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1. THE 2D HYDROTHERMAL FLOW MODEL

1.1 GOVERNING EQUATIONS 

We assume the convecting fluid to be pure water flowing through a rigid porous medium. We 

will use indices  and  to refer to fluid and rock properties, respectively. Mass transport is 

described by Darcy’s law
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where  the Darcy velocity, k is permeability, f  the fluid’s dynamic viscosity, f   fluid 

density,  pressure, and  the gravitational acceleration vector. 

Fluid mass conservation is expressed by 
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with   being the porosity of the rock. Substituting equation (1) into (2) and noting that the 

fluid’s density is a function of temperature and pressure yields the pressure equation 
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where f  and f are the fluid’s thermal expansivity and compressibility, respectively. 

Hydrostatic pressure at the Logatchev 1 hydrothermal field (~30 MPa) is above the critical 

endpoint of pure water (22.1 MPa) so that the fluid will always be in the single-phase region. 

This allows us to formulate energy conservation as a function of temperature: 
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With cp being heat capacity and K the thermal conductivity of the rock. Fluid and rock are 

assumed to be in local thermal equilibrium (i.e. ) so that the mixture appears on 

the left-hand-side of equation (4). Changes in temperature depend on heat conduction (1
st
 

term on right-hand-side), heat advection by fluid flow (2
nd

 term), heat generation by internal 

friction of the fluid (3
rd

 term; viscous dissipation; e.g. (Magyari et al., 2005 p. 374)), and 

pressure-volume work including dependence of enthalpy on pressure (4
th
 term, (Bird et al., 

2007 p. 337)). 
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All fluid properties ( , , , , )f f f f fcp     are functions of both pressure and temperature and 

are evaluated from pre-calculated look-up tables based on the IAPS-84 formulation of water 

and steam properties. The tables have been computed using the program PROST 4.1 

(PROperties of water and STeam developed by Bauer (1998)), which is  available at: 

http://fluidos.etsii.upm.es/faculty/Jaime_Carpio/Fumatas_negas/PROST%20Properties%20of

%20Water%20and%20Steam.htm. The high water depth along the transect ensures that pure 

water remains at supercritical pressure-temperature (P-T) conditions so that two-phase 

phenomena do not need to be accounted for in our model. 

 

1.2 NUMERICAL FORMULATION AND SOLUTION TECHNIQUES 

We use 3-node triangular elements that form unstructured meshes of ~90e3 – 57e4 elements 

depending on the modeled fault width, which corresponds to elements sizes between 0.4 m
2
 

and 40 m
2
 inside the fault/slot. We solve the equations for velocity (1), pressure (3), and 

temperature (4) separately. Using an implicit Finite Element Method (FEM) we solve 

equation (3) to derive the pressure field and subsequently (1) to obtain Darcy velocities. 

Equation (4) is solved by operator splitting: The advection term is treated by a semi-Lagrange 

scheme with 2
nd

-order accurate Predictor-Corrector integration along flow trajectories and a 

cubic interpolation scheme on the unstructured meshes. The diffusion part of the energy 

equation is also solved using an implicit FEM. This algorithm has been implemented into a 

modified version of the MATLAB code MILAMIN (Dabrowski et al., 2008). All matrix 

equations are solved using the Cholesky direct solver of the numerical library SuiteSparse 

(Davis and Hager, 2009) (http://www.cise.ufl.edu/research/sparse/SuiteSparse/).  

 

1.3 BOUNDARY CONDITIONS 

All domain boundaries are impermeable except the top boundary, through which the fluid is 

allowed to enter and leave the domain. All side boundaries are insulating. At the top boundary 

we use mixed boundary conditions: Temperature is set to 4˚C seawater temperature where 

fluid enters the domain, and at discharge nodes the vertical temperature gradient is set to zero 
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  to mimic free venting conditions.  

At the bottom boundary a Gaussian-shaped heat flux profile is applied 
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where x0 denotes the center of the heat source at x0=6500m. Hftot is chosen such that the 

integrated heat-input along the transect is 12.5 kW per meter ridge axis — a reasonable value 

for the Mid-Atlantic Ridge (Sinha et al., 2004). The width of the heat source, controlled by 

http://fluidos.etsii.upm.es/faculty/Jaime_Carpio/Fumatas_negas/PROST%20Properties%20of%20Water%20and%20Steam.htm
http://fluidos.etsii.upm.es/faculty/Jaime_Carpio/Fumatas_negas/PROST%20Properties%20of%20Water%20and%20Steam.htm
http://www.cise.ufl.edu/research/sparse/SuiteSparse/


the half-width of the Gaussian curve, σ=1.25 km, was chosen based on the approximate 

lateral extent of the zone of enhanced seismicity in Figure 1. All calculations began with cold 

hydrostatic conditions and ran into thermal steady-state, at which all mass and energy fluxes 

balance and thermal energy inside the box remains constant. 

2. ADDITIONAL RESULTS: ENHANCED BACKGROUND PERMEABILITY

We have conducted 32 additional runs with constant permeability contrast c = 10 between 

fault zone and surrounding but with enhanced background permeability (1x10
-15 

m
2
 and 2x10

-

15 m
2
). The trend which is described in the main part of this paper is clearly also visible in 

these sets: Vent temperature decreases with increasing fault width (Fig. DR1a) while mass 

flux is increasing (Fig. DR1b). For any simulated fault width the vent temperature is 

decreased by ~40°C when the permeability of the background is doubled (Fig. DR1a), 

Consequently at the lowest background permeability (5x10
-16

 m
2
) the highest vent 

temperature is reached at the fault termination. The threshold width for deviation of the rising 

hydrothermal plume into the fault is decreased with increasing absolute background 

permeability (Fig. DR1.A). The fit between the grey lines and our data in Fig, DR1.B 

confirms that the modeled vent temperatures are can roughly be predicted by the theoretical 

solution described in the main text. 

Figure DR1. Vent temperatures of additional simulations plotted against fault width and mass flux. The 

permeability contrast c = 10 is constant in all runs while the absolute background permeability kb is changed.  

Symbols indicate different permeability contrasts, c, and their color shows maximum vent temperature. Filled 

symbols are simulations with venting at the fault tip at LHF1, open symbols indicate venting above the heat 

source. (A): Vent temperatures decrease with increasing fault width for each constant background permeability. 

The same is valid for any fault width and increased background permeability (B): Vent temperatures 

systematically decrease with increasing total mass flux through the seafloor. Model results are well fitted by 

theoretical vent temperatures calculated from the EOS for pure water (curves for 0, 10, and 20% conductive 

cooling at the seafloor) described in the main text.
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