1

DATA REPOSITORY ITEM 2015123

2

3 General Geology

4 Great Basin Region (NV) – Shingle Pass, Antelope Range, and Meiklejohn Peak

5 The depositional environment of the Great Basin region during the Ordovician was a 6 passive margin carbonate ramp with intermittent influxes of siliciclastic sediment (Ross et al., 7 1989). The oldest rocks sampled in this study are from the Pogonip Group and are earliest 8 Ordovician (Tremadocian) in age based on the conodont faunas present (Sweet and Tolbert, 9 1997; Fig. 3). The Pogonip Group contains, from base to top, the House Limestone, Parker 10 Spring Formation, Shingle Limestone, Kanosh Shale, and Lehman Formation, which are overlain 11 by the Middle-Upper Ordovician Eureka Quartzite (Kellogg, 1963; Ross et al., 1989). The 12 Middle Ordovician lithostratigraphic units (Shingle Limestone to Lehman Formation) differ in 13 the Antelope Range and Meiklejohn Peak sections and are known as the Antelope Valley 14 Limestone and Copenhagen Formation, which is also overlain by the Eureka Quartzite (Figs. 3 15 and 4). Carbonate lithologies range from sparsely fossiliferous micrite with minor amounts of 16 siliciclastic silt and clay grains (e.g., House Limestone) to fossiliferous wackestone-packstone 17 beds (Antelope Valley Limestone, Shingle Limestone), sometimes interbedded with laminae to 18 thin beds of siliciclastic mudstone (Parker Spring, Copenhagen Formation, Lehman Formation) 19 (Ross, 1970; Ross and Shaw, 1972; Young et al. 2009; Edwards and Saltzman, 2014). 20 Conodonts from the Great Basin region range in alteration from the least altered in the Antelope 21 Range (CAI: 1-2), to moderate at Shingle Pass (CAI: 3-4.5), to the most altered in this study at 22 Meiklejohn Peak (CAI: up to 5) (Harris et al., 1979; Sweet and Tolbert, 1997).

23

24 Arbuckle Mountains, Oklahoma

25 The Middle-Upper Ordovician Simpson Group is exposed along roadcuts of Interstate-26 35, US-77, and US-99 in the Arbuckle Mountains in south-central Oklahoma (Bauer, 1987, 27 1994, 2010). The Simpson Group contains a mixed succession of siliciclastic quartz sandstone, 28 siltstone, and shale interbedded with massive to well-bedded limestone, which ranges from 29 micritic mudstone to coarse-grained grainstone (Fay, 1989; Derby et al. 1991). The oldest 30 formation of the Simpson Group is the Joins, which is overlain by the Oil Creek, McLish, Tulip 31 Creek, and Bromide formations (Fig. 5). During the Middle Ordovician, sedimentation along the 32 Southern Oklahoma Embayment is interpreted to have occurred on a carbonate ramp along a 33 rifted margin, possibly the conjugate margin of the Argentine Precordillera (Thomas and Astini, 34 1996; Albanesi and Bergström, 2010). Conodonts from the Simpson Group are some of the least 35 thermally altered conodonts sampled in this study and yield CAI values of 1-2.

36

37 Appalachian Region – Clear Spring (MD), Rocky Gap (VA), Interstate-81 (VA), Roaring Spring
 38 – Union Furnace (Central PA)

39 The Paleozoic strata in the Appalachian Region have been folded and faulted during the 40 Appalachian Orogeny and subsequent erosion has exposed numerous sections of Ordovician 41 strata that contain a wide range of lithologies. The Clear Spring section is an excellent exposure 42 of Ordovician strata located along an Interstate-70 roadcut in the Valley and Ridge Province of 43 central Maryland (Fig. 1). The section includes the upper portion of the Beekmantown Group, 44 the entire St. Paul Group, and the lower portion of the Chambersburg Limestone (Leslie et al., 45 2011; Brezinski et al., 2012; Fig. DR2). The Beekmantown Group comprises well-bedded lime 46 micrite of the Rockdale Run Formation and cyclic thin-medium beds of dolomitic lithologies of

the Pinesburg Station Dolomite interpreted by Brezinski et al. (2012) to have accumulated in a
restricted tidal flat environment.

49 The Rocky Gap section is exposed along a roadcut of Interstate-77 in southwestern VA 50 (Fig. 1), the base of which is recognized as the massively bedded Knox Dolomite. The upper 51 contact of the Knox Dolomite is an erosional surface with locally present karstic features and has 52 been studied in detail for its significance in recording changes in sea level and tectonics in the 53 Appalachian basin (Mussman and Read, 1986; Read and Eriksson, 2012). Known as the Knox 54 Unconformity, this surface is recognized throughout the Appalachian basin from northern 55 Virginia south to Alabama and is interpreted to record a sea level lowstand that represents the 56 boundary between the Sauk-Tippecanoe megasequences (Brezinski et al., 1999; Brezinski et al., 57 2012). This surface is also recognized in the I-81 section (near Strasburg, VA) where karstic 58 features are present (Leslie et al., 2011). In central Pennsylvania, the Beekmantown 59 Group/Knox Dolomite is recognized as the Bellefonte Dolomite. 60 Overlying the Beekmantown Group in the Clear Spring section is the St. Paul Group. 61 The base of the St. Paul Group is comprised of massive fenestral limestone and dolomites of the 62 Row Park Formation and transitions into laminated lime- and dolo-micrite with stromatolitic 63 beds near the base of the New Market Formation. At the Interstate-81 section only a few meters 64 of this fenestral micritic limestone of the New Market Formation is present (Leslie et al., 2011). 65 The New Market Formation and overlying Chambersburg Limestone are interpreted to reflect a 66 relative deepening of the basin with more open marine circulation based on the increasing 67 abundance of argillaceous and fossiliferous wackestone. In the Rocky Gap section, a portion of 68 the St. Paul Group is recognized as the Elway Formation, a chert nodule-bearing limestone at its 69 base that grades into an argillaceous limestone into the overlying Benbolt and Witten formations

3

70	(Fig. 7). Similar lithologies are present at the Roaring Spring-Union Furnace section (central
71	PA) where age-equivalent strata are represented by basal wackestone-grainstone lithologies of
72	the Loysburg Formation, up through the thick-bedded lime mudstone-wackestone lithologies of
73	the Nealmont Formation interpreted to record deposition in deeper facies (see Laughrey et al.
74	(2004) for a more detailed description of bed-by-bed lithologies and paleoenvironmental
75	interpretation of these units).
76	Conodonts from the Appalachian Basin have experienced a moderate amount of thermal
77	alteration, and conodont elements have CAI values between 3 and 5.
78	
79	Methods
80	Variation of bulk rock dissolution methods
81	Because variations in Sr concentration of bulk carbonate and burial temperature as
82	inferred from conodont alteration index (CAI) do not always predict Δ^{87} Sr/ ⁸⁶ Sr, we have
83	evaluated the importance of sample preparation, dissolution, and insoluble residues. Three bulk
84	carbonate samples with a range of Δ^{87} Sr/ ⁸⁶ Sr values from the Shingle Pass section were selected
85	to test how variations in the methods used to isolate carbonate-associated Sr may affect the
86	⁸⁷ Sr/ ⁸⁶ Sr (Tables DR4 and DR6).
87	A selection of eight insoluble residues from the bulk carbonate samples (Table DR6) was
88	digested in a strong acid solution to document the end member of radiogenic ⁸⁷ Sr/ ⁸⁶ Sr values
89	from siliciclastic material that may have been a source for post-burial isotopic exchange (cf.
90	Bailey et al., 2000). An acidic solution of 29M HF (80%), 6N HNO ₃ (10%), and 6N HCl (10%)

91 was added to residues in sealed Teflon beakers, which were placed on a hotplate for several days

92 until completely dissolved. Aliquots of Sr from dissolved residues were separated using the
93 same cation exchange resin described in the main text.

94

95 Pre-leaching of conodonts

To test the effects of how a pre-leach step might affect the measured radiogenic ⁸⁷Sr/⁸⁶Sr value (cf. Ruppel et al., 1996; John et al., 2008), a small subset of six conodonts from three localities was selected (Table DR6). Following the methods of John et al. (2008), conodonts were rinsed in 0.5% acetic acid overnight to dissolve the outer layer of apatite. The leachate was removed to a spiked beaker and Sr was separated using the cation exchange resin. The leached conodonts were then dissolved in 6N HCl using the same procedure used in the main study.

102

103 Scanning electron microscopy

Two brachiopods were imaged using scanning electron microscopy to document how the microstructural preservation of these samples compared to their ⁸⁷Sr/⁸⁶Sr values. One sample was selected that had little apparent recrystallization (SP-165.5) and one that had some possible signs of alteration (B-2739; Table DR3). Samples were sputter coated in a Au-Pd alloy and imaged using an FEI Quanta Field Emission Gun scanning electron microscope housed in the Subsurface Energy Materials Characterization and Analysis Lab (SEM-CAL) at The Ohio State University. A beam intensity of 15 kV and spot size of 4 mm were used for imaging.

111

112 **Results**

113 Variations of bulk carbonate methods

114	We sought to test whether the measured ⁸⁷ Sr/ ⁸⁶ Sr ratio was contaminated by secondary Sr
115	sourced from pore fluids or radiogenic clay minerals present in the powdered samples.
116	Variations in the treatment of these bulk carbonate samples (see Methods section) only reduced
117	the 87 Sr/ 86 Sr value by at most 0.000088 compared to the sample with no ammonium acetate or
118	pre-leach steps. In none of the methods was the amount of pre-treatment or pre-leaching able to
119	lower 87 Sr/ 86 Sr _{carb} values to the 87 Sr/ 86 Sr _{seawater} trend, suggesting that the highly radiogenic
120	87 Sr/ 86 Sr _{carb} values do record a diagenetic signature and are not artifacts of sample preparation.
121	The ⁸⁷ Sr/ ⁸⁶ Sr of the insoluble residue fractions were also measured to determine if these residues
122	may have contributed to highly radiogenic ⁸⁷ Sr/ ⁸⁶ Sr values, but the results are inconclusive (Fig.
123	DR6) and require a more detailed investigation.

124

125 Scanning electron microscopy

126 Analysis of the brachiopod samples using scanning electron microscopy show a range of 127 preservation of microstructures and secondary shell layers (Figs. DR4 and DR5). The secondary 128 shell layers from sample SP-165.5 show well-preserved laminae with little evidence for recrystallization. However, the ⁸⁷Sr/⁸⁶Sr_{brach} value is significantly more radiogenic than the 129 87 Sr/ 86 Sr_{seawater} even though the microstructures appear to be pristine. The corresponding 130 ⁸⁷Sr/⁸⁶Sr_{conodont} value is also significantly more radiogenic than the ⁸⁷Sr/⁸⁶Sr_{seawater} trend, 131 132 suggesting that some degree of isotopic exchange occurred in both materials with the 133 surrounding radiogenic red shaley limestone despite the lack of physical evidence of alteration. 134 However, sample B-2739 has evidence of significant alteration with micro-vuggy porosity and a 135 lack of well-defined secondary shell layers. Although the microstructure exhibits overall poor

136	preservation, the 87 Sr/ 86 Sr _{brach} value is indistinguishable from corresponding 87 Sr/ 86 Sr _{conodont}
137	values and is only slightly more radiogenic than the 87 Sr/ 86 Sr _{seawater} trend (0.000056; Fig. 6).
138	
139	REFERENCES CITED
140 141 142 143	Albanesi, G.L., and Bergström, S.M., 2010, Early-Middle Ordovician conodont paleobiogeography with special regard to the geographic origin of the Argentine Precordillera: a multivariate data analysis: <i>in</i> Finney, S.C., and Berry, W.B.N., eds., The Ordovician Earth System: Geological Society of America Special Paper 466, p. 119-139.
144 145 146 147	Bailey, T.R., McArthur, J.M., Prince, H., and Thirlwall, M.F., 2000, Dissolution methods for strontium isotope stratigraphy: whole rock analysis: Chemical Geology, v. 167, p. 313- 319.
148 149 150 151 152	 Bauer, J.A., 1987, Conodonts and conodont biostratigraphy of the McLish and Tulip Creek Formations (Middle Ordovician), south-central Oklahoma: Oklahoma Geological Survey Bulletin, v. 141, 53 p.
152 153 154 155	Bauer, J.A., 1994, Conodonts from the Bromide Formation (Middle Ordovician), south-central Oklahoma: Journal of Paleontology, v. 68, p. 358-376.
156 157 158 159	Bauer, J.A., 2010, Conodonts and conodont biostratigraphy of the Joins and Oil Creek Formations, Arbuckle Mountains, South-central Oklahoma: Oklahoma Geological Survey Bulletin, v. 150, 44 p.
160 161 162 163	Brezinski, D.K., Repetski, J.E., and Taylor, J.F., 1999, Stratigraphic and paleontologic record of the Sauk III regression in the central Appalachians: National Park Service Paleontological Research, v. 3, p. 32-41.
163 164 165 166 167 168 169 170	 Brezinski, D.K., Taylor, J.F., and Repetski, J.E., 2012, Sequential development of platform to off-platform facies of the Great American Carbonate Bank in the Central Appalachians, In: Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, W.A., and Sternbach, C.A. (Eds.), The great American carbonate bank: the geology and economic resources of the Cambrian-Ordovician Sauk megasequence of Laurentia, American Association of Petroleum Geologists Memoir, v. 98, p. 383-420.
171 172 173 174 175 176 177	Derby, J.R., Bauer, J.A., Miller, M.A., Creath, W.B., Repetski, J.E., Dresbach, R.I., Ethington, R.L., Loch, J.D., Stitt, J.H., Sweet, W.C., McHargue, T.R., Taylor, J.F., Miller, J.F., and Williams, M., 1991, Biostratigraphy of the Timbered Hills, Arbuckle, and Simpson Groups, Cambrian and Ordovician, Oklahoma: a review of correlation tools and techniques available to the explorationist: Oklahoma Geological Survey Circular, v. 92, p. 15-41.

178 179	Edwards, C.T., and Saltzman, M.R., 2014, Carbon isotope ($\delta^{13}C_{carb}$) stratigraphy of the Lower- Middle Ordovician (Tremadocian-Darriwilian) in the Great Basin, western United States:
180	implications for global correlation: Palaeogeography. Palaeoclimatology, Palaeoecology,
181	v 399 n 1-20.
182	(10)), p. 1 201
183	Fay, R.O., 1989, Geology of the Arbuckle Mountains along Interstate 35, Carter and Murray
184	counties, Oklahoma: Oklahoma Geological Survey Guidebook, v. 26, p. 1-50.
185	
186	Harris, A.G., Bergström, S.M., Ethington, R.L., and Ross, R.J.Jr., 1979, Aspects of Middle and
187	Upper Ordovician conodont biostratigraphy of carbonate facies in Nevada and southeast
188	California and comparison with some Appalachian successions: Brigham Young
189	University Geology Studies, v. 26, p. 7-33.
190	
191	John, E.H., Cliff, R., and Wignall, P.B., 2008, A positive trend in seawater ⁸⁷ Sr/ ⁸⁶ Sr values over
192	the Early-Middle Frasnian boundary (Late Devonian) recorded in well-preserved
193	conodont elements from the Holy Cross Mountains, Poland: Palaeogeography,
194	Palaeoclimatology, Palaeoecology, v. 269, p. 166-175.
195	
196	Kellogg, H.E., 1963, Paleozoic stratigraphy of the Southern Egan Range, Nevada: Geological
197	Society of America Bulletin, v. 74, p. 685-708.
198	
199	Laughrey, C.D., and Kostelnik, J., Gold, D.P., Doden, A.G., and Harper, J.A., 2004,
200	Trenton and Black River carbonates in the Union Furnace area of Blair and Huntingdon
201	counties, Pennsylvania, in Pittsburgh, Pennsylvania, Pittsburgh Association of Petroleum
202	Geologists Guidebook, 81 p.
203	
204	Leslie, S.A., Saltzman, M.R., Bergström, S.M., Repetski, J.E., Howard, A., and Seward, A.M.,
205	2011, Conodont biostratigraphy and stable isotope stratigraphy across the Ordovician
206	Knox/Beekmantown unconformity in the central Appalachians, In: Gutiérrez-Marco,
207	J.C., Rábano, I., and Diego, G.B. (Eds.), Ordovician of the World, Publicaciones del
208	Instituto Geológico y Minero de España: Serie: Cuadernos del Museo Geominero, v. 14,
209	p. 301-308.
210	
211	Leslie, S.A., Repetski, J.E., Saltzman, M.R., Kaznosky, C.M., and Lizer, A.M., 2013, Conodont
212	biostratigraphy of the Rockdale Run Formation, Pinesburg Station Dolomite, St. Paul
213	Group, and Chambersburg Formation (Middle to Lower Upper Ordovician) near Clear
214	Spring, Maryland: Geological Society of America Abstracts and Program, v. 45, p. 324.
215	
216	Mussman, W.J., and Read, J.F., 1986, Sedimentology and development of a passive- to
217	convergent-margin unconformity: Middle Ordovician Knox unconformity, Virginia
218	Appalachians: Geological Society of America Bulletin, v. 97, p. 282-295.
219	
220	Read, J.F., and Eriksson, K.A., 2012. Chapter 3: Paleozoic sedimentary successions of the
221	Virginia Valley & Ridge and Plateau. The Geology of Virginia, p. 131-149.
222	
223	Ross, R.J.Jr., 1970, Ordovician brachiopods, trilobites, and stratigraphy in eastern and central

224	Nevada: Geological Survey Professional Paper 639, 103 p.
225 226 227	Ross, R.J.Jr., and Shaw, F.C., 1972, Distribution of the Middle Ordovician Copenhagen Formation and its trilobites in Nevada: Geological Survey Professional Paper 749, 33 p.
228 229 230 231 232	Ross, R.J.Jr., James, N.P., Hintze, L.F., and Poole, F.G., 1989, Architecture and evolution of a Whiterockian (Early Middle Ordovician) carbonate platform, Basin Ranges of western U.S.A., In: Crevello, P.D., Wilson, J.L., Sarg, F., and Read, J.F., (Eds.), Controls on Carbonate Platform and Basin Development, Society of Economic Paleontologists and
233 234	Mineralogists Special Publication No. 44, p. 167-185.
235 236 237 238	Ruppel, S.C., James, E.W., Barrick, J.E., Nowlan, G., and Uyeno, T.T., 1996, High-resolution ⁸⁷ Sr/ ⁸⁶ Sr chemostratigraphy of the Silurian: implications for event correlation and strontium flux: Geology, v. 24, p. 831-834.
238 239 240 241 242	Saltzman, M.R., Edwards, C.T., Leslie, S.A., Dwyer, G.S., Bauer, J.A., Repetski, J., Harris, A., and Bergström S.M., 2014, Calibration of a conodont apatite-based Ordovician ⁸⁷ Sr/ ⁸⁶ Sr curve to biostratigraphy and geochronology: implications for stratigraphic resolution: Geologic Society of America Bulletin, v. 126, p. 1551-1568.
243 244 245 246 247 248	Sweet, W.C., and Tolbert, C.M., 1997, An Ibexian (Lower Ordovician) reference section in the Southern Egan Range, Nevada, for a conodont-based chronostratigraphy. In: Taylor, M.E. (Ed.), Early Paleozoic Biochronology of the Great Basin, western United States, United States Geological Survey Professional Paper 1579, p. 51-84.
249 250 251	Thomas, W.A., and Astini, R.A., 1996, The Argentine Precordillera: a traveler from the Ouachita Embayment of North American Laurentia: Science, v. 273, p. 752-757.
252 253 254 255 256	Young, S.A., Saltzman, M.R., Foland, K.A., Linder, J.S., and Kump, L.R., 2009, A major drop in seawater ⁸⁷ Sr/ ⁸⁶ Sr during the Middle Ordovician (Darriwilian): links to volcanism and climate?: Geology, v. 37, p. 951-954.

257

258

259

260 Supplement Figure Captions:

261

Figure DR1. ⁸⁷Sr/⁸⁶Sr from bulk rock (this study) and conodont apatite (see Saltzman et al., 2014) from the Meiklejohn Peak section (Nevada). Conodont biostratigraphy from Harris et al. (1979). UO=Upper Ordovician. Gray circles indicate least altered bulk carbonate samples with [Sr] >300 ppm. The large offset between the 87 Sr/ 86 Sr_{seawater} curve and brachiopod data is attributed to the uncertainty in the ages assigned to 87 Sr/ 86 Sr_{conodont} values.

267

Figure DR2. ⁸⁷Sr/⁸⁶Sr from bulk rock (this study) and conodont apatite (see Saltzman et al.,
2014) from the Clear Spring section (Maryland). Two ⁸⁷Sr/⁸⁶Sr_{carb} uncertainties are plotted
where the uncertainty is wider than the width of the data point. Conodont biostratigraphy from
Leslie et al. (2013). Gray circles indicate least altered bulk carbonate samples with >300 ppm Sr.

Figure DR3. ⁸⁷Sr/⁸⁶Sr from bulk rock and conodont apatite from the Interstate-81 section (Virginia). Note that bulk carbonate ⁸⁷Sr/⁸⁶Sr measured from dolomite lithologies (dashed symbol lines) of the Beekmantown Formation are highly variable and significantly more radiogenic than corresponding conodont ⁸⁷Sr/⁸⁶Sr. Conodont ⁸⁷Sr/⁸⁶Sr values do not change across the contact between the Beekmantown and New Market formations, suggesting that not much geologic time is missing in this locality compared to Rocky Gap, VA.

279

Figure DR4. Secondary electron image of the well-preserved secondary layer of brachiopod
calcite (SP-165.5).

282

Figure DR5. Secondary electron image of the poorly preserve secondary layer of a brachiopod
(B-2739) with vuggy porosity and the appearance of recrystallization along pore spaces.

285

Figure DR6. Conodont Sr concentrations versus CAI shows no significant correlation and that conodonts with high CAI values can contain about as much Sr as conodonts with the lowest CAI values.

289

Figure DR7. Cross plot of Δ^{87} Sr/⁸⁶Sr values versus the difference between the ⁸⁷Sr/⁸⁶Sr of eight insoluble residues and the corresponding ⁸⁷Sr/⁸⁶Sr_{seawater} value. There appears to be no correlation between highly radiogenic insoluble residues and highly altered bulk carbonates.

Figure DR8. Predicted changes in the Sr concentration (upper plots) of a limestone with 50% porosity, porefluid Sr/Ca ratio of 0.01, $D_{Sr} = 0.05$ (cf. Banner and Hanson, 1990), and [Ca] of the equilibrating fluid at increasing water:rock weight ratios (N) (Compare with Figure 8 of the main text). Also shown are the expected changes in the ⁸⁷Sr/⁸⁶Sr of a limestone with a fluid with a highly radiogenic ⁸⁷Sr/⁸⁶Sr value (0.7200; middle plots), and a fluid with a near-seawater ⁸⁷Sr/⁸⁶Sr value (lower plots).

300 Tables DR1–DR9 (2015123_TablesDR1-DR9.xlsx)

Figure DR1 - Edwards et al.

Series	Stage	Conodont Zone	Formation	Clear 0.7080	Spring, MC 0.7084) (CAI = High) 0.7088
Ordovician	SANDBIAN	tvaerensis	Chambersburg			 Bulk carbonate Bulk carbonate (> 300 ppm Sr) Conodont Seawater ⁸⁷Sr/⁸⁶Sr
		sweeti	New Market			
	Z	?	Paul Gro			

Figure DR2 - Edwards et al.

Figure DR4 - Edwards et al.

Figure DR5 - Edwards et al.

 \bigwedge $\Delta \Delta M$ $\bigwedge \bigwedge \bigwedge \bigwedge$ \triangle \wedge \wedge \wedge \wedge High (3-5) ◆ Antelope Range, NV ▲ Shingle Pass, NV ☆ Meiklejohn $\bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes$ \bigotimes O Oklahoma ⊿ Rocky Gap, VA 🗱 Central PA □ Clear Spring, MD $\overset{\wedge}{\bowtie}$ $\overleftarrow{\mathbf{X}}$ ■ I-81, VA $\Delta M M \Delta \Delta$ $\triangle \Delta$

ndex

Alteration

Conodont [Sr] - (ppm)

Figure DR6 - Edwards et al.

∆⁸⁷Sr/⁸⁶Sr

Figure DR7 - Edwards et al.

..... Rock [Sr] = 180 (ppm)

Figure DR8 - Edwards et al.

= 20,00	00_
	_
	-
)	1000