GSA DATA REPOSITORY 2015144

Mismatch of glacier extent and summer insolation in Southern Hemisphere midlatitudes

Alice M. Doughty^{1,2}, Joerg M. Schaefer^{3,4}, Aaron E. Putnam^{2,3}, George H. Denton², Michael R. Kaplan³, David J.A. Barrell⁵, Bjørn G. Andersen^{6,†}, Samuel E. Kelley⁷, Robert C. Finkel^{8,9}, Roseanne Schwartz³

 ¹ Department of Earth Sciences, Dartmouth College, Hanover, NH 03750 USA
 ² School of Earth and Climate Sciences and Climate Change Institute, University of Maine, Orono, ME 04469 USA
 ³ Lamont-Doherty Earth Observatory of Columbia University, 61 Rt. 9W, Palisades, NY 10944 USA
 ⁴ Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA

⁵ GNS Science, Dunedin, New Zealand

⁶ Department of Geosciences, University of Oslo, 0316-Oslo, Norway

⁷Department of Earth and Environmental Sciences, Waterloo, ON N2L 3G1, Canada

⁸ Department of Earth and Planetary Sciences, University of California, Berkeley, CA-95064, USA

 9 CAMS, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA † - deceased

CONSTRUCTION OF COMPOSITE CO2 RECORD

The CO₂ record presented in Figure 3 (see text) was constructed from a composite of multiple published records from different Antarctic ice cores. Specifically, plotted are the CO₂ concentrations measured from gas bubbles trapped in the Byrd ice core from West Antarctica (Ahn and Brook, 2008; Ahn et al., 2012) and the EPICA Dome C ice core in East Antarctica (Monnin et al., 2001). For the EPICA Dome C record, we employed the most recently published gas age timescale of Parrenin et al., (2013).

SUPPLEMENTAL FIGURES AND TABLES

Supplemental diagram Fig. DR1 presents plots of individual age determination statistics for the moraine belts in the study area. Table DR1 provides sample details and ¹⁰Be measurements, while Table DR2 presents ¹⁰Be data for the procedural blanks. Table DR2 lists the individual age determinations.

Fig. DR1 (previous page) Normal kernel density functions ('camel plots') for the four moraine belts of the study area, plus another moraine (41.8 kyr belt) farther north along the Pukaki left-lateral moraines (Kelley et al., 2014). Lines depict Gaussian curves for individual samples (thin black) and the summed probabilities of all samples (dashed thick black), and with outliers excluded (the reduced data set; thick solid black). Vertical blue line is the arithmetic mean, with paired black, red, and green vertical lines denoting 1σ , 2σ , and 3σ bounds, for the reduced data set. Yellow region highlights the 1σ uncertainty range. Measurements are presented in Tables DR1 and DR2, and ages for individual samples are listed in Table DR3. Only two samples were excluded as outliers (see text).

Table DR1. Moraine surface-exposure sample details and ¹⁰Be data.

					Boulder dimensions		nsions	Sample			Carrier			
CAMS laboratory no	Sample ID	Latitude (DD)	Longitude (DD)	Elevation (mas 1)	Length	Width	Height ¹	Thickness	Shielding	Quartz	Added	¹⁰ Be/9Be ± 1S	[¹⁰ Be] ± 1S	AMS Std ^d
laboratory no.				(111 a.s.1.)	(cm)	(cm)	(cm)	(cm)	Concetion	weight (g)	(g) ^a	$(10^{-14})^{b}$	(10 ⁴ atoms g ⁻¹) ^c	
Moraine belt a														
BE24117	MB-07-25	-44.077897	170.285198	647	160	90	58	2.07	1.000	5.0232	0.1971	$9.05~\pm~0.23$	$23.46~\pm~0.61$	$07 \text{KNSTD}_{\text{B4}}$
BE24118	MB-07-26	-44.080554	170.280364	649	170	140	63	1.76	1.000	5.012	0.2009	$9.45~\pm~0.23$	25.03 ± 0.62	07KNSTD _{B4}
BE29522	PL-09-78	-44.096400	170.289674	615	240	190	69	1.09	1.000	2.5589	0.1804	$5.30~\pm~0.14$	$24.72 ~\pm~ 0.65$	07KNSTD _{B5}
Moraine belt b														
BE21323	Kiwi-509	-44.082932	170.276422	665	350	nd	200	2.70	1.000	6.0564	0.2464	$7.36~\pm~0.17$	20.11 ± 0.47	KNSTD
BE24110	MB-07-17	-44.080764	170.278303	665	170	145	54	1.92	1.000	3.0898	0.2030	$4.24~\pm~0.14$	$18.49~\pm~0.60$	07KNSTD _{B3}
BE24111	MB-07-19	-44.084399	170.275689	666	200	105	56	1.13	1.000	5.0247	0.2020	$7.12 ~\pm~ 0.20$	$19.00~\pm~0.54$	07KNSTD _{B3}
BE24112	MB-07-20*	-44.088766	170.276473	647	220	80	68	1.81	1.000	5.0118	0.2034	$6.34 \ \pm \ 0.18$	$17.08~\pm~0.49$	07KNSTD _{B3}
BE24107	MC-07-04	-44.068440	170.273736	689	200	180	118	3.05	1.000	5.0685	0.2022	$7.52~\pm~0.20$	$19.92~\pm~0.54$	07KNSTD _{B3}
BE24108	MC-07-05	-44.068261	170.274118	689	240	230	116	1.28	1.000	4.4393	0.2024	$6.50~\pm~0.18$	$19.66~\pm~0.56$	07KNSTD _{B3}
BE24109	MC-07-10	-44.055932	170.273471	690	500	240	245	1.65	0.998	5.0202	0.2028	$7.46~\pm~0.21$	20.02 ± 0.55	07KNSTD _{B3}
Moraine belt c														
BE21324	Kiwi-513	-44.086356	170.266198	659	310	nd	230	4.90	1.000	0.8696	0.1510	$1.39~\pm~0.06$	16.15 ± 0.74	KNSTD
BE21788	Kiwi-514	-44.086356	170.266198	659	350	nd	240	4.00	1.000	3.0492	0.1993	$3.43~\pm~0.11$	$14.98~\pm~0.48$	KNSTD
BE23797	Kiwi-520	-44.053600	170.257542	706	420	360	330	2.28	1.000	4.0784	0.1974	$4.39~\pm~0.15$	$14.20 ~\pm~ 0.50$	07KNSTD
BE24105	MB-07-23	-44.091994	170.266176	671	210	70	84	1.28	1.000	5.0224	0.2011	$5.35~\pm~0.17$	$14.01 ~\pm~ 0.44$	07KNSTD_{B2}
BE24113	MB-07-24	-44.090885	170.266651	670	240	160	110	1.95	0.999	5.0123	0.2033	$5.35~\pm~0.17$	$14.38~\pm~0.47$	07KNSTD _{B3}
BE24211	MB-07-28	-44.094322	170.253197	696	250	180	76	1.91	0.987	4.0683	0.2037	$4.33~\pm~0.14$	$14.15~\pm~0.46$	07KNSTD_{B1}
BE24212	MB-07-29	-44.092265	170.255901	696	210	190	89	1.82	0.996	5.0203	0.2036	$5.22~\pm~0.16$	$13.85~\pm~0.44$	07KNSTD_{B1}
BE24205	MB-07-34	-44.140829	170.238048	641	110	65	153	1.63	0.998	5.2388	0.2019	$5.38~\pm~0.15$	$13.75~\pm~0.39$	07KNSTD_{B2}
BE24119	MB-07-35	-44.139325	170.238420	642	280	200	170	0.88	1.000	5.0062	0.2008	$5.28~\pm~0.20$	$13.93~\pm~0.53$	07KNSTD_{B4}
BE24120	MB-07-37	-44.128343	170.240007	659	320	160	95	1.79	1.000	2.7719	0.2055	$2.89~\pm~0.13$	$13.92 ~\pm~ 0.64$	07KNSTD_{B4}
BE24099	MC-07-09	-44.048889	170.262582	737	250	240	93	1.40	0.989	5.07	0.2022	$5.68~\pm~0.17$	$14.84 ~\pm~ 0.44$	07KNSTD _{B2}
BE24100	MC-07-12	-44.063038	170.270150	702	200	170	88	1.23	0.999	4.5619	0.2016	$5.20~\pm~0.15$	$15.04 ~\pm~ 0.43$	07KNSTD _{B2}
BE24101	MC-07-15	-44.060274	170.269464	703	600	260	183	1.14	1.000	5.0316	0.2018	$5.77 ~\pm~ 0.17$	$15.17 ~\pm~ 0.46$	07KNSTD _{B2}
Moraine belt d														
BE24210	MB-07-27	-44.100514	170.246009	709	160	90	63	1.37	1.000	5.0115	0.2027	$4.98~\pm~0.14$	13.17 ± 0.38	07KNSTD _{B1}
BE24121	MB-07-40	-44.137021	170.223387	648	160	100	60	1.99	1.000	5.0171	0.2027	$4.69~\pm~0.16$	12.44 ± 0.43	07KNSTD _{B4}
BE24122	MB-07-41*	-44.133723	170.224243	654	330	270	184	1.95	1.000	5.0221	0.2030	$5.71 ~\pm~ 0.21$	$15.17 ~\pm~ 0.57$	$07 \text{KNSTD}_{\text{B4}}$
BE24123	MB-07-42	-44.131335	170.225243	666	270	120	86	1.75	1.000	4.4161	0.2016	$4.25~\pm~0.13$	12.71 ± 0.41	07KNSTD_{B4}
BE24102	MC-07-18	-44.074376	170.259044	692	140	130	99	2.07	0.996	5.0351	0.2023	$5.08~\pm~0.15$	$13.35~\pm~0.40$	07KNSTD_{B2}
BE24103	MC-07-19	-44.072628	170.258158	691	350	310	159	1.11	1.000	5.1651	0.2014	$5.31~\pm~0.16$	$13.54~\pm~0.40$	07KNSTD_{B2}
BE24104	MC-07-20	-44.071967	170.257979	691	280	210	86	2.82	1.000	4.7366	0.2010	$4.50~\pm~0.14$	12.45 ± 0.39	07KNSTD _{B2}

Table DR1 - Notes

^a – Carrier ⁹Be concentration is 999 ppm for Kiwi-500-series samples, 996 ppm for MB-07 and MC-07 samples, 1024 ppm for PL-09-78.

^b – Boron-corrected ¹⁰Be/⁹Be. Ratios are not corrected for background ¹⁰Be detected in procedural blanks.

^c – Reported [¹⁰Be] values have been corrected for background ¹⁰Be detected in procedural blanks.

^d – AMS standard against which respective ratios and concentrations are measured. Reported ¹⁰Be/⁹Be ratios for 07KNSTD and KNSTD are 2.85x10⁻¹² and 3.15x10⁻¹², respectively. Respective blanks are indicated in subscript and refer to the blanks given in Table DR2.

¹ - Average of four measurements from ground to sample surface at the north, south, east, and west quadrants of the boulder.

nd - no data available.

Blank No.	CAMS laboratory no.	Sample ID	Carrier Added (g) ^a	$^{10}\text{Be}/^{9}\text{Be} \pm 1\text{S}$ $(10^{-16})^{b}$	$N_{10Be} \pm 1S$ $(10^3 \text{ atoms})^c$	AMS Std ^d
1	BE24213	Blank_2	0 2032	8 55 + 3 41	11 56 + 4.61	07KNSTD
		7-Aug-10	0.2032	0.55 ± 5.41	11.50 ± 4.01	0/181851D
2	BE24106	Blank_1	0.2015	9.17 + 2.13	12.20 + 2.86	07KNSTD
		7-Jun-14	0.2015	9.17 ± 2.13	12.29 ± 2.00	0/1810
3	BE24114	Blank_1	0 2023	1.84 + 2.25	2.48 + 3.03	07KNSTD
		7-Jun-28	0.2025	1.04 ± 2.23	2.40 ± 5.05	0/10/10
4	BE24124	Blank_1	0 1995	603 + 230	0.21 ± 3.17	07KNSTD
		7-Jul-13	0.1995	0.93 ± 2.39	9.21 ± 9.17	0/KINSTD
5	BE29513	Blank_1	0 1822	17.33 ± 2.35	21.61 ± 2.03	OTKNSTD
3		10-Apr-29	0.1822	17.55 ± 2.55	21.01 ± 2.95	UININGID

 Table DR2.
 Procedural blank
 ¹⁰Be data.

^a – Carrier ⁹Be concentration is 996 ppm for all blanks except for Blank No. 5, for which carrier ⁹Be concentration is 1024 ppm.

^b – Boron-corrected ¹⁰Be/⁹Be.

^c – Total ¹⁰Be (in atoms) in each procedural blank.

 d – AMS standard against which respective ratios and concentrations are measured. Reported 10 Be/ 9 Be ratio is 2.85x10 $^{-12}$.

		\mathbf{Q}	T A () + 1
Moraine belt	Sample ID	St Age (yrs) $\pm 1\sigma$	$Lm Age (yrs) \pm 1\sigma$
а	MB-07-25	$34,540 \pm 910$	$34,040 \pm 900$
a	MB-0/-26	$36,720 \pm 920$	$36,150 \pm 900$
a	PL-09-78	$36,840 \pm 1390$	$36,300 \pm 13/0$
		26.020 + 1200	25 500 + 12(0
	Arithmetic Mean Age $(\pm 1\sigma)$:	$36,030 \pm 1300$	$35,500 \pm 1260$
1.	Kin.: 500	26.070 + 620	2()
D	KIWI-509	$26,970 \pm 630$	$26,030 \pm 620$
D	MB-07-17	$26,720 \pm 870$	$26,310 \pm 860$
D	MB-07-19 MD-07-20*	$27,280 \pm 790$	$26,860 \pm 7/0$
D	MB-07-20*	$25,010 \pm 720$	$24,080 \pm 710$
D	MC-07-04	$28,450 \pm 780$	$27,980 \pm 770$
D	MC-07-05	$27,750 \pm 800$	$27,310 \pm 790$
b	MC-07-10	$28,360 \pm 790$	$27,900 \pm 780$
Ari	thmetic Mean Age - all samples $(\pm 1\sigma)$:	27220 + 1180	26810 + 1130
Arithmeti	c Mean Age - outlier excluded $(\pm 1\sigma)$:	$27,220 \pm 1100$ $27,590 \pm 720$	$20,010 \pm 1130$ 27 170 + 680
	e Mean Age - Sucher excluded (± 10).	$27,500 \pm 120$	27,170 ± 000
с	Kiwi-513	21.940 ± 1010	21.750 ± 1000
c	Kiwi-514	20.210 ± 650	20.090 ± 650
c	Kiwi-520	19.940 ± 710	19.810 ± 700
c	MB-07-23	20.010 ± 640	19.880 ± 630
c	MB-07-24	$20,670 \pm 680$	$20,510 \pm 680$
с	MB-07-28	$20,130 \pm 650$	$19,990 \pm 650$
с	MB-07-29	$19,520 \pm 620$	$19,410 \pm 620$
с	MB-07-34	$20,190 \pm 580$	$20,060 \pm 570$
с	MB-07-35	$20,310 \pm 780$	$20,170 \pm 770$
с	MB-07-37	$20,130 \pm 930$	$20,000 \pm 920$
с	MC-07-09	$20,310 \pm 610$	$20,150 \pm 610$
с	MC-07-12	$20,960 \pm 610$	$20,780 \pm 610$
с	MC-07-15	$21,090 \pm 640$	$20,910 \pm 640$
	Arithmetic Mean Age (± 1σ):	$20,420 \pm 620$	$20,270 \pm 600$
d	MB-07-27	18.220 ± 530	18.140 ± 530
d	MB-07-40	$18,170 \pm 630$	$18,100 \pm 630$
d	MB-07-41*	22.070 ± 830	21860 ± 820
d	MB-07-42	18260 ± 590	18190 ± 590
d	MC-07-18	$18,910 \pm 570$	$18,810 \pm 570$
d	MC-07-19	$18,990 \pm 570$	$18,890 \pm 570$
d	MC-07-20	17.660 ± 560	17.590 ± 560
~		11,000 = 000	1,,570 = 500
Ari	thmetic Mean Age - all samples ($\pm 1\sigma$):	$18,900 \pm 1470$	$18,800 \pm 1420$
Arithmeti	c Mean Age - outlier excluded (± 1σ):	$18,370 \pm 500$	$18,290 \pm 490$

Table DR3. ¹⁰Be surface-exposure ages for moraines southeast of Lake Pukaki. Scaling schemes St and Lm follow Balco et al. (2008).

* - Outlier. Outliers are defined as ages that are morphostratigraphically discordant.

Note: All ages are calculated using the P_{NZ2} production rates of Putnam et al. (2010), and are referenced to the year AD1950 by subtracting 52, 57, and 59 yrs from samples collected in AD2002, AD2007, and AD2009, respectively. Reported errors reflect 1s analytical uncertainties only.

REFERENCES CITED

- Ahn, J., and Brook, E. J., 2008, Atmospheric CO₂ and climate on millennial time scales during the last glacial period: Science, v. 322, no. 5898, p. 83-85.
- Ahn, J., Brook, E. J., Schmittner, A., and Kreutz, K., 2012, Abrupt change in atmospheric CO₂ during the last ice age: Geophysical Research Letters, v. 39, no. 18, p. L18711.
- Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements. Quaternary Geochronology, v. 3, p. 174-195.
- Kelley, S.E., Kaplan, M.R., Schaefer, J.M., Andersen, B.G., Barrell, D.J.A., Putnam, A.E., Denton, G.H., Schwartz, R., Finkel, R.C., and Doughty, A.M., 2014, New Zealand moraine record of a Southern Hemisphere cold episode 41,000 years ago: Earth and Planetary Science Letters, v. 405, p. 194–206.
- Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.-M., 2001, Atmospheric CO₂ concentrations over the Last Glacial Termination: Science, v. 291, p. 112-114.
- Parrenin, F., Masson-Delmotte, V., Köhler, P., Raynaud, D., Paillard, D., Schwander, J., Barbante, C., Landais, A., Wegner, A., and Jouzel, J., 2013, Synchronous change of atmospheric CO₂ and Antarctic temperature during the last deglacial warming: Science, v. 339, p. 1060-1063.
- Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vandergoes, M., Denton, G.H., Kaplan, M.R., Schwartz, R., Finkel, R.C., Goehring, B.M., and Kelley, S.E., 2010, In situ cosmogenic ¹⁰Be production-rate calibration from the Southern Alps, New Zealand: Quaternary Geochronology, v. 5, p. 392-409.