## GSA Data Repository item 2015041.

7 additional figures, 1 additional methods section, and 2 additional tables.

Supplementary Figure DR1. Example of CaCO<sub>3</sub> polymorph morphology after 6 hours at 30°C and a Mg:Ca ratio of 0.5. ara. = aragonite; cal. = calcite; vat. = vaterite. Note that among the first precipitates that were analysed vaterite was only found at Mg:Ca = 0.5 at 20°C.

Supplementary Figure DR2. Examples of SEM images from the 30° C and 25° C experiments that were used for quantification. Grayscale SEM images (upper panel) were manually marked for aragonite and calcite crystals and thus transformed into separate black and white images of aragonite (middle panel) and calcite (lowest panel).

Supplementary Figure DR3. Examples of SEM images from the 20° C and 15° C experiments that were used for quantification. Grayscale SEM images (upper panel) were manually marked for aragonite and calcite crystals and thus transformed into separate black and white images of aragonite (middle panel) and calcite (lowest panel).

**Supplementary Figure DR4. Reconstruction of 3D crystal volumes from 2D SEM images.** Each data point represents an individual crystal of aragonite or calcite from a subset of the experiments. Volume data were computed from a pair of stereoscopic SEM images using Alicona Mex 5.0. The aragonite- and calcite-specific regression equations were used to calculate volume from area for all other crystals that were quantified.

**Supplementary Figure DR5. Quantification of experimental data.** A-D: volumetric proportions of aragonite against Mg:Ca ratio at a given temperature. Each data point represents the average aragonite : calcite proportion of 10 quantified images from the same glass disc; error bars represent 1 standard deviation; data were transformed as y = log(x/100 + 1.1) prior to logistic regression which was calculated using the PAST statistical software (available at: http://folk.uio.no/ohammer/past/); red line = logistic regression line; blues lines = 95% confidence envelope. E: Calculation of temperature for 1%, 50% and 99% aragonite precipitation at a given Mg:Ca ratio; Mg:Ca ratios for 1% aragonite (green triangles), 50% aragonite (red squares), and 99% aragonite (blue diamonds) was based on the logistic regressions shown in A-D; the power regressions from this figure (E) were used to draw Figure 2.

Supplementary Figure DR6. Influence of experimental parameters on CaCO<sub>3</sub> polymorph proportions. (A)  $pCO_2$  (in  $\mu$ atm), (B) aragonite saturation state, (C) total alkalinity (in mM/L). The different coloured symbols represent different temperatures: red diamonds=30° C, orange squares=25° C, blue triangles=20° C, turquoise circles=15° C.

**Supplementary Figure DR7. Comparison between the data by Morse et al. (1997) and this study.** The dashed line indicates the position of the boundary between the precipitation fields of pure aragonite and calcite as proposed by Morse et al. (1997). The green, gray and yellow fields are based on the current study.

#### Supplementary tables:

Supplementary Table DR1. Composition of solutions used in precipitation experiments.

**Supplementary Table DR2**. Conditions of pH, total alkalinity (TA),  $p \text{ CO}_2$ , salinity (S), and saturation state ( $\Omega$ ) of aragonite and calcite at the start of the experiment and for the time at which the sample was collected for quantification. Saturation state ( $\Omega$ ) was calculated using the software CO2SYS\_macro\_MAC\_PC\_2011.xls (Pierrot et al. 2006: MS Excel Program Developed for CO<sub>2</sub> System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee).

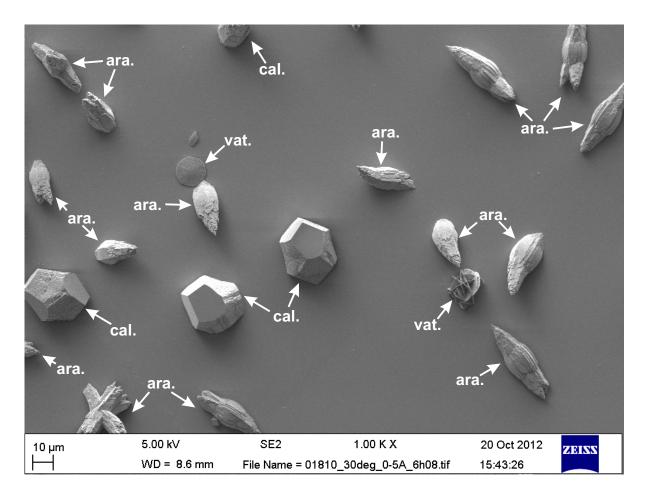
### Supplementary Methods DR1.

### Reagents used in the experiment were:

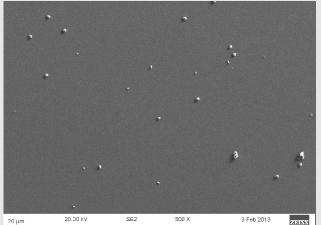
CaCl<sub>2</sub> 2H<sub>2</sub>O (Fisher; analytical reagent grade) MgCl<sub>2</sub> 6H<sub>2</sub>O (Fisher; BioReagents) NaCl (Fisher; analytical reagent grade) Na<sub>2</sub>CO<sub>3</sub> 10H<sub>2</sub>O (AnalaR).

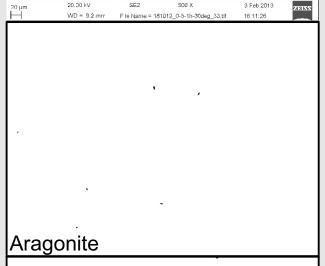
## **Cleaning of glass discs:**

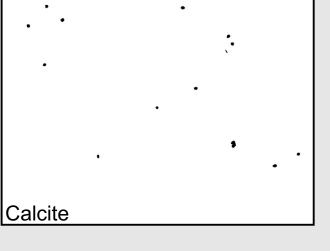
Prior to the start of the experiment, the glass discs were cleaned by soaking for 24 hours in 5% Decon90, followed by soaking 24 hours in 10% HCl.


**Temperature control during the experiments**. Solutions were acclimatized overnight in incubators and only taken out to briefly to bubble  $CO_2$  through the solution at the start of the experiment (this took less than 5 minutes) or to remove glass slides at hourly intervals (the removal of a subsample took less than a minute). Incubators were set at 15°, 20°, 25°, or 30°C and, while the incubator doors remained closed, the temperature was maintained at +/- 0.1° C.

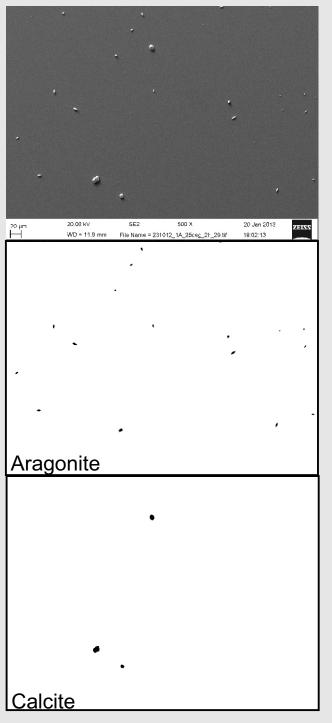
### Calculation of the temperatures for Figure 2:

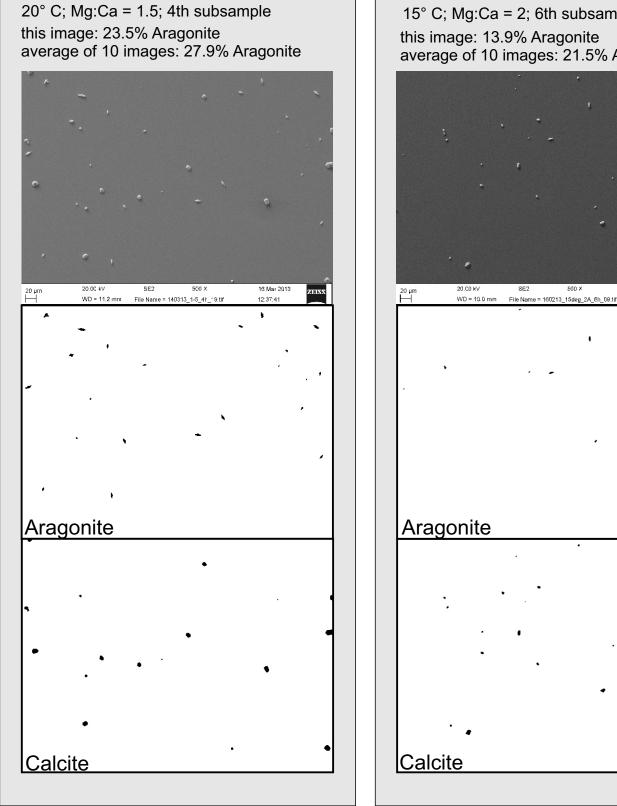

As a first step the Mg:Ca ratios at which 1%, 50% and 99% of aragonite would precipitate at 15°, 20°, 25°, and 30°C were estimated using logistic regression (Figure DR5 A-D). These data were then plotted as a function of Mg:Ca and temperature and a power regression was used to estimate the temperature at a given Mg:Ca ratio for 1%, 50%, and 99% aragonite precipitation (Figure DR5 E).


# Calculation of crystal volume:


Using the SEM, individual crystals were centered on a landmark (usually the tip of a crystal) and imaged without tilt and with a tilt of 5-7°. Both images were loaded into Alicona MeX 5.0 and manually aligned along the chosen feature. The software then employs algorithms that automatically identify other landmarks and calculates the topographic relief of the image surface. Crystal volumes and the associated surface area were then calculated in the software by manually marking individual crystals in the 3D model. Regressions of crystal volume and area measurements of 21 calcite and 25 aragonite crystals was used to calculate volume from area for all aragonite and calcite crystals (Fig. DR 4).





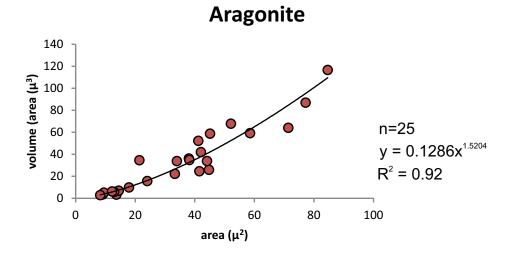





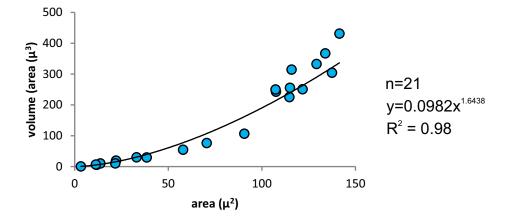


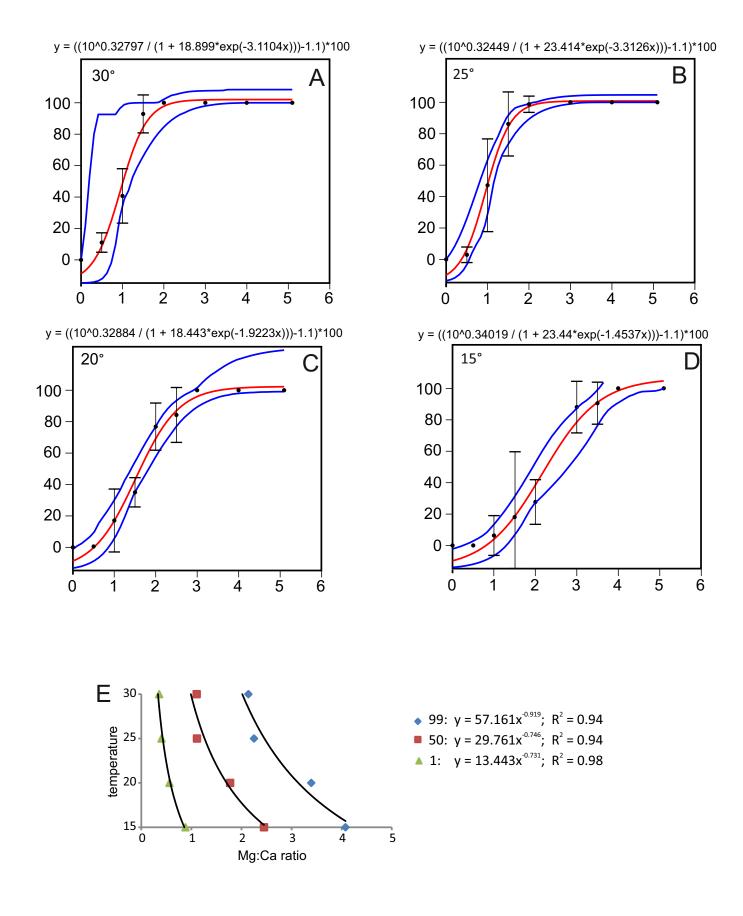

25° C; Mg:Ca = 1; 2nd subsample this image: 22.5% Aragonite average of 10 images: 39.3% Aragonite



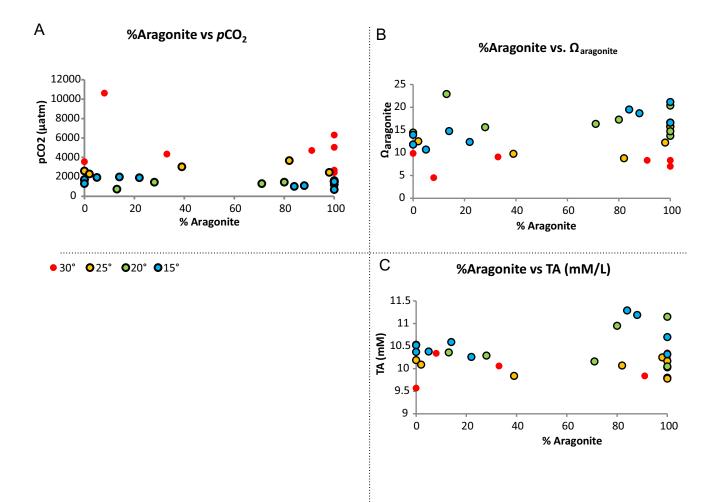


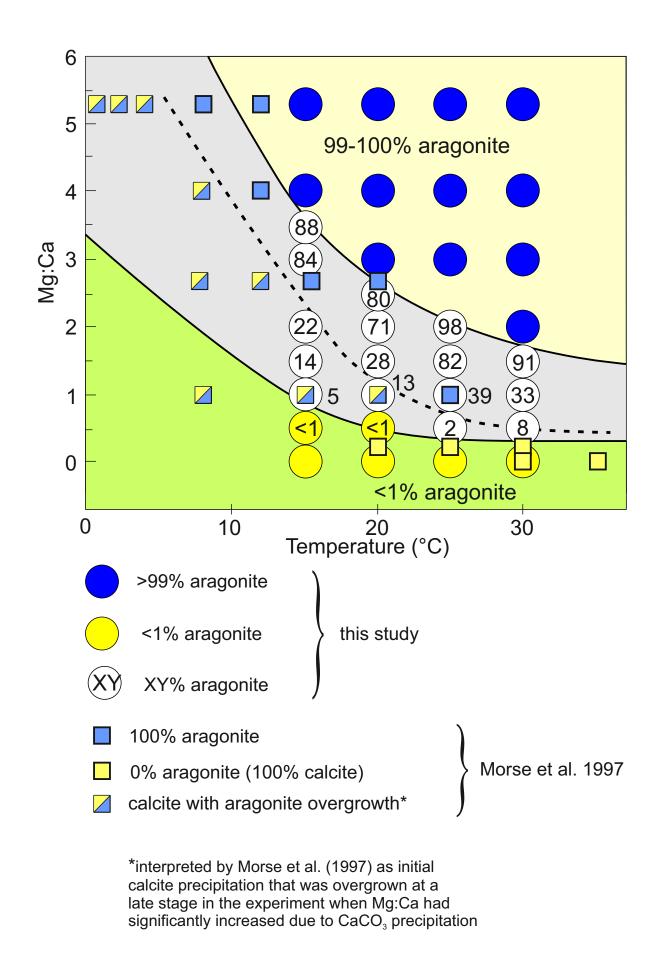

15° C; Mg:Ca = 2; 6th subsample this image: 13.9% Aragonite average of 10 images: 21.5% Aragonite


500 X


18 Feb 2013

17:43:29





Calcite





Supplementary figure DR5





|            |        | solution composition |                 |                 |                                         |  |  |  |  |  |  |  |
|------------|--------|----------------------|-----------------|-----------------|-----------------------------------------|--|--|--|--|--|--|--|
| experiment | T (°C) | Mg:Ca                | [Mg] mM<br>(mM) | [Ca] mM<br>(mM) | Na <sub>2</sub> CO <sub>3</sub><br>(mM) |  |  |  |  |  |  |  |
| 271212_0   | 30     | 0                    | 0.00            | 5.19            | 5.01                                    |  |  |  |  |  |  |  |
| 181012_0.5 |        | 0.5                  | 2.51            | 5.21            | 5.02                                    |  |  |  |  |  |  |  |
| 230213_1   |        | 1                    | 5.13            | 5.17            | 5.02                                    |  |  |  |  |  |  |  |
| 230213_1-5 |        | 1.5                  | 7.71            | 5.13            | 5.01                                    |  |  |  |  |  |  |  |
| 301012_2   |        | 2                    | 10.30           | 5.15            | 5.02                                    |  |  |  |  |  |  |  |
| 301012_3   |        | 3                    | 15.40           | 5.14            | 5.02                                    |  |  |  |  |  |  |  |
| 301012_4   |        | 4                    | 20.58           | 5.15            | 5.00                                    |  |  |  |  |  |  |  |
| 301012_5.1 |        | 5.1                  | 26.17           | 5.13            | 5.01                                    |  |  |  |  |  |  |  |
| 271212_0   | 25     | 0                    | 0.00            | 5.13            | 5.01                                    |  |  |  |  |  |  |  |
| 231012_0.5 |        | 0.5                  | 2.57            | 5.18            | 5.00                                    |  |  |  |  |  |  |  |
| 231012_1   |        | 1                    | 5.04            | 5.22            | 5.03                                    |  |  |  |  |  |  |  |
| 231012_1-5 |        | 1.5                  | 7.72            | 5.23            | 5.03                                    |  |  |  |  |  |  |  |
| 101112_2   |        | 2                    | 10.32           | 5.13            | 5.00                                    |  |  |  |  |  |  |  |
| 101112_3   |        | 3                    | 15.43           | 5.13            | 5.01                                    |  |  |  |  |  |  |  |
| 101112_4   |        | 4                    | 20.56           | 5.17            | 5.00                                    |  |  |  |  |  |  |  |
| 101112_5.1 |        | 5.1                  | 26.18           | 5.14            | 5.02                                    |  |  |  |  |  |  |  |
| 031212_0   | 20     | 0                    | 0.00            | 5.14            | 5.01                                    |  |  |  |  |  |  |  |
| 140313_0-5 |        | 0.5                  | 2.57            | 5.15            | 5.01                                    |  |  |  |  |  |  |  |
| 031212_1   |        | 1                    | 5.16            | 5.12            | 5.01                                    |  |  |  |  |  |  |  |
| 140313_1-5 |        | 1.5                  | 7.72            | 5.12            | 5.01                                    |  |  |  |  |  |  |  |
| 151112_2   |        | 2                    | 10.30           | 5.16            | 5.01                                    |  |  |  |  |  |  |  |
| 140313_2.5 |        | 2.5                  | 12.87           | 5.16            | 5.00                                    |  |  |  |  |  |  |  |
| 151112_3   |        | 3                    | 15.42           | 5.12            | 5.00                                    |  |  |  |  |  |  |  |
| 151112_4   |        | 4                    | 20.57           | 5.14            | 5.00                                    |  |  |  |  |  |  |  |
| 091012_5.1 |        | 5.1                  | 26.43           | 5.18            | 5.00                                    |  |  |  |  |  |  |  |
| 281012_0   | 15     | 0                    | 0.00            | 5.14            | 5.02                                    |  |  |  |  |  |  |  |
| 281012_0.5 |        | 0.5                  | 2.58            | 5.12            | 5.00                                    |  |  |  |  |  |  |  |
| 281012_1   |        | 1                    | 5.15            | 5.14            | 5.03                                    |  |  |  |  |  |  |  |
| 281012_1.5 |        | 1.5                  | 7.66            | 5.17            | 5.03                                    |  |  |  |  |  |  |  |
| 160213_2   |        | 2                    | 10.26           | 5.13            | 5.03                                    |  |  |  |  |  |  |  |
| 090313_3   |        | 3                    | 15.44           | 5.16            | 5.01                                    |  |  |  |  |  |  |  |
| 090313_3.5 |        | 3.5                  | 17.99           | 5.13            | 5.02                                    |  |  |  |  |  |  |  |
| 271112_4   |        | 4                    | 20.59           | 5.14            | 5.02                                    |  |  |  |  |  |  |  |
| 160213_5.1 |        | 5.1                  | 26.22           | 5.16            | 5.01                                    |  |  |  |  |  |  |  |
|            |        |                      |                 |                 |                                         |  |  |  |  |  |  |  |

**Supplementary table 1.** Composition of solutions used in the precipitation experiments

|            |        |       | conditions at start of experiment |        |                   |    |       | quantified subsample<br>minutes |             |        |        |       |    |       |       |       |       |       |
|------------|--------|-------|-----------------------------------|--------|-------------------|----|-------|---------------------------------|-------------|--------|--------|-------|----|-------|-------|-------|-------|-------|
| experiment | T (°C) | Mg:Ca | pН                                | ТА     | p CO <sub>2</sub> | S  | Ω ara | Ω cal                           | after start | рН     | ТА     | p CO₂ | S  | Ω ara | Ω cal | %Ara. | %Cal. | %Vat. |
| ·          |        | -     | (NBS)                             | (mM/l) |                   |    |       |                                 | (NBS)       | (mM/l) | (µatm) |       |    |       |       |       |       |       |
| 271212_0   | 30     | 0     | 7.54                              | 9.77   | 11690             | 35 | 3.73  | 5.41                            | 64          | 8.02   | 9.57   | 3564  | 36 | 9.87  | 14.31 | 0     | 100   | 0     |
| 181012_0.5 | 30     | 0.5   | 7.09                              | 10.26  | 33500             | 35 | 1.54  | 2.23                            | 60          | 7.61   | 10.34  | 10620 | 35 | 4.53  | 6.57  | 8.15  | 91.85 | 0     |
| 230213_1   | 30     | 1     | 6.76                              | 10.4   | 76052             | 35 | 0.71  | 1.03                            | 137         | 7.98   | 10.06  | 4349  | 35 | 9.09  | 13.18 | 33.13 | 66.87 | 0     |
| 230213_1-5 | 30     | 1.5   | 6.93                              | 10.33  | 50853             | 35 | 1.04  | 1.51                            | 129         | 7.95   | 9.84   | 4720  | 36 | 8.34  | 12.1  | 90.59 | 9.41  | 0     |
| 301012_2   | 30     | 2     | 6.78                              | 9.81   | 66379             | 34 | 0.71  | 1.03                            | 82          | 7.92   | 10.23  | 5042  | 35 | 8.34  | 12.09 | 100   | 0     | 0     |
| 301012_3   | 30     | 3     | 7.01                              | 10.09  | 39772             | 35 | 1.26  | 1.83                            | 76          | 7.83   | 10.29  | 6310  | 35 | 7.02  | 10.18 | 100   | 0     | 0     |
| 301012_4   | 30     | 4     | 6.9                               | 9.97   | 52577             | 34 | 0.94  | 1.36                            | 160         | 8.2    | 10.21  | 2447  | 35 | 14.2  | 20.59 | 100   | 0     | 0     |
| 301012_5.1 | 30     | 5.1   | 6.97                              | 10.11  | 44399             | 35 | 1.14  | 1.65                            | 155         | 8.17   | 10.35  | 2688  | 35 | 13.62 | 19.76 | 100   | 0     | 0     |
| 271212_0   | 25     | 0     | 7.52                              | 10.33  | 11057             | 35 | 3.61  | 5.24                            | 62          | 8.12   | 10.19  | 2610  | 36 | 11.83 | 17.15 | 0     | 100   | 0     |
| 231012_0.5 | 25     | 0.5   | 7.32                              | 11.83  | 16484             | 35 | 2.7   | 3.91                            | 126         | 8.14   | 10.09  | 2303  | 35 | 12.53 | 18.17 | 2.11  | 97.89 | 0     |
| 231012_1   | 25     | 1     | 7.4                               | 9.71   | 13641             | 35 | 2.64  | 3.83                            | 121         | 8.02   | 9.84   | 3041  | 35 | 9.78  | 14.18 | 39.25 | 60.75 | 0     |
| 231012_1-5 | 25     | 1.5   | 7.07                              | 10.19  | 31286             | 35 | 1.32  | 1.92                            | 115         | 7.96   | 10.07  | 3678  | 35 | 8.8   | 12.76 | 82.09 | 17.91 | 0     |
| 101112_2   | 25     | 2     | 7.12                              | 10.42  | 29986             | 35 | 1.44  | 2.09                            | 137         | 8.17   | 10.25  | 2465  | 35 | 12.25 | 17.77 | 98.31 | 1.69  | 0     |
| 101112_3   | 25     | 3     | 7.11                              | 10.3   | 30126             | 35 | 1.4   | 2.03                            | 199         | 8.31   | 9.8    | 1503  | 35 | 15.88 | 23.02 | 100   | 0     | 0     |
| 101112_4   | 25     | 4     | 7.22                              | 10.42  | 23806             | 35 | 1.79  | 2.6                             | 195         | 8.32   | 9.78   | 1521  | 35 | 15.71 | 22.78 | 100   | 0     | 0     |
| 101112_5.1 | 25     | 5.1   | 7.12                              | 9.95   | 28260             | 37 | 1.45  | 2.11                            | 189         | 8.3    | 10.17  | 1612  | 37 | 16.65 | 24.14 | 100   | 0     | 0     |
| 031212_0   | 20     | 0     | 7.08                              | 9.89   | 27117             | 35 | 1.14  | 1.66                            | 126         | 8.15   | -      | -     | 35 | -     | -     | 0     | 100   | 0     |
| 140313_0-5 | 20     | 0.5   | 7.1                               | 10.55  | 30315             | 35 | 1.17  | 1.69                            | 176         | 8.21   | 10.53  | 1688  | 36 | 14.44 | 20.94 | 0.4   | 99.53 | 0.07  |
| 031212_1   | 20     | 1     | 6.95                              | 9.44   | 35508             | 35 | 0.8   | 1.16                            | 268         | 8.53   | 10.36  | 738   | 35 | 22.91 | 33.22 | 12.85 | 87.15 | 0     |
| 140313_1-5 | 20     | 1.5   | 7.16                              | 10.35  | 24674             | 36 | 1.4   | 2.03                            | 235         | 8.24   | 10.29  | 1453  | 37 | 15.62 | 22.65 | 27.97 | 72.03 | 0     |
| 151112_2   | 20     | 2     | 6.95                              | 9.85   | 36162             | 35 | 0.86  | 1.24                            | 246         | 8.29   | 10.16  | 1309  | 37 | 16.35 | 23.71 | 70.8  | 29.2  | 0     |
| 140313_2.5 | 20     | 2.5   | 7.07                              | 10.54  | 30520             | 35 | 1.16  | 1.68                            | 227         | 8.26   | 10.95  | 1457  | 37 | 17.29 | 25.07 | 79.69 | 20.31 | 0     |
| 151112_3   | 20     | 3     | 6.93                              | 9.65   | 33517             | 35 | 0.81  | 1.17                            | 181         | 8.21   | 10.03  | 1613  | 36 | 13.72 | 19.89 | 100   | 0     | 0     |
| 151112_4   | 20     | 4     | 6.98                              | 9.79   | 31485             | 35 | 0.91  | 1.32                            | 234         | 8.25   | 10.05  | 1459  | 36 | 14.73 | 21.36 | 100   | 0     | 0     |
| 091012_5.1 | 20     | 5.1   | 6.52                              | 9.97   | 98248             | 35 | 0.33  | 0.48                            | 370         | 8.38   | 11.15  | 1211  | 38 | 20.37 | 29.54 | 100   | 0     | 0     |
| 281012_0   | 15     | 0     | 6.88                              | 11.11  | 42372             | 35 | 0.74  | 1.07                            | 265         | 8.16   | 10.52  | 1717  | 35 | 11.81 | 17.12 | 0     | 100   | 0     |
| 281012_0.5 | 15     | 0.5   | 6.79                              | 10.76  | 50821             | 35 | 0.58  | 0.84                            | 264         | 8.25   | 10.37  | 1312  | 35 | 13.95 | 20.22 | 0     | 100   | 0     |
| 281012_1   | 15     | 1     | 6.83                              | 11.21  | 48237             | 35 | 0.66  | 0.96                            | 315         | 8.1    | 10.38  | 1942  | 36 | 10.71 | 15.53 | 4.6   | 95.4  | 0     |
| 281012_1.5 | 15     | 1.5   | 6.81                              | 11.12  | 50006             | 35 | 0.63  | 0.91                            | 313         | 8.25   | 10.59  | 1994  | 37 | 14.77 | 21.41 | 13.64 | 86.36 | 0     |
| 160213_2   | 15     | 2     | 6.76                              | 10.39  | 43605             | 35 | 0.45  | 0.65                            | 383         | 8.12   | 10.26  | 1914  | 37 | 12.38 | 17.95 | 21.54 | 78.46 | 0     |
| 090313_3   | 15     | 3     | 7.14                              | 10.52  | 21980             | 35 | 1.25  | 1.82                            | 350         | 8.38   | 11.29  | 1022  | 37 | 19.51 | 28.29 | 84.38 | 15.62 | 0     |
| 090313_3.5 | 15     | 3.5   | 7.17                              | 10.47  | 20499             | 35 | 1.33  | 1.93                            | 357         | 8.34   | 11.19  | 1100  | 38 | 18.69 | 27.11 | 87.56 | 12.44 | 0     |
| 271112_4   | 15     | 4     | 7.14                              | 9.59   | 20046             | 35 | 1.14  | 1.66                            | 387         | 8.46   | 10.32  | 695   | 37 | 21.16 | 30.68 | 100   | 0     | 0     |
| 160213_5.1 | 15     | 5.1   | 6.78                              | 10.26  | 40714             | 35 | 0.48  | 0.69                            | 535         | 8.24   | 10.7   | 1522  | 38 | 16.62 | 24.1  | 100   | 0     | 0     |

**Supplementary table 2.** Conditions of pH, total alkalinity (TA), salinity (S), and saturation state ( $\Omega$ ) of aragonite and calcite at the start of the experiment and for the time at which the sample was collected for quantification.