat et al.,
	Campanian to	Fich to oth								2007), (Lecuyer et
FQ2	lower	FISH LOOLH	21	11.70	(Lecuyer et al.,	20	71	20	F7	dl., 2013)
200	waastrichtian)		21	±1.2	2015)	-20	-/1	-50	-57	Tecalibration
	Chile, Las				1 S.E. IUI					
	Tablas				modern calibration data					(Duccat at al
	(upper				calibration data,					(Puceal et al.,
	Campanian to	Fich to oth								2007), (Puceat et
FOL	lower		25	10.70	(Puceal et al.,	20	71	20	F7	dl., 2010)
580	Maastrichtian)	enamero U	25	±2.7	2010) 4.6.5. fea	-28	-/1	-30	-57	recalibration
					1 S.E. TOP					
	Chile, Algarrobo				modern					(Dueset et al
	(upper				calibration data,					(Puceat et al.,
	Campanian to	Ciale de adh			equation 2 of					2007), (Lecuyer et
50-	lower	FISH tooth	20	14.28	(Lecuyer et al.,	22.4	74 7	25	50	al., 2013)
59a	Maastrichtian)	enamel o U	20	±1.2*	2013)	-33.4	-/1./	-35	-58	recalibration
					1 S.E. TOP					
	Chile, Algarrobo				modern					
	(upper				calibration data,					(Puceat et al.,
	Campanian to	Ciale de adh			equation 2 of					2007), (Puceat et
FOR	lower	FISH tooth	24	10.78	(Puceat et al.,	22.4	71 7	25	F0	ai., 2010)
590	Maastrichtian)	enamel o 10	24	±2./*	2010)	-33.4	-/1./	-35	-58	recalibration
	Madagascar				Calculated from					Calculated from
	(lower	a 11 c ¹⁸		+1/-2.1°	95% C.I. shown					data in (Amiot et
60	Maastrichtian)	Crocodile õ [™] 0	27		in paper	-20	45	-33	36	al., 2004)

	Madagascar				Calculated from					Calculated from
	(lower			+2.3/-0.8°	95% C.I. shown					data in (Amiot et
61	Maastrichtian)	Dinosaur δ ¹⁸ 0	28		in paper	-20	45	-33	36	al., 2004)
	New Zealand				2 S.D., maximum					
	(upper				error for CLAMP					
	Campanian to	Macroflora,			extant data set					(Kennedy et al.,
62a	Maastrichtian)	CLAMP	12–14	±2.8°		-46	170	-58	-165	2002)
	New Zealand	Macroflora			1 S.D. sampling					
	(upper	loaf margin			error for fossils					(Kannady at al
62h	Campanian to		15	+2.0°		16	170	EO	165	(Refinedy et al.,
020	ividasti icittari)	alialysis	15	12.0	1 S E of modorn	-40	170	-30	-105	2002)
					calibration data					
	Vega Islanu,	Mollusc 8 ¹⁸ 0			for mollusks in					
	Deningula	aragonite or	9_15 (12)		(Grossman and					(Dirrie and
63	(Maastrichtian)		n-27	+1 6°	(01033111a110 Ku 1986)	-64	-577	-63	-67	(Firite and Marshall 1990)
05	(Widdstrichtidil)	calcite	11-27	1.0	MAT interval	-04	-57.7	-05	-07	
	Island James				allowed by					
	Ross Basin				nearest living					
	lunner	Coexistence			relatives					(Poole et al.,
64	Maastrichtian)	Intervals, Flora	14–18	NA	Telatives	-64	-57.7	-63	-67	2005)
	,				Maximum error					,
					for estimating					
					MAT in modern					
	King George				wood					
	Island James				assemblages					
	Ross Basin				with <25 species					
	(upper	Wood			(Wiemann et al.,					(Poole et al.,
65	Maastrichtian)	anatomy	11	±5.4°	1998)	-64	-57.7	-63	-67	2005)
	Seymour Island,				RMS error for					
	Antarctic				modern					
	Peninsula				MBT/CBT					
	(uppermost	GDGT,	10–14 (12)							(Kemp et al.,
66	Maastrichtian)	MBT/CBT	n= 8	±5°		-64.2	-56.6	-63	-67	2014)

¹The paleolatitude for Baja California is generated by the latest plate model of Christopher Scotese and represents the most northerly possible latitude for Baja California during the Maastrichtian. The authors of the original publication argue for the northward displacement of Baja California between the Maastrichtian and Recent (Maestas et al., 2003). Thus, the temperature provided in this table may represent a maximum possible δ^{18} 0 marine temperature for our reconstructed latitude. **Sources of data**—We use a diverse set of terrestrial and marine temperature proxies to reconstruct Mean Annual Temperature (MAT). Terrestrial proxies include paleobotany, membrane lipids of soil Crenarchaeota (MBT/CBT), and δ^{18} O of tooth enamel from dinosaurs and crocodilians. Marine proxies include membrane lipids of marine Crenarchaeota (TEX₈₆) and the δ^{18} O of diverse fossils, including fish tooth enamel (phosphate), mollusk shells and fish otoliths (aragonite), and exceptionally preserved calcite ("glassy" planktonic foraminifera and well-preserved rudists and other mollusks). We restrict our analysis of δ^{18} O to remains that show little or no evidence for post-mortem alteration, to avoid the problem of diagenetic overprinting of surface water carbonate by colder bottom waters (Pearson et al., 2001). We restrict our analysis to Maastrichtian remains except in situations where it was necessary to use late Campanian remains to obtain a good latitudinal gradient (e.g. terrestrial δ^{18} O).

Details are provided below.

<u>Paleobotany</u> Most paleobotanical temperatures are based on the physiognomy of leaf macrofossils. We use two widely employed calibrations between leaf physiognomy and climate: 1) Leaf Margin Analysis (LMA), and 2) Climate Leaf Analysis Multivariate Program (CLAMP).

LMA uses the percentage of entire-margined (non-toothed) species of dicot leaves to estimate MAT, based on a linear calibration between MAT and the percentage of Entire-Margined Species (EMS). For Northern Hemisphere fossil assemblages, we use the calibration of Wilf for modern Northern Hemisphere floras (Wilf, 1997). We use it because: 1) it has a similar slope to other Northern Hemisphere calibrations, 2) it predicts higher tropical temperatures than other calibrations, and 3) our preliminary analysis of Western Interior assemblages using CLAMP indicates that the most similar extant assemblages are from the Northern Hemisphere. We do not use the global calibration of Peppe et al. (Peppe et al., 2011) because of its high error, which results from inclusion of assemblages from Australia and New Zealand. The leaf margin equation for extant Australian floras shows a significantly different Y intercept from that for extant Northern Hemisphere floras (Greenwood et al., 2004), and leaf margin does not predict temperature in extant New Zealand floras because nearly all woody species are evergreen (Kennedy et al., 2014).

CLAMP is a multivariate calibration that uses leaf size categories and multiple features of leaf shape, including multiple characters of the leaf margin. It uses multivariate ordination to estimate MAT, either through projection of the fossil assemblage on to the MAT axis, or through averaging temperatures of the nearest extant assemblages in multidimensional ordination space. Currently there is animated discussion in the literature about the pros and cons of CLAMP and LMA.

Both LMA and CLAMP predict similar MAT for high latitudes and the Gulf Coast of the United States. They diverge in North American assemblages ranging from 40–55° paleolatitude, with CLAMP estimating MAT up to 7°C lower than LMA. The two values have overlapping Standard Deviations (S.D.) for most floras, indicating that the estimates are probably not significantly different statistically. The reason for the bias in the two methods is not yet clear. Most CLAMP estimates of MAT for the Maastrichtian are based on early calibrations, which used a much smaller number of extant leaf assemblages than the current version of CLAMP.

Additional paleobotanical estimates of MAT come from Digital Leaf Physiognomy, Dicot Wood Physiognomy, and Coexistence Interval Analysis. Digital Leaf Physiognomy numerically analyses leaf shape to estimate MAT. It increases precision and minimizes user error by quantifying leaf traits that show continuous variation. It is also time consuming; so far, only one Maastrichtian leaf flora has used this method to estimate MAT. Wood physiognomy uses characters of dicot wood anatomy, calibrated by multiple regression, to estimate MAT. Only one Maastrichtian assemblage has used this method so far, in part because of the low number of latest Cretaceous wood floras and the time needed to make thin sections of fossil wood. Coexistence Interval Analysis uses the nearest living relatives of fossil taxa to infer climate from their area of climatic overlap. So far it has been used only for assemblages from the high southern latitudes (mostly palynomorphs), where relationships with extant genera are relatively clear.

<u>GDGT proxies</u>—The TEX₈₆ proxy estimates MAT from the ratio of different glycerol dialkyl glycerol tetraethers (GDGTs) with 86 carbons, which comprise membrane lipids in marine Crenarchaeota (organisms with cell organization similar to that of bacteria but belonging to Domain Archaea, rather than Domain Eubacteria) (Schouten et al., 2002). The TEX₈₆ index strongly correlates with mean surface water temperature, based predominantly on core top data. We use the TEX₈₆^H calibration of Kim et al. (Kim et al., 2010), based on the log of TEX₈₆, because it shows the lowest core top error of all calibrations for MAT >5°C (1 S.D. = ± 2.5 °C). It also appears to accurately predict MAT >30° on the basis of limited mesocosm data. We converted all published TEX₈₆ values into TEX₈₆^H temperatures.

 TEX_{86}^{H} tends to give higher temperature estimates than other geochemical and paleobotanical proxies. The 1 S.D. error bars of TEX_{86}^{H} and the other proxies overlap at lower latitude sites, but do not overlap at high latitude sites. One of the two warm outliers for the Arctic is the TEX_{86}^{H} data point of Jenkyns et al. (Jenkyns et al., 2004), which is at least 2 S.D. higher than any other Arctic temperature estimate. Spicer and Herman (Spicer and Herman, 2010) make the argument that, in polar environments, the TEX_{86} proxy shows a strong summer bias.

The MBT–CBT proxy is based on the distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids, which comprise membrane lipids of soil Crenarchaeota. The one MBT-CBT data point (Antarctic Peninsula) gives MAT estimates comparable to those of other proxies.

<u>Marine stable isotopes</u>—An important part of our data base for lower and middle latitudes is the δ^{18} O of carbonate and phosphate. For carbonate, we were extremely selective and only used fossils that showed evidence for minimal or no diagenesis. For calcite, we only used : 1) "glassy" planktonic foraminifera, 2) other planktonic foraminifera that showed well-preserved microstructure under SEM and the absence of secondary calcite, and 3) exceptionally preserved calcite in rudist bivalves. For aragonite, which is thermodynamically less stable than calcite, we used published data for mollusks, provided there was no evidence for diagenesis or significant freshwater influence. For calcite, we used the calibration of Hays and Grossman (Hays and Grossman, 1991). For aragonite, we used the calibration of Grossman and Ku (Grossman and Ku, 1986).

The phosphate of fish tooth enamel is thought to be less vulnerable to diagenetic alteration than calcite. We recalculated all published values for fish tooth enamel because the calibrations have changed since the last comprehensive analysis of Cretaceous fish tooth enamel (Puceat et al., 2007). We use two calibrations: 1) equation 2 in Puceat et al. (Pucéat et al., 2010), and 2) equation 2 in Lecuyer et al. (Lécuyer et al., 2013).

The Puceat et al. equation is based on δ^{18} O of phosphate from fish tooth enamel in both natural and mesocosm environments, whereas the Lecuyer et al. equation is based on δ^{18} O of phosphate in lingulid brachiopods and the teeth of a small number of fish. Both calibrations have a similar slope to the older calibration, but give temperatures at least 4°C higher. Temperatures based on the Puceat et al. calibration are, on average, 3°C higher than those based on the Lecuyer et al. calibration. When recalculating temperatures with the Puceat et al. calibration, we added 2.2‰ to δ^{18} O values from early studies that use older analytical methods and calibrations, and added 0.9‰ to δ^{18} O values from later studies that use current analytic methods, in particular precipitating silver phosphate (Pucéat et al., 2010). Both corrections include recalibration of the standard NBS120c. When recalculating temperatures from older data using the Lecuyer et al. calibration, we subtracted 0.9‰ from the 2.2‰ correction because this calibration uses an older value for NBS120c.

In our recalculations, we follow other authors and assume that latest Cretaceous seawater had a δ^{18} O of -1‰ SMOW, namely, seawater in an ice-free world. Isotopic temperatures were calculated from values of δ^{18} O adjusted for latitude, using the formula derived for modern oceans by Bice et al. (2000) and SMOW = -1‰. These were checked for consistency with values of δ^{18} O derived from the model's sea surface salinity fields, using the formula of Broecker (1989). When the salinity-derived values differed >0.8‰ from the latitudinally adjusted values and at least one of the values was -1‰ or below (Tanzania, Oman, Texas, and most sites at middle to high latitudes), we used the average SMOW value of -1‰ to calculate temperatures. We used "best estimates" of δ^{18} O because the low-resolution version of CCSM3 does not simulate stable isotopes.

<u>Terrestrial stable isotopes</u>—We include data from terrestrial stable isotopes for the sake of completeness, but are well aware of the potential problems surrounding the use of δ^{18} O in meteoric water to estimate past surface temperatures (Fricke and O'Neil, 1999; Kohn and Welker, 2005; Suarez et al., 2013; Ufnar et al., 2002). Most temperatures are calculated from the δ^{18} O values provided by Amiot et al. (Amiot et al., 2004) for

dinosaur and crocodile tooth enamel, which were obtained by subtracting 21.9‰ from the δ^{18} O values listed for bone, and using the resulting value in their equation 3.

MAT calculated from the δ^{18} O of vertebrate tooth enamel and pedogenic carbonate tends to be lower than that based on other proxies. For Texas and India, the values are so low as to constitute outliers. However, the latitudinal gradient of MAT based on terrestrial isotopic data is similar to that of some other proxies, and the best model simulations.

Calculation of error—We calculated errors for our paleotemperatures to determine which proxies give significantly different temperatures, and to evaluate the goodness of fit between proxies and model simulations (see below). The two major types of error used here are: 1) error introduced by the choice of calibration, and 2) random error found in the calibration data set or fossil assemblage.

<u>Choice of calibration</u>—As discussed above, we used two major calibrations for leaf physiognomy and fish tooth enamel because of the absence of consensus regarding the most accurate method. In other cases, we used the calibration chosen by the authors of the original publication, or a commonly used calibration from the literature that is capable of estimating temperatures over a wide range.

<u>Sampling error with modern calibrations or fossil assemblages</u>—The second type of error varied between proxy and calibration, and was handled in different ways for different proxies and calibration. All reported errors are either 1 Standard Deviation (S.D.) or 1 Standard Error (S.E.), depending on how error was calculated in the original publication. We used 1 S.E. when calculating our own sampling error for modern calibrations.

Different types of error are used for: 1) MBT/CBT, which is Root Mean Squared (RMS) error, 2) dicot wood physiognomy, which is the maximum error in estimating MAT from a low diversity assemblage, and 3) terrestrial δ^{18} O, which uses the 95% Confidence Interval around the mean δ^{18} O value reported in the publication.

For plotting model data fits, we used the mean value for the proxy record, 1 S.D./S.E. above the highest measured value, and 1 S.D./S.E. below the lowest measured value, to calculate the range of error. No error is calculated for interval data, because the true value could lie anywhere with the interval. Here, the midpoint substituted for the mean, and the high and low values of the range substituted for error.

Paleobotany—For LMA, we estimate error as 1 S.E. of the calibration data set $(\pm 2^{\circ}C)$ or 1 S.D. of the sampling error for the fossil assemblage, whichever is greater (Wilf, 1997). For CLAMP, we use the largest error in the calibration data cited on the CLAMP website (1 S.D. = $\pm 2.8^{\circ}C$). For Digital Leaf Physiognomy, we used the error figure cited by the authors for the Northern Hemisphere calibration (Peppe et al., 2011) (1 S.E. =

±3.3°C). Interval analysis does not calculate means, and therefore has no error in the sense of other estimates. The interval represents the possible range of climates under which the flora could have existed, and the actual value can lie anywhere within the interval.

 TEX_{86} —As mentioned earlier, we chose the TEX_{86}^{H} calibration (Kim et al., 2010) because of its low standard deviation relative to other calibrations (1 S.D. = ±2.5°C, core top error).

Marine $\delta^{18}O$ —Although regression equations are used to estimate paleotemperature from $\delta^{18}O$, the original publications tend not to provide any estimate of calibration error. For calcite from planktonic foraminifera, Holocene core top data estimate error of 1 S.D. = ±2.9°C (Crowley and Zachos, 2000). For aragonite, our regression of the calibration data (Grossman and Ku, 1986) estimates error of 1 S.E. = ±1.6°C (mollusk data only). Fish otoliths are reported to have comparable calibration error to macroinvertebrate aragonite (Thorrold et al., 1997). For fish tooth enamel, our regression of the calibration data error of 1 S.E. = ±2.7°C for the Puceat et al. calibration, and 1 S.E. = ±1.2°C for the Lecuyer et al. calibration (Lécuyer et al., 2013; Pucéat et al., 2010).

Terrestrial $\delta^{18}O$ —As mentioned previously, error provided for $\delta^{18}O$ of apatite represents the 95% Confidence Interval around the mean $\delta^{18}O$ for each site (dinosaur and crocodilian values calculated separately)(Amiot et al., 2004). Equation 2, which describes the relation between vertebrate phosphate $\delta^{18}O$ and latitude, has significant error that might easily exceed the error of $\delta^{18}O$ measured for fossils (maximum spread of values $\approx \pm 9\%$, which gives a maximum spread of estimated MAT $\approx \pm 18$ °C). However, we did not have access to the actual measurements that were used to derive the equation, so we did not calculate calibration error.

PART 2: REANALYSIS OF LEAF MACROFLORAS FOR NORTH AMERICA

We recalculated temperatures for the North American Maastrichtian macrofloras reported by Wolfe and Upchurch (Wolfe and Upchurch, 1987) using leaf margin analysis; these values are reported in Supplementary Data, Part I. We recalculated leaf margin temperatures for two reasons. First, Jack Wolfe did the analysis of Maastrichtian assemblages, while Garland Upchurch did all of the Albian and most of the Cenomanian assemblages. We wished to re-evaluate species delimitations, which can have a major effect on calculated temperature. Second, we used the calibration equation of Wilf (Wilf, 1997) because the calibration used by Wolfe and Upchurch is inaccurate (Greenwood et al., 2004). Leaf margin analyses of North American Cretaceous floras published over the past decade use either the Wilf equation or another similar equation, based on extant floras of North America and East Asia. The Wilf equation also gives the highest MAT of any leaf margin equation, especially for assemblages with high percentages of entire-margined species.

We added two unpublished assemblages not available to Wolfe and Upchurch: 1) an assemblage from the Jose Creek member of the McRae Formation, which is preserved in recrystallized volcanic ash, and 2) the Broomfield assemblage of the Laramie Formation, which is preserved in sandstone. Jacqueline Scherer and Garland Upchurch analyzed the Jose Creek flora, while Garland Upchurch analyzed the Broomfield assemblage. The Broomfield assemblage is based on Upchurch's unpublished report to the Colorado Department of Transportation. We also recalculated mean annual temperature for the Littleton assemblage from the Denver Basin, which was never monographed but reported in Wolfe and Upchurch.

We calculated a maximum possible mean annual temperature for the Sable Mountain flora of the Cantwell Formation (Tomisch et al., 2010), coding all the species with missing margins as entire-margined. We did this to determine whether leaf margin data could produce a mean annual temperature as warm as CLAMP.

Our reanalysis gives a percentage of entire-margined species for each flora that usually is within five percent of the values published by Wolfe and Upchurch (± 1.4 °C). The exception is the Laramie flora, which has a percentage of entire-margined species twelve percent higher (+3.4°C).

The floras, their percentage of entire-margin species, and calculated mean annual temperatures are below. The floras are arranged from low to high paleolatitude. When a species varied between entire and non-entire margined, it was coded as 0.5 entire margined.

Flora	Number of dicot species	Number Entire- Margined Species	Number of species, margins entire to non-entire	Percent Entire- Margined Species	Mean Annual Temperature, °C
Cooper assemblage, McNairy Formation	36	25	0	69	22
Perry assemblage, McNairy Formation	nblage, McNairy 46 32		1	71	23
Jose Creek Member, McRae Formation	42	27	1	68	22
Vermejo Formation	64	47	0	73	23
Raton Formation (Maastrichtian part only)	43	31	0	72	23
Laramie Formation (based on illustrated species in Knowlton's monograph)	69	57	0	83	26
Laramie Formation, Broomfield locality	20	14 1		73	23
Denver Formation, Littleton assemblage	50	35	1	71	23
Medicine Bow Formation	39	24	0	62	20
Lance Formation	39	24	1	63	20
Cantwell Formation, Sable Mountain assemblage	23	≤5	0	≤22	≤8

The temperature equation of Wilf is as follows:

MAT (°C) = 2.24 + (0.286 x %Entire-margined species).

PART 3: THE VILYUI BASIN MACROFLORA

Spicer and coworkers (Spicer et al., 2008) provide macrofloral and palynofloral evidence on the temperature of the Late Cretaceous Vilyui Basin flora. The macroflora is Cenomanian in age (Spicer and Herman, 2010), while the palynoflora is younger (Spicer, written communication, August 2010). Spicer and coworkers ran climate model simulations using Cenomanian, Turonian, and Maastrichtian geographies but could not match the mean annual temperature, warm month mean, or cold month mean provided by the macroflora.

We adjusted the mean annual temperature (MAT) of the Cenomanian macroflora to compare with our Maastrichtian model runs. We did this in two steps. First, we took the graph of the CLAMP latitudinal gradient from figure 9 in Spicer and Herman (Spicer and Herman, 2010) and moved the Vilyui macroflora temperature from the Cenomanian gradient line to the Maastrichtian gradient line at the same paleolatitude. This changed MAT by -3.5°C. Next, we moved the Vilyui Basin 4 degrees south along the Maastrichtian gradient line to accommodate plate motion between the Cenomanian and Maastrichtian, using plate positions for ~95 mya and 65 mya (Figure 1). This increased MAT by 0.8°C (+4° latitude x 0.2°C per degree latitude). The net change in MAT is -2.7°C.

Figure DR1. Late Cretaceous movement of the Vilyui Basin, based on the current version of Point Tracker software.

The adjusted MAT is 11.3°C. Our warmest simulations produce comparable or warmer temperatures, but with significantly greater seasonality than allowed by data.

The seasonality issue for the Vilyui Basin may be a function of reconstructed paleogeography (Figure 2). Markwick and Valdes (Markwick and Valdes, 2004), who provided the paleogeography for Spicer et al. (Spicer et al., 2008), reconstruct Late Cretaceous paleogeography for Siberia similar to that of Upchurch et al. (Upchurch et al., 1999), with mountains present to the east and south, and fully continental conditions for the Vilyui Basin. However, the paleogeography of Kasmin et al. (Kazmin et al., 1998) reconstructs the Vilyui Basin with a narrow seaway during the Late Cretaceous (Figure 2), which becomes a complex of lakes and marshes by the Maastrichtian, and fully terrestrial during the Paleocene.

The degree of seasonality for the Vilyui Basin in model simulations probably shows a strong relation to the presence/absence of large lake or narrow seaway, and whether or not a particular climate model has sufficiently high spatial resolution to incorporate this feature of paleogeography. However, no model simulations have yet tested this idea.

Figure DR2. Latest Cretaceous paleogeography of the Vilyui Basin, showing the presence of a large lake (Kazmin et al., 1998).

PART 4: MODEL-DATA COMPARISONS

This section provides additional plots of model output and proxy data.

Figure DR3. Plot showing range of temperature values for model simulations (red) and proxies (black). The dots represent sites with proxy data. The black dots represent mean values for the proxy, and the black lines represent error as described in Part 1. The red dots represent the median value from all model simulations, and the red lines represent the maximum and minimum values.

Figure DR4. Plot of model-observed vs. observed Mean Annual Temperature (MAT). Note how the three simulations on the left show no strong bias and a fairly even spread around the 0 line. In contrast, the 2xPAL simulation is too cold, and the 6xPAL WP simulations are too hot.

Figure DR5. Simulated Cold Month Mean Temperature (CMMT) for North America and surrounding regions, 2x PAL WarmPole simulation, and the distribution of crocodilians and palm macrofossils (points) that come from localities listed in Part 1. The two solid black lines represent the 1°C and 5°C CMMT isotherm simulated by the model. The dashed circular lines represent 30°N and 60°N paleolatitude. Extant crocodilians and palms are restricted to climates with CMMT >5°C. **X** denotes our northernmost data point shifted to its latitudinal position in Markwick (Markwick, 2007). Note how all our data points lie within the zone of Crocodile and Palm climate. In contrast, the simulations of Markwick (Markwick, 2007) and Upchurch et al. (Upchurch et al., 1999) are too cold to simulate the full distribution of crocodilians and palm macrofossils.

Figure DR6. $2xCO_2$ WarmPole simulation, marine data points with temperature values for regions where the model simulates tropical temperatures (Mean Annual Surface Temperature $\ge 25^{\circ}$ C). Black circles with labels = regions where the average proxy temperature and model temperature agree. Purple stars = regions where the average proxy temperature exceeds the model temperature. Blue stars = regions where the average proxy temperature of purple stars is slightly higher than the number of blue stars, indicating that the model does not consistently overestimate tropical temperatures. The high range of temperatures for Israel reflects major differences between temperatures calculated from fish tooth enamel (mean = 21 or 24°C) and TEX₈₆ (mean = 27 or 28°C).

Average model temperatures for the 6xCO₂ simulations and the 2xCO₂ Warmpole simulation are slightly higher than the proxy temperatures when both calibrations for fish tooth enamel are used. In contrast, average model temperatures for these simulations are **slightly lower** than proxy temperatures when only the warmer calibration for fish tooth enamel is used. This indicates that modeled tropical marine temperatures are high, but do not exceed the uppermost limit allowed by proxies. See table 1 for details.

TABLE DR1. MEAN ANNUAL SURFACE TEMPERATURE (MAT), MODEL SIMULATIONS								
Simulation	CO ₂ ppm	CH₄ ppb	Liquid clouds	Global MAT	Tropical (20°S–20°N) MAT	Vilyui Basin MAT	MAT gradient, 30°N–80°N, grid points with geologic data	MAT gradient, 30°N –80°N, zonal average
2xCO ₂	560	2000	Standard	19.6°	28.3°	-2.8°	0.46°	0.44°
6xCO ₂	1680	2000	Standard	23.8°	31.9°	4.6°	0.40°	0.37°
6xCO ₂ , PIL methane	1680	760	Standard	23.2°	31.4°	2.9°	0.42°	0.37°
2xCO ₂ WP	560	2000	Warmpole	23.7°	31.7°	5.0°	0.40°	0.36°
6xCO ₂ , WP	1680	2000	Warmpole	27.9°	35.5°	11.9°	0.36°	0.32°
6xCO ₂ , WP flat Siberia	1680	2000	Warmpole	27.9°	35.5°	13.7°	0.38°	0.33°

Note: Surface temperatures are in °C for 2m height (TREFHT). Zonal average is for all model grid points, and includes interior and high elevation regions with no geologic data. Warmpole clouds (WP) cause average global warming similar to a tripling of atmospheric CO₂. Adjusted CLAMP temperature for the Vilyui Basin is 11.3°C. MAT gradient 30°N –80°N based on geologic data is 0.38–0.40°C.

TABLE DR2. STATISTICS FOR MODEL-DATA COMPARISIONS

Simulation	6xCO ₂	2xCO ₂	6xCO₂ PAL CH₄	6xCO₂ WarmPole	2xCO ₂ WarmPole	6xCO₂ WarmPole No Siberian Mts.
Average Global Temperature, °C	23.8	19.6	23.2	27.9	23.7	27.9
Average (model-observed), all latitudes and data	0.51	-4.22	-0.09	5.08	0.61	4.59
Standard Deviation (model-observed), all latitudes and data	4.1	4.2	4.1	4.0	3.9	4.0
Average (model-observed), 30°N to 30°S, all data	3.21	-0.96	2.62	7.42	2.93	7.46
Standard Deviation (model-observed), 30°N to 30°S, all data	4.3	3.6	4.3	4.8	4.0	4.8
Average (model-observed), 30°N to 30°S, marine data only	2.19	-1.77	1.61	6.31	1.96	6.32
Standard Deviation (model-observed), 30°N to 30°S, marine data only	3.3	3.0	3.3	3.7	3.1	3.8
Average (model-observed), marine data only, regions with model SST ≥25°C, all data	1.54	-2.49	0.96	5.63	1.26	5.61
Standard deviation (model-observed), marine data only, regions with model SST ≥25°C, all data	3.8	3.4	3.8	4.3	3.6	4.4
Average (model-observed), marine data only, regions with model SST ≥25°C, without Lecuyer data	-0.01	-3.86	-0.58	3.94	-0.23	3.92
Standard Deviation (model-observed), marine data only, model SST $\geq 25^\circ {\rm C}$, without Lecuyer data	2.8	2.5	2.8	2.6	2.6	3.3

REFERENCES CITED

- Alsenz, H., J, R., Ashckenazi-Polivoda, S., Meilijson, A., Ron-Yankovich, L., Abramovich, S., Illner, P., Almogi-Labin, A., Feinstein, S., Berner, Z., and Püttmann, W., 2013, Sea surface temperature record of a Late Cretaceous tropical Southern Tethys upwelling system: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 392, p. 350-358.
- Amiot, R., Lecuyer, C., Buffetaut, E., Fluteau, F., Legendre, S., and Martineau, F., 2004, Latitudinal temperature gradient during the Cretaceous Upper Campanian-Middle Maastrichtian: d¹⁸O record of continental vertebrates: Earth and Planetary Science Letters, v. 226, p. 255-272.
- Ashckenazi-Polivoda, S., Rak, C., Almogi-Labin, A., Zsolt, B., Ovadia, O., and Abramovich, S., 2014, Paleoecology of the K-Pg mass extinction survivor Guembelitria (Cushman): isotopic evidence from pristine foraminifera from Brazos River, Texas (Maastrichtian): Paleobiology, v. 40, p. 24-33.
- Carpenter, S.J., Erickson, J.M., and Holland Jr., F.D., 2003, Migration of a Late Cretaceous fish: Nature, v. 423, p. 70-74.
- Crowley, T.J., and Zachos, J.C., 2000, Comparison of zonal temperature profiles for past warm periods, *in* Huber, B.T., MacLeod, K.G., and Wing, S.L., eds., Warm Climates in Earth History: Cambridge, Cambridge University Press, p. 50-76.
- Dworkin, S., Nordt, L., and Atchley, S., 2005, Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate: Earth and Planetary Science Letters, v. 237, p. 56-68.
- Estrada-Ruiz, E., Upchurch, G.R., and Cevallos-Ferriz, S.R.S., 2008, Flora and climate of the Olmos Formation (Upper Campanian-Lower Maastrichtian), Coahuila, Mexico: a preliminary report: Gulf Coast Association of Geological Societies Transactions, v. 58, p. 273-283.
- Fricke, H.C., and O'Neil, J.R., 1999, The correlation between 180=160 ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time: Earth and Planetary Science Letters, v. 170, p. 181-196.
- Goloneva, L.B., 2000, The Maastrichtian (Late Cretaceous) climate in the Northern Hemisphere, *in* Hart, M.B., ed., Climates: Past and Present, Volume 181: Geological Society Special Publication: London, The Geological Society, p. 43-54.
- Greenwood, D.R., Wilf, P., Wing, S.L., and Christophel, D.C., 2004, Paleotemperature estimation using leaf-margin analysis: is Australia different?: Palaios, v. 19, p. 129-142.
- Grossman, E.L., and Ku, T.L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects: Chemical Geology (Isotope Geoscience Section), v. 59, p. 59-74.
- Hays, P.D., and Grossman, E.L., 1991, Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate: Geology, v. 19, p. 441-444.
- Jenkyns, H.C., Forster, A., Schouten, S., and Damste, J.S.S., 2004, High temperatures in the Late Cretaceous Arctic Ocean: Nature, v. 432, p. 888-892.
- Kazmin, V.G., Natapov, L.M., Bush, W.A., Filipova, I.B., Jasamanov, N.A., Balukhovsky, A.N., Volkov, J.V., Gatinsky, J., Kalimulin, S.M., Kulikova, L.I., Miledin, A.K., Pugacheva, I.P., Suetenko, O.D., Bocharova, N.J., Zonenshain, L.P., Kononov, M.K., and Scotese, C.R., 1998, The Paleogeographic Atlas of Northern Eurasia: Moscow, Institute of Tectonics of Lithospheric Plates, Institute of Lithospheric Plates,, 26 maps p.

- Kemp, D.B., Robinson, S.A., Crame, J.A., Francis, J.E., Ineson, J., Whittle, R.J., Bowman, V., and O'Brien, C., 2014, A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene: Geology, v. 42, p. 583-586.
- Kennedy, E.M., Arens, N.C., Reichgelt, T., Spicer, R.A., Spicer, T.E.V., Stranks, L., and Yang, J., 2014, Deriving temperature estimates from Southern Hemisphere leaves: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 412, p. 80-90.
- Kennedy, E.M., Spicer, R.A., and Rees, P.M., 2002, Quantitative palaeoclimate estimates from Late Cretaceous and Paleocene leaf floras in the northwest of the South Island, New Zealand: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 184, p. 321-345.
- Kim, J.-H., Meer, J.v.d., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koc, N.n., Hopmans, E.C., and Damste², J.S.S., 2010, New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions: Geochimica et Cosmochimica Acta, v. 74, p. 4639-4654.
- Kohn, M.J., and Welker, J.M., 2005, On the temperature correlation of ¹⁸O in modern precipitation: Earth and Planetary Science Letters, v. 231, p. 87-96.
- Lécuyer, C., Amiot, R., Touzeau, A., and Trotter, J., 2013, Calibration of the phosphate δ18O thermometer with carbonate–water oxygen isotope fractionation equations: Chemical Geology, v. 347, p. 217-226.
- Linnert, C., Robinson, S.A., Lees, J.A., Bown, P.R., Perez-Rodriguez, I., Petrizzo, M.R., Falzoni, F., Littler, K., Arz, J.A., and Russell, E.E., 2014, Evidence for global cooling in the Late Cretaceous: Nature Communications, v. DOI: 10.1038/ncomms5194.
- Maestas, Y., MacLeod, K.G., Douglas, R., Self-Trail, J., and Ward, P.D., 2003, Late Cretaceous foraminifera, paleoenvironments, and paleoceanography of the Rosario Formation, San Antonio Del Mar, Baja Califorina, Mexico: Journal of Foraminiferal Research, v. 33, p. 179-191.
- Markwick, P.J., 1998, Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 137, p. 205-271.
- Markwick, P.J., 2007, The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons, *in* Williams, M., Haywood, A.M., Gregory, F.J., and Schmidt, D.N., eds., Deep-Time Perspectives on Climate Change. Marrying the Signal from Computer Models and Biological Proxies: London, The Geological Society, p. 251-312.
- Markwick, P.J., and Valdes, P.J., 2004, Palaeo-digital elevation models for use as boundary conditions in coupled ocean-atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 213, p. 37-63.
- Moiseeva, M.G., 2005, Members of the angiosperm genus *Cissites* from the Maastrichtian Koryak flora, northeastern Russia.: Paleontological Journal, v. 39, p. 548-556.
- Ounis, A., Kocsis, L., Chaabani, F., and Pfeifer, H.-R., 2008, Rare earth elements and stable isotope geochemistry (δ^{13} C and δ^{18} O) of phosphorite deposits in the Gafsa Basin, Tunisia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 1-18.
- Parrish, J.T., and Spicer, R.A., 1988, Late Cretaceous terrestrial vegetation: a near-polar temperature curve: Geology, v. 16, p. 22-25.
- Pearson, P.N., Ditchfield, P.W., Singano, J.M., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., Shackleton, N.J., and Hall, M.A., 2001, Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs: Nature, v. 413, p. 481-487.
- Peppe, D.J., Royer, D.L., Cariglino, B., Oliver, S.Y., Newman, S., Leight, E., Enikolopov, G., Fernadez-Burgos, M., Herrera, F., Adams, J.M., Correa, E., Currano, E.D., Erickson, J.M., Hinojosa, L.F., Hoganson, J.W., Iglesias, A., Jaramillo, C., Johnson, K.R., Jordan, G.J., Kraft, N.J.B.,

Lovelock, E.C., Lusk, C.H., Niinemets, U., Penuelas, J., Rapson, G., Wing, S.L., and Wright, I.J., 2011, Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic implications: New Phytologist, v. 190, p. 724-739.

- Pirrie, D., and Marshall, J.D., 1990, High-latitude Late Cretaceous paleotemperatures: New data from James Ross Island, Antarctica: Geology, v. 18, p. 31-34.
- Poole, I., Cantrill, D., and Utescher, T., 2005, A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 222, p. 95-121.
- Pucéat, E., Joachimski, M.M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., Morinière, P., Hénard, S., Mourin, J., Dera, G., and Quesne, D., 2010, Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite: Earth and Planetary Science Letters, v. 298, p. 135-142.
- Puceat, E., Lecuyer, C., Donnadieu, Y., Naveau, P., Cappetta, H., Ramstein, G., Huber, B.T., and Kriwet, J., 2007, Fish tooth d¹⁸O revising Late Cretaceous meridional upper ocean water temperature gradients: Geology, v. 35, p. 107-110.
- Schouten, S., Hopmans, E.C., Scheffuss, E., and Damste, J.S.S., 2002, Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?: Earth and Planetary Science Letters, v. 204, p. 265-274.
- Spicer, R.A., Ahlberg, A., Herman, A.B., Hofmann, C.C., Raikevich, M., Valdes, P.J., and Markwick, P.J., 2008, The Late Cretaceous continental interior of Siberia: A challenge for climate models: Earth and Planetary Science Letters, v. 267, p. 228-235.
- Spicer, R.A., and Herman, A.B., 2010, The Late Cretaceous environment of the Arctic: A quantitative reassessment based on plant fossils: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 295, p. 423-442.
- Steuber, T., Rauch, M., Masse, J.-P., Graaf, J., and Malkoc, M., 2005, Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes.: Nature, v. 437, p. 1341-1344.
- Suarez, C.A., Ludvigson, G.A., Gonzalez, L.A., Fiorillo, A.R., Flaig, P.P., and McCarthy, P.J., 2013, Use of multiple oxygen isotope proxies for elucidating Arctic Cretaceous palaeo-hydrology, *in* Bojar, A.V., Melinte-Dobrinescu, M.C., and Smit, J., eds., Isotopic Studies in Cretaceous Research: London, Geological Society, London.
- Thorrold, S.R., Campana, S.E., Jones, C.M., and Swart, P.K., 1997, Factors determining ¹³C and ¹⁸O fractionation in aragonitic otoliths of marine fish.: Geochimica et Cosmochimica Acta, v. 61, p. 2909-2919.
- Tomisch, C.S., McCarthy, P.J., Fowell, S.J., and Sunderlin, D., 2010, Paleofloristic and paleoenvironmental informatoin from a Late Cretaceous (Maastrichtian) flora of the lower Cantwell Formation near Sable Mountain, Denali National Park, Alaska: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 295, p. 389-408.
- Ufnar, D.F., Gonzalez, L.A., Ludvigson, G.A., Brenner, R.L., and Witzke, B.J., 2002, The mid-Cretaceous water bearer: isotope mass balance quantification of the Albian hydrologic cycle: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 188, p. 51-71.
- Upchurch, G.R., Otto-Bliesner, B.L., and Scotese, C.R., 1999, Terrestrial vegetation and its effects on climate during the latest Cretaceous: Geological Society of America Special Paper, v. 332, p. 407-426, 434-436.
- Vellekoop, J., Sluijs, A., Smit, J., Schouten, S., Weijers, J.W.H., Damstéc, J.S.S., and Brinkhuis, H., 2014, Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary: Proceedings of the National Acadamy of Sciences USA, v. 111, p. 7537-7541.

- Weidman, C.R., Jones, G.A., and Lohman, K.C., 1994, The long lived mollusc *Arctica islandica*: A new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the northern North Atlantic Ocean: Journal of Geophysical Research, v. 99, p. 18305-18314.
- Wiemann, M.C., Wheeler, E.A., Manchester, S.R., and Portier, K.M., 1998, Dicotyledonous wood anatomical characters as predictors of climate: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 139, p. 83-100.
- Wilf, P., 1997, When are leaves good thermometers? A new case for Leaf Margin Analysis: Paleobiology, v. 23, p. 373-390.
- Wilf, P., Johnson, K.R., and Huber, B.T., 2003, Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary: Proceedings of the National Acadamy of Sciences USA, v. 100, p. 599-604.
- Wilson, P.A., and Opdyke, B.N., 1996, Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate: Geology, v. 24, p. 555-558.
- Wolfe, J.A., 1990, Paleobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary: Nature, v. 343, p. 153-156.
- Wolfe, J.A., and Upchurch, G.R., 1987, North American nonmarine climates and vegetation during the Late Cretaceous: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 61, p. 33-77.
- Zakharov, Y.D., Popov, A.M., Shigeta, Y., Smyshlyaeva, O.P., Sokolova, E.A., Nagendra, R., Velivetskaya, T.A., and Afanasyeva, T.B., 2006, New Maastrichtian oxygen and carbon isotope record: Additional evidence for warm low latitudes: Geosciences Journal, v. 10, p. 347-367.