
GSA DATA REPOSITORY 2014348

Supplementary materials for Seasonal, long-term, and short-term deformation in the Central Range of Taiwan induced by landslides

Ya-Ju Hsu¹, Rou-Fei Chen², Ching-Weei Lin³, Horng-Yue Chen¹, Shui-Beih Yu¹
1. Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
2. Department of Geology, Chinese Culture University, Taipei, Taiwan
3. Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan

1. GPS position time series at sites affected by landslides

Figure DR1. Black dots denote GPS position time series after removing interseismic velocities and offsets due to instrument changes. Red lines indicate modeled time series. Blue lines show daily rainfall. Rainfall events or typhoons caused significant surface displacements are shown as black texts. Locations of sites are shown in Figure 1A.

2. The time and durations of heavy rains and typhoons in this study

Table DK1. This and durations of neavy rains and typhoons in the study period								
Event	Date	Day of year						
2005 Haitang	2005/07/16-2005/07/20	197-201						
2006 Heavy rain	2006/06/05-2006/06/12	156-163						
2007 Sepat	2007/08/16-2007/08/19	228-231						
2007 Krosa	2007/10/04-2007/10/07	277-280						
2008 Jangmi	2008/09/26-2008/09/29	270-273						
2009 Morakot	2009/08/05-2009/08/10	217-222						
2010 Heave rain	2010/05/21-2010/05/24	141-144						
2012 Heave rain	2012/06/08-2012/06/12	160-164						

Table DR1. Time and durations of heavy rains and typhoons in the study period

3. Interpolated interseismic vertical velocities

The interseismic uplift rates in the Lushan area are the largest in central Taiwan (inset on bottom right of Figure 1A); while the cGPS sites here are affected by landslides and not used for interpolation of interseismic velocity field. The interpolated interseismic vertical velocities (Figure DR2) at sites in Lushan are likely to be underestimated, resulting in estimates of long-term uplift due to landslides.

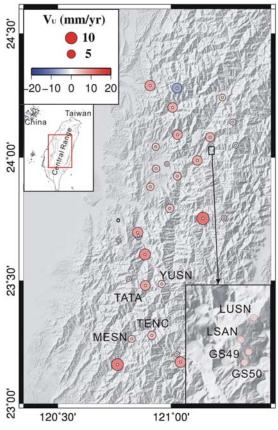


Figure DR2. Interseismic GPS vertical velocities in the Central Range of Taiwan. Vertical rates at sites affected by landslides (station name are shown) are interpolated from the adjacent stable cGPS sites.

4. Topography and time series of station position at TENC

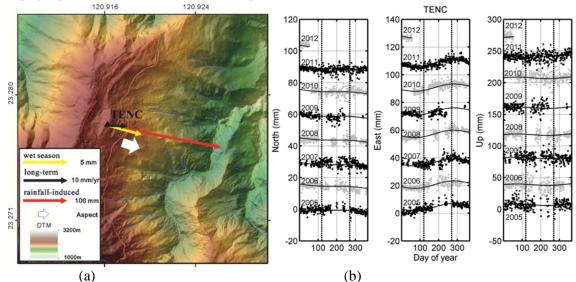


Figure DR3. (a) Topography derived from LiDAR ($1 \text{ m} \times 1 \text{ m}$). Red and blue lines indicate fault scarps and gullies, respectively. Red vectors indicate GPS displacements of the largest rainfall-induced landslide from 2005 to 2013 (Table DR3). Black and yellow vectors indicate landslide-induced long-term linear rates and additional motions in the wet season, respectively. White vector denotes aspect of slope derived from LiDAR. (b) GPS time series of north, earth, and vertical components. We add a constant offset and switch color between black and gray every year for better visualization. Solid line is the model with a landslide-induced long-term linear rate and periodic annual motions.

5. Landslide-induced long-term secular motion, motions in the wet season and during the largest rainfall-driven landslides from 2005 to 2013

Landslide induced long-term linear rates are estimated from the differences between original long-term linear velocities at unstable sites (blue vectors in Figure 1A) and the interpolated interseismic velocities (black vectors).

	Landslide-induced long-term motion				ion	Additional motion in the wet season					LiDAR	
	V_{E}	V _N	V_{U}	$V_{\rm H}$	Azi	dE	dN	dU	dH	Azi	Slo	Aspect
	(mm/yr)				(°)	(mm)				(°)	pe	(°)
											(°)	
GS49	6.9	-13.5	2.1	15.1	153	2.2	-3	-5.6	3.7	144	25	163
GS50	4.8	-14.4	6.9	15.2	161	1.4	-2	11.2	2.4	145	12	163
LUSN	5.8	-5.0	-1.2	7.7	131	2	-1	-18.8	2.2	117	30	132
LSAN	4.5	-2.4	8.5	5.1	118	2.2	-2.6	-3.2	3.4	140	32	163
YUSN	-6.2	-2.6	-8.3	6.7	247	-1.2	2	-4	2.3	335	40	225
TATA	-12.4	5.6	-0.3	13.6	294	-5.0	4.6	-1.8	6.8	313	38	306
TENC	4.1	-0.1	2.5	4.1	91	3.8	-1	-3	3.9	105	35	108
MESN	2.4	-2.2	-0.5	3.3	131	-4.4	-0.8	2.6	4.5	260	12	265

Table DR2. Rates and directions of landslide-induced long-term secular motions and additional GPS motions in the wet season. Slope and aspect of each hillslope are derived from LiDAR.

Slope and aspect of each missiope are derived from LiDAR.										
Displacements of the largest rainfall-induced landslide							LiDAR			
Event		dE	dN	dU	dH	Azi	Plunge	Slope	Aspect	
	Lvent	(mm)	(mm)	(mm)	(mm)	(°)	(°)	(°)	(°)	
GS49	2009 Morakot	9.7	-56.4	-49.8	57.2	170	41	25	163	
GS50	2009 Morakot	16.0	-48.6	5.2	51.2	162	6	12	163	
LUSN	2008 Jangmi	3.8	-6.0	-16.8	7.1	148	67	30	132	
LSAN	2012 heavy rain	0.2	-7.2	-7.4	7.2	178	46	32	163	
YUSN	2009 Morakot	-41.9	-6.2	-41.8	42.4	262	45	40	225	
TATA	2009 Morakot	-46.8	20.9	-28.1	51.3	294	29	38	306	
TENC	2009 Morakot	256.9	-51.7	-241.9	262.1	101	43	35	108	
MESN	2009 Morakot	-33.0	-12.2	3.4	35.2	250	6	12	265	

Table DR3. GPS surface displacements of the largest rainfall-induced landslides from 2005 to 2013. Slope and aspect of each hillslope are derived from LiDAR.

6. Rainfall-induced landslides at site TENC during the 2009 Typhoon Morakot

The TENC site started to move when the amount of cumulative rainfall increase to 1000 mm and then the motion was accelerated when the cumulative rainfall was up to 2000 mm and slowed down two days later after rain stopped.

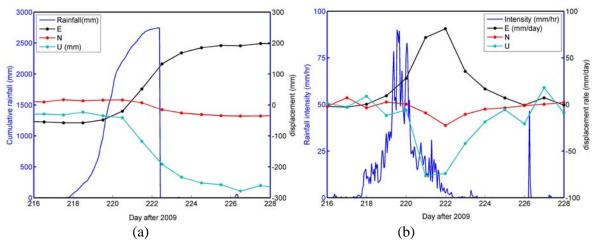
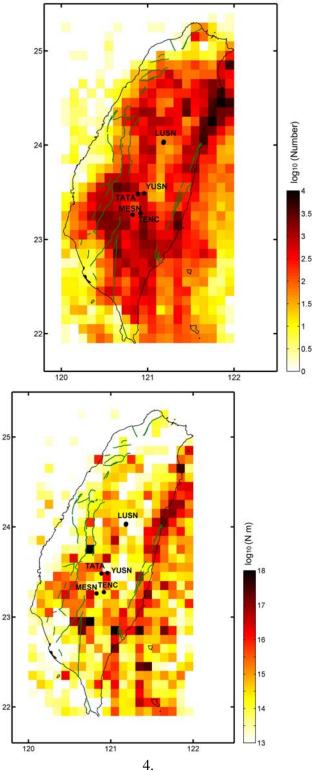
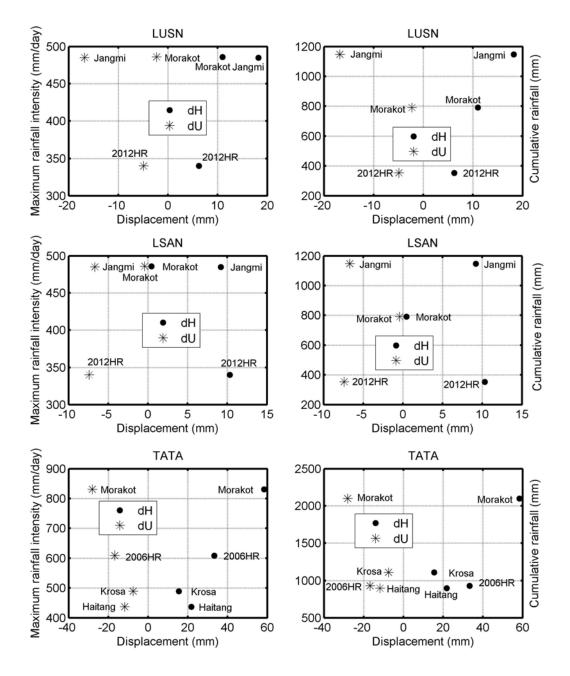



Figure DR4. Relations between the rainfall and GPS displacements during the 2009 Typhoon Morakot. (a) Blue curve denotes cumulative rainfall during Typhoon Morakot. Black, red, and light blue curves indicate GPS position time series of east, north and vertical components, respectively. (b) Blue curve denotes rainfall intensity (mm/hr) during the Typhoon Morakot. Black, red, and light blue curves indicate GPS displacement rates of east, north and vertical components, respectively.

7. Relations between seismic activity and landslides

Locations of landslides discovered in this study are correlated neither with the earthquake density, nor with the cumulative seismic moment. This observation is consistent with rainfall-driven landslides. More detailed information about earthquake-triggered landslides can be found at Meunier et al. (2008).



at each $0.1^{\circ} \times 0.1^{\circ}$ gird cell

4. (b) Figure DR5. Spatial distributions of earthquake density and seismic moment from 2005 to 2012. (a) Color scale indicates earthquake density at each $0.1^{\circ} \times 0.1^{\circ}$ gird cell. The seismic catalog is obtained from the Central Weather Bureau of Taiwan. Green lines show major faults. Black dots denote GPS sites affected by landslides. (b) Color scale indicates cumulative seismic moment from 2005 to 2012

8. Relations between the amplitude of surface displacements, the maximum rainfall intensity, and the cumulative rainfall at each event

We plot landslides events in the study period from 2005 to 2013. Time and durations of heavy rains or typhoons at each event are shown in Table DR1.

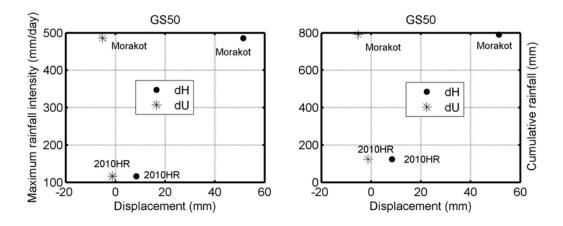


Figure DR6. Left and right panels show the relationships between the maximum rainfall intensity and GPS displacements at each event and between the cumulative rainfall and GPS displacements at each event, respectively. "dH" and "dU" denote GPS horizontal and vertical displacements associated with landslides. "HR" represents for Heavy Rain.

References

- Chen C.-H., H.-C. Ho, K.-S. Shea, W. Lo, W.-H. Lin, H.-C., Cheng, C.-S. Huang, C.-W. Lin, G.-H. Chen, C.-N. Yang and Y.-H. Lee, 2000, Geologic map of Taiwan, Central Geological Survey, Ministry of Economic Affairs.
- Meunier, P., Hovius, N., and Haines, J. A., 2008, Topographic site effects and the location of earthquake induced landslides: Earth and Planetary Science Letters, v. 275, no. 3-4, p. 221-232.