GSA Data Repository 2014270

Orogeny forced terrestrial climate variation during the late Eocene–early Oligocene in Europe

L. Kocsis*, P. Ozsvárt, D. Becker, R. Ziegler, L. Scherler and V. Codrea

Table DR1. Background information on the sampled localities (1 page)

Table DR2. The analyzed samples and their isotopic compositions (3 pages)

Preparation of the samples for stable isotope analyses

Fig. DR1. Phosphate and structural carbonate oxygen isotopic compositions in biogenic apatite

Table DR3. Statistical comparison of different taxa from the four most representative localities

Fig. DR2. Detailed paleogeographic maps with tectonic units

References

TABLE DR1

MAMMAL LEVEL	Map-Nr	. Locality	Country	Environment	Literature	Collections (specimens)
MP15+	1	Csordakút	Hungary	marine - NP16 - Csolnok Claymarl Formation	Báldi-Beke, 1984; Ozsvárt, 1999; Kocsis, 2002	MTM (1)
MP16	2	Mormont-Station d'Eclépens	Switzerland	karst fissure fillings	Hooker & Weidmann, 2000	MGL (8)
MP16	3	St. Mamert du Gard	France	continental - stratified	Depéret & Carrière, 1901; Aguilar et al, 1997;	MTM (5)
MP17a	4	Euzet-les-Bains	France	continental - stratified	Aguilar et al, 1997; Paelobiology database - www.paleodb.org	MTM (5), NMB(5)
MP18	5	La Débruge	France	mire or swamp - black sandy marl	Aguilar et al, 1997; Paelobiology database - www.paleodb.org	NMB (3)
MP18	6	Gösgen-Canal	Switzerland	continental	Aguilar et al, 1997; Paelobiology database - www.paleodb.org	NMB (2)
MP18	7	Rădaia (Andrásháza)	Romania	continental - Valea Nadăşului Formation	Fărcaș and Codrea, 2008	MAFI (1)
?MP18-19	8	Budapest - MTM collection	Hungary	???	Kretzoi, 1940	MTM (1)
MP19	2	Mormont-Eclépens C	Switzerland	karst fissure fillings	Hooker & Weidmann, 2000	MGL (2), NMB (2)
MP19	9	Liptingen 5	Germany	karst fissure fillings	Scherzinger et al., 2005	SMNS (4)
MP19	9	Liptingen 13A	Germany	karst fissure fillings	Scherzinger et al., 2005	SMNS (3)
MP19	10	Neuhausen, Württemberg	Germany	karst fissure fillings	Scherzinger et al., 2005	SMNS (3)
MP19	11	Mähringen	Germany	karst fissure fillings	Scherzinger et al., 2005	SMNS (4)
MP20	12	Frohnstetten	Germany	karst fissure fillings	Scherzinger et al., 2005	SMNS (6)
MP21-	13	Monteviale	Italy	continental - lignite deposit	Dal Piaz G.B., 1930, 1931; Tuchtan, 1953; Uhlig, 1999; Becker, 2009	PGM (16)
MP21	14	Ronzon	France	continental - lime mudstone - Phospherites du Quercy	Aguilar et al, 1997; Paelobiology database - www.paleodb.org	NMB (3)
MP21	15	Möhren 19	Germany	karst fissure fillings	Uhlig, 1999	BSGP (11)
MP21-22	16	Cluj	Romania	marine - NP22-23 - Mera Formation	Filipescu, 2001; Fărcaş and Codrea, 2008; Fărcaş, 2011	MTM (1)
MP22	17	Villebramar	France	continental - gravelly sand deposit	Brunet, 1970, 1979; Aguilar et al, 1997; Scherler, 2011	NMB (14)
MP22	18	Kleinblauen	Switzerland	marine - NP22 - Meeressand	Becker, 2009; Scherler, 2011	NMB (1)
MP22	15	Möhren13	Germany	karst fissure fillings	Uhlig, 1999	BSGP (15)
MP23+	19	Budapest - Bohn clay pit	Hungary	marine - NP23 - top of the Tard Clay Formation	Kretzoi, 1940; Bádli-Beke, 1984; Báldi & Báldi-Beke, 1985	MTM (1)
MP23-24	19	Budapest - Ujlak clay pit	Hungary	marine - NP24 - Kiscell Clay Formation	Kretzoi, 1940; Bádli-Beke, 1984; Báldi & Báldi-Beke, 1985	MTM (2)
MP23-24	16	Cluj	Romania	continental - coal bearing depoits - Dâncu Formation	Fărcaş and Codrea, 2008	UBB (2)
MP23-24	20	Aghires	Romania	continental - coal bearing depoits - Dâncu Formation	Fărcaș and Codrea, 2008	UBB (1)
MP23-25	21	Csákberény	Hungary	continental - clay deposit -	Kretzoi, 1940	MTM (2)
MP24-	22	Poillat	Switzerland	continental - Molasse alsacienne	Scherler, 2011; Becker et al., 2013	MJSN (4)
MP24-25	23	Tatabánya - Felsőgalla	Hungary	continental - coal bearing depoits - ?Csatka Formation	Kordos, 1978; Becker and Scherler (this study)	MTM (4)
MP25-	24	Bumbach	Switzerland	continental - Sub-alpine Molasse	Engesser and Mödden, 1997; Scherler, 2011; Scherler et al., in press	NMB (3)

BSPG - Bayerische Staatssammlung für Paläontologie und Geologie (Bavarian State Collection for Palaeontology and Geology, Munich, Bavaria, Germany)

- MAFI Magyar Földtani Intezet (Collection of the Hungarian Geological Institute, Budapest, Hungary)
- MGL Musée géologique de Lausanne (Geological Museum, Lausanne, Switzerland)
- MGP Museo di Geologia e Paleontologia (Museum of Geology and Palaeontology Padua, Italy)

MJSN - Musée Jurassien des Sciences Naturelles (Jura Natural Science Museum, Porrentury, Switzerland)

MTM - Magyar Természettudományi Muzeum (Hungarian Natural History Museum, Budapest, Hungary)

NMB - Naturhistorisches Museum Basel (Natural History Museum, Basel, Switzerland)

SMNS - Staatlichen Museum für Naturkunde Stuttgart (State Museum for Natural History, Stuttgart, Germany)

UBB - Fossil Collection of the University of Babes-Bolyai, Cluj, Romania

TABLE DR2

										PHOS	PHATE							CAF	BONATE IN F	PHOSPHATE				
					Sampled		MAMMAL	Age	δ ¹⁸ 0-PO4	std.*	AV.	STD.**	N 1.96	×SE	δ ¹³ C	std.	AV. STI	D. N	1.96×SE	δ ¹³ C _{ritet}	δ ¹⁸ 0-CO3	δ ¹⁸ O-CO3 s	td. C	203
Map-Nr.	Locality		Collection & Nr.	Taxon	material	Family	LEVEL	(Ma)	SMOW											- ·uet	VPDB	VSMOW	v	<i>r</i> t.%
1	Csordakút	HU	MTM-V.2002.12	Hyrachyus cf. stehlini	left M1/2	P - Hyrachyidae	MP15+	40.8	21.0	0.2	21.0	0.3	1	0.6	-9.2	0.2	- 9.2 0	.1 1	0.2	-22.9	-4.2	26.6	0.1	5.0
2	Mormont - Station d'Eclépens	CH	MGL-2259	Palaeotherium curtum	left m3	P - Palaeotheriidae	MP16	39	21.7	0.1					-7.6	0.0					-3.1	27.7	0.0	5.3
2	Mormont - Station d'Eclépens	CH	MGL-2260	Palaeotherium curtum	right m2	P - Palaeotheriidae	MP16	39	19.2	0.1														
2	Mormont - Eclépens A	СН	MGL-2391	Plagiolophus sp. 1	left M3	P - Pachynolophidae	MP16	39	22.3	0.2					-7.0	0.1					-2.9	27.9	0.1	3.6
2	Mormont	CH	MGL-2391	Leptolophus stehlini	right M3	P - Palaeotheriidae	MP16	39	21.0	0.2					-7.0	0.0					-4.3	26.5	0.1	5.4
2	Mormont - Station d'Eclépens	CH	MGL-1620	Lophiodon lautricense	right P3	P - Lophiodontidae	MP16	39	21.3	0.0					-8.2	0.1					-3.7	27.1	0.1	4.9
2	Mormont - Station d'Eclépens	CH	MGL-1623	Lophiodon lautricense	left m2	P - Lophiodontidae	MP16	39	21.5	0.2					-8.7	0.1					-4.5	26.3	0.1	1.9
2	Mormont - Station d'Eclépens	CH	MGL-1627	Lophiodon tapiroides	right p2	P - Lophiodontidae	MP16	39	21.4	0.3					-8.5	0.1					-5.2	25.6	0.1	2.2
2	Mormont - Station d'Eclépens	CH	MGL-1628	Lophiodon tapiroides	right M2 (M1?)	P - Lophiodontidae	MP16	39	21.2	0.2	21.2	0.9	8	0.6	-8.7	0.1	- 8.0 0	.7 7	0.5	-21.8	-4.8	25.9	0.1	1.8
3	St. Mamert du Gard	FR	MTM-V.60.152	Lophiodon franconica	left M3	P - Lophiodontidae	MP16	38.85	21.6	0.1														
3	St. Mamert du Gard	FR	MTM-V.60.153	Lophiodon franconica	right M2/3	P - Lophiodontidae	MP16	38.85	21.1	0.0					-9.2	0.1					-6.2	24.5	0.2	2.4
3	St. Mamert du Gard	FR	MTM-V.60.151	Lophiodon franconica	tooth frg. m1(m2?)	P - Lophiodontidae	MP16	38.85	21.8	0.1														
3	St. Mamert du Gard	FR	MTM-V.60.187	Lophiodon franconica	left m1?	P - Lophiodontidae	MP16	38.85	21.6	0.2	21.5	0.3	4	0.3			- 9.2 0	.1 1	0.2	-23.0				
4	Euzet les Bains	FR	NMB-no number	Plagiolophus sp. (annectens?)	left M2	P - Pachynolophidae	MP17a	37.5	20.3	0.1					-7.0	0.0					-6.6	24.1	0.0	5.9
4	Fuzet les Bains	FR	NMB-no number	Plagiolophus sp. (annectens ?)	left M3	P - Pachynolonhidae	MP17a	37.5	22.6	0.2					.73	0.0					-4.7	26.1	0.1	6.5
4	Euzet les Bains	ED	NMP-no number	Plagiolophus sp. (annectors ?)	M	P - Pachynolophidae	MP175	27.5	10.0	0.2					.7.9	0.0					-2.0	26.9	0.1	2.0
-	Euzet los Bains	FD	NMP-no number	Plagiolophus sp. (annectors ?)	141	P - Pachynolophidae	MD175	37.5	22.0	0.2					0.1	0.1					3.5	20.0	0.1	3.5
4	Euzet les Ballis		NMD-no number	Plugiolophus sp. (unnectens ?)	101	P - Pachynolophidae	NP17d	37.5	22.0	0.1					-9.1	0.1					-5.5	27.5	0.1	5.5
4	Euzet les Bains	FR	NIVIB-NO number	Plagiolophus sp. (annectens ?)	m Infin 12	P - Pachynolophidae	IVIP17a	37.5	19.7	0.1					-8.7	0.1					-0.3	24.4	0.0	0.3
4	Euzet les Bains	FR	MTN-V.60.84	Lopniotnerium cervuium	left m2	P - Lopniodontidae	MP1/a	37.5	19.6	0.2					-7.8	0.1					-4.4	26.3	0.1	4.2
4	Euzet les Bains	FR	MIM-V.60.1317	Palaeotherium crassum	left P4	P - Palaeotheriidae	MP1/a	37.5	20.5	0.3														
4	Euzet les Bains	FR	MTM-V.60.82	Anchilophus dumasi	right M3	P - Palaeotheriidae	MP17a	37.5	21.4	0.1														
4	Euzet les Bains	FR	MTM-V.60.1319	Paloplotherium annectens	right M	P - Pachynolophidae	MP17a	37.5	19.6	0.2														
4	Euzet les Bains	FR	MTM-V.60.1335	Palaeotherium crassum	right M2(M3?)	P - Palaeotheriidae	MP17a	37.5	20.0	0.0	20.6	1.1	10	0.7			- 8.0 0	.8 6	0.7	-21.7				
5	La Débruge	FR	NMB-DB.10	Palaeotherium magnum	M	P - Palaeotheriidae	MP18	36	22.5	0.1					-8.9	0.1					-2.8	28.0	0.1	4.0
5	La Débruge	FR	NMB-DB.29	Palaeotherium magnum	l/i	P - Palaeotheriidae	MP18	36	22.0	0.2														
5	La Débruge	FR	NMB-DB.156	Anoplotherium sp.	M	A - Anoplotheriidae	MP18	36	21.2	0.2	21.9	0.7	3	0.7	-10.9	0.1	- 9.9 1	.4 2	2.0	-23.6	-2.9	27.9	0.1	4.1
6	Gösgen-Canal	CH	NMB-G.C.6	Palaeotherium curtum	M1	P - Palaeotheriidae	MP18	36	19.6	0.2														
6	Gösgen-Canal	CH	NMB-G.C.637	Palaeotherium curtum	I/i	P - Palaeotheriidae	MP18	36	19.0	0.1	19.3	0.5	2	0.7										
7	Radaia (Andrásháza)	RO	MAFI-Ob58- Vt71	Brachvdiastematherium transsvlvanicum	left m4 (m3?)	P - Brontotheriidae	MP18	36	19.2	0.0	19.2	0.3	1	0.6	-9.8	0.1	- 9.8 0	.1 1	0.2	-23.6	-5.3	25.4	0.1	5.6
				,																				
8	"Budapest"	ни	MTM-V.60.149	Amvnodon hungaricus	right m2/3	P - Amvnodontidae	?MP18-19	35	18.4	0.2	18.4	0.3	1	0.6	-8.7	0.1	- 8.7 0	.1 1	0.2	-22.5	-5.4	25.3	0.1	5.8
				·, ································		,																		
2	Mormont - Entreroches	СН	NMB - no number	Palaeotheriidae indet.	tooth frg	P - Palaeotheriidae	MP19	34 5	19.7	01					-9.5	01					-6.0	24.7	0.2	32
2	Mormont - Entreroches	СН	NMB - no number	Palaeotheriidae indet	tooth frg	P - Palaeotheriidae	MP19	34.5	20.5	0.1					-9.5	0.1					-4.1	26.6	0.1	4.5
-	Mormont - Entreroches	СH	MGL-46784	Anonlotherium sp	right D4		MD10	24.5	20.6	0.1					.0 1	0.0					-5.0	25.9	0.1	4.5
2	Mormont - Eclépens C	CH	MGL-40784	Palaeotherium crassum renevieri	loft M1/2	R - Palaeotheriidae	MD10	24.5	20.0	0.1	20 E	0.6	Λ	0.6	-5.1	0.0	.9.4 0	2 2	0.2	. 22. 2	-5.0	25.8	0.1	4.5
-	Mormone Edepense	CIT	MGL 47275	i ulucothenum erussum renevien	1010111/2	1 Talacochernaac	1011 15	54.5		0.1	20.5	0.0	-	0.0			-3.4 0	.2 3	0.2	-23.2				
٥	Liptingen 5	GE	SMNS-no number	Anonlotherium nomneckii	right n/	A - Anonlotheriidae	MD10	245	17.0	0.0					.0.6	0.1					_0 0	21.0	0.1	2.2
, ,	Liptingen 5	GL	SMNS-no number	Anopiotnenum pompetkii	Ingilt p4	R - Allopiotheriidae	MP10	34.5	17.0	0.0					-5.0	0.1					-8.8	21.5	0.1	5.5
9	Liptingen 5	GE	Sivins-no number	Palaeotherium curtum			MP19	34.5	18.1	0.1														
9	Liptingen 5	GE	Sivins-no number	Anopiotherium sp.	ri/13	A - Anopiotheritae	MP19	34.5	20.0	0.1														
9	Lipungen 5	GE	SIVINS-no number	rruideotnerium sp.	1VI3/2, Trg.	r - Palaeo(herildae	MP19	34.5	17.4	0.1	18.1	1.3	4	1.3										
-	1	c -	change and the			• • · · · · · · · · · ·		a																
9	Liptingen 13A	GE	SMNS-no number	Diplobune secundaria	M3	A - Anoplotheriidae	MP19	34.5	19.8	0.1		o -	-											
9	Liptingen 13A	GE	SMNS-no number	Anoplotherium sp.	M?, frg.	A - Anoplotheriidae	MP19	34.5	18.8	0.3	19.3	0.7	2	1.0										
																					_			
10	Neuhausen, Württemberg	GE	MTM-V.60.299	Palaeotherium minus	M1	P - Palaeotheriidae	MP19	34.5	18.3	0.1					-10.5	0.0					-5.5	25.2	0.1	6.6
10	Neuhausen, Württemberg	GE	SMNS-4028	Palaeotherium magnum	right M3	P - Palaeotheriidae	MP19	34.5	19.5	0.1					-10.9	0.1					-6.5	24.2	0.1	3.7
10	Neuhausen, Württemberg	GE	SMNS-1586	Palaeotherium muehlbergi	left p4	P - Palaeotheriidae	MP19	34.5	18.4	0.3	18.7	0.7	3	0.7	-9.9	0.1					-6.5	24.2	0.1	4.3
11	Mähringen	GE	SMNS-no number	Anoplotherium pompeckii	M3	A - Anoplotheriidae	MP19	34.5	18.7	0.2					-9.9	0.1					-7.5	23.2	0.1	3.3
11	Mähringen	GE	SMNS-1448	Palaeotherium duvali duvali	left M1	P - Palaeotheriidae	MP19	34.5	18.5	0.2					-10.9	0.1					-6.9	23.8	0.1	4.0
11	Mähringen	GE	SMNS-no number	Diplobune secundaria	left M3	A - Anoplotheriidae	MP19	34.5	19.1	0.3					-8.4	0.0					-5.8	24.9	0.0	6.4
11	Mähringen	GF	SMNS-no number	Dinlohune quercyi	right M2	A - Anoplotheriidae	MP19	34.5	18.4	0.1	18.7	0.3	4	0.3										
	· · · · · · · · · · · · · · · · · · ·	52	, hombel	,				34.5		0.1	18.6	0.9	13	0.5			-10.0 0	9 7	0.7	-73.8				
								34.5			20.0	0.5		0.0			10.0 0		0.7	-20.0				
13	Frohnstatton	CF	SMNIS-1009	Ralaeotherium curtum frohnstattonso	loft M2	P - Palaeotheriidae	MD20	22.0	17.5	0.7					.12.1	0.1					6.0	74.7	0.1	F 4
12	Frohnstetten		SIVING-1500	Palaeotherium medium suppisum	right D4	P - Palaoothoriidao	MD20	0.CC 22 0	17.5	0.2					-12.1	0.1					-0.0	24.7	0.1	3.1
12	Frehastetten		SIVINO-2004	Plagiolophus fragsi	NA2	r - raideotrieriiude D - Dachynoloophida-	MD20	33.0	17.1	0.2					-11./	0.1					-7.2	25.5	0.1	5.5
12	Fronstellen	GE	SIVINS-3384	Plagiolophus Jraasi	IVI3	r - raciiyiiolopiiluae	IVIP20	33.8 22.0	16.8	0.3					-11.5	0.0					-/./	22.9	0.1	4.6
12	Fromstellen	GE	SIVINS-2852	Playiolophus minor	right ivi3	r - Pachynolophidae	IVIP20	33.8	16.7	0.2	17.6	0.2		0.0	-11.1	0.1	14 5 4				-8.5	22.2	0.1	5.0
12	Fronnstetten	GE	SIVINS-no number	Anopiotnerium pompeckii	IVI3	A - Anoplotheriidae	MP20	33.8	17.2	0.1	17.0	0.3	5	0.3			-11.5 0	.4 4	0.4	-25.3				
									•															

TABLE DR2

										PHOSP	HATE						C/	RBONATE	N PHOSPHAT	E			
					Sampled		MAMMAL	Age	δ ¹⁸ 0-PO4	std.*	AV. S	TD.** N	1.96×SE	δ ¹³ C	std.	AV.	STD. N	1.96×SE	δ ¹³ C	δ ¹⁸ 0-CO3	5 ¹⁸ 0-CO3	std.	203
Map-Nr.	Locality		Collection & Nr.	Taxon	material	Family	LEVEL	(Ma)	SMOW					vc					diet	VPDB	VSMOW	v	vt.%
13	Monteviale	IT	MGP-31410	Anthracotherium monsvialense	left M3	A - Anthracotheriidae	MP21-	33.4	20.0	0.1				-9.8	0.1					-3.9	26.9	0.1	3.7
13	Monteviale	IT	MGP-31411	Anthracotherium monsvialense	right M1	A - Anthracotheriidae	MP21-	33.4	20.8	0.2				-8.5	0.1					-3.1	27.7	0.1	4.3
13	Monteviale		MGP-31412	Anthracotherium monsvialense	right m2	A - Anthracotheriidae	MP21-	33.4	21.7	0.1				-8.3	0.1					-3.1	27.8	0.1	3.4
13	Monteviale	IT	MGP-31412	Anthracotherium monsvialense	right m1	A - Anthracotheriidae	MP21-	33.4	21.2	0.1													
13	Monteviale	11	MGP-31413	Anthracotherium monsvialense	right M2	A - Anthracotheriidae	MP21-	33.4	22.2	0.1				-7.7	0.0					-2.0	28.8	0.0	6.7
13	Monteviale	11	MGP-31414	Anthracotherium monsvialense	right m3	A - Anthracotheriidae	MP21-	33.4	20.2	0.1				-9.3	0.1					-4.4	26.3	0.1	3.0
13	Monteviale	11	MGP-31415	Anthracotherium monsvialense	left 13	A - Anthracotheriidae	MP21-	33.4	20.3	0.3				-8.2	0.0					-3.4	27.4	0.1	6.5
13	Monteviale	11	MCP 28000	Epiaceratherium bolcense (Trigonias ombonii)	left M2	P - Rhinocerotidae	IVIP21-	33.4	21.0	0.2				-9.0	0.0					-3.5	27.3	0.1	3.3
13	Monteviale	11	MCP 27207	Epiaceratherium bolcense (Trigonias ombonii)	left m2	P - Killilocerotidae	IVIP21-	33.4	20.5	0.0				-9.1	0.1					-3.0	27.2	0.1	3.2
13	Monteviale	11	MGP-27297	Epiaceratherium bolcense (Trigonias ombonii)	left M1 (2D4)	P - Rhinocerotidae	MD21-	22.4	21.2	0.2				-0.5	0.1					-3.2	27.0	0.1	2.0
13	Monteviale	11	MGP-27292	Epiaceratherium bolcense (Trigonias ombonii)	left n2	P - Rhinocerotidae	MD21-	22.4	20.3	0.2				-5.8	0.1					-3.5	20.5	0.1	2.1
13	Monteviale	т	MGP-27298	Epiaceratherium bolcense (Trigonias ombonii)	left m?	P - Rhinocerotidae	MP21-	33.4	22.4	0.2				-9.8	0.1					-2.4	27.0	0.1	3.7
13	Monteviale	т	MGP-27349	Anthracochoerus stehlini	left m?	A - Anthracotheriidae	MP21-	33.4	20.0	0.5				-5.0	0.1					2.4	20.4	0.1	5.7
13	Monteviale	т	MGP-27349	Anthracochoerus stehlini	left m?	A - Anthracotheriidae	MP21-	33.4	20.0	0.2													
13	Monteviale	т	MGP-27353	Anthracochoerus stehlini	right m3	A - Anthracotheriidae	MP21-	33.4	20.1	0.1	21.0	09 1	6 0 9			-9.0	07 12	0.4	_22.8				
10					1.6.11.11.0			55.1		0.5	2210	0.5	• •••			510	0.7						
14	Ronzon	FR	NMB-no number	Bothriodon sp.	р	A - Anthracotheriidae	MP21	33.25	19.8	0.2				-8.0	0.1					-4.78	26.0	0.1	5.2
14	Ronzon	FR	NMB-no number	Bothriodon sp.	P	A - Anthracotheriidae	MP21	33.25	20.8	0.2				-8.7	0.1					-4.56	26.2	0.1	5.5
14	Ronzon	FR	NMB-no number	Bothriodon sp.	р	A - Anthracotheriidae	MP21	33.25	20.3	0.1	20.3	0.5	3 0.6	-9.0	0.1	-8.6	0.5 3	0.6	-22.4	-4.36	26.4	0.1	5.6
				··· ··· ··																			
15	Möhren 19	GE	BSPG-1974XXV62	Diplobune sp.	m1	A - Anoplotheriidae	MP21	33.25	21.4	0.1				-11.1	0.0					-2.9	27.9	0.1	4.6
15	Möhren 19	GE	BSPG-1974XXV59	Diplobune cf. quercyi	left m3	A - Anoplotheriidae	MP21	33.25	18.9	0.1													
15	Möhren 19	GE	BSPG-1974XXV61	Diplobune cf. quercyi	М	A - Anoplotheriidae	MP21	33.25	18.4	0.1				-12.2	0.1					-5.4	25.3	0.1	4.3
15	Möhren 19	GE	BSPG-1974XXVN1	Diplobune sp.	enamel frg.	A - Anoplotheriidae	MP21	33.25	20.2	0.3				-10.7	0.0					-4.4	26.4	0.1	4.6
15	Möhren 19	GE	BSPG-1974XXV265	Palaeotherium medium	M frg.	P - Palaeotheriidae	MP21	33.25	17.8	0.1				-12.1	0.1					-5.8	24.9	0.1	3.6
15	Möhren 19	GE	BSPG-1974XXV265	Palaeotherium medium	M frg.	P - Palaeotheriidae	MP21	33.25	17.7	0.0				-11.4	0.1					-6.1	24.7	0.1	3.4
15	Möhren 19	GE	BSPG-1974XXV265	Palaeotherium medium	M frg.	P - Palaeotheriidae	MP21	33.25	18.0	0.1				-11.9	0.1					-5.9	24.9	0.1	4.5
15	Möhren 19	GE	BSPG-1974XXV265	Palaeotherium medium	M frg.	P - Palaeotheriidae	MP21	33.25	20.9	0.0				-10.4	0.1					-3.4	27.4	0.2	4.1
15	Möhren 19	GE	BSPG-1974XXV98	Anoplotherium commune	right m5	A - Anoplotheriidae	MP21	33.25	18.1	0.1				-14.1	0.1					-6.0	24.7	0.1	3.5
15	Möhren 19	GE	BSPG-1974XXV103	Anoplotherium commune	right M	A - Anoplotheriidae	MP21	33.25	17.1	0.1	18.8	1.5 1	0 0.9	-13.2	0.1	-11.9	1.2 9	0.8	-25.6	-6.2	24.6	0.2	3.8
16	Cluj	RO	MTM-V.69.167	Ronzotherium kochi *	left M2 frg.	P - Rhinocerotidae		32	19.9	0.1				-9.8	0.1					-3.7	27.1	0.2	5.6
16	Cluj	RO	MTM-V.69.167	Ronzotherium kochi *	left M2 frg.	P - Rhinocerotidae	MP21-22	32	20.2	0.1	20.1	0.3	1 0.6	-10.0	0.1	-9.9	0.1 2	0.2	-23.6	-5.4	25.4	0.1	3.4
17	Villebramar	FR	NMB-Vbr17	Entelodon sp.	m	A - Entelodontidae	MP22	31.7	19.4	0.2				-11.2	0.0					-4.8	26.0	0.1	5.6
17	Villebramar	FR	NMB-Vbr102	Entelodon sp.	m	A - Entelodontidae	MP22	31.7	18.9	0.3				-10.5	0.1					-5.7	25.0	0.1	4.5
17	Villebramar	FR	NMB-Vbr154	Entelodon sp.	P1	A - Entelodontidae	MP22	31.7	23.1	0.2				-10.7	0.1					-1.7	29.2	0.1	5.2
17	Villebramar	FR	NMB-no number	Ronzotherium sp.	tooth frg.	P - Rhinocerotidae	MP22	31.7	18.4	0.3				-10.8	0.1					-5.4	25.4	0.1	4.6
17	Villebramar	FR	NMB-Vbr49	Ronzotherium sp.	M frg.	P - Rhinocerotidae	MP22	31.7	18.9	0.0				-10.5	0.1					-4.8	25.9	0.1	5.2
17	Villebramar	FR	NMB-Vbr29	Ronzotherium sp.	M frg.	P - Rhinocerotidae	MP22	31.7	20.1	0.2				-11.4	0.1					-4.0	26.8	0.0	4.8
17	Villebramar	FR	NMB-Vbr48	Ronzotherium sp.	M frg.	P - Rhinocerotidae	MP22	31.7	18.4	0.2				-8.8	0.1					-4.5	26.2	0.1	5.7
17	Villebramar	FR	NMB-Vbr40	Ronzotherium sp.	M frg.	P - Rhinocerotidae	MP22	31.7	20.2	0.2				-10.4	0.1					-3.7	27.1	0.1	4.4
17	Villebramar	FR	NMB-Vbr35	Ronzotherium sp.	M frg.	P - Rhinocerotidae	MP22	31.7	17.6	0.1				-11.2	0.1					-5.5	25.2	0.1	4.0
17	Villebramar	FR	NMB-no number	Plagiolophus sp.	tooth frg.	P - Pachynolophidae	MP22	31.7	21.9	0.2				-10.6	0.1					-2.8	28.0	0.1	4.7
17	Villebramar	FR	NMB-no number	Plagiolophus sp.	tooth frg.	P - Pachynolophidae	MP22	31.7	21.5	0.2				-10.0	0.1					-3.2	27.6	0.1	4.3
17	Villebramar	FR	NMB-no number	Plagiolophus sp.	tooth frg.	P - Pachynolophidae	MP22	31.7	24.0	0.2				-9.9	0.0					-1.4	29.5	0.1	4.5
17	Villebramar	FR	NMB-no number	Plagiolophus sp.	tooth frg.	P - Pachynolophidae	MP22	31.7	23.3	0.2				-9.8	0.1					-1.4	29.4	0.1	3.8
17	Villebramar	FR	NMB-no number	Plagiolophus sp.	tooth frg.	P - Pachynolophidae	MP22	31.7	21.4	0.2	20.5	2.0 1	4 1.1	-11.0	0.0	-10.5	0.7 14	0.4	-24.2	-3.4	27.4	0.0	4.6
19	Kleinblauen	СН	NMR-KR144a	Ronzotherium sp	tooth fra	P - Rhinocerotidae	MD22	27	21.2	0.2	21.2	0.2	1 04	-10.6	0.0	-10.6	01 1	0.3	-24.2	-2.4	27.4	0.0	57
10	Kieliibiadeli	CII		nonzotnenum sp.	toothing.	1 Miniocerotidae	IVIF 22	52	21.2	0.5	21.2	0.5	1 0.0	-10.0	0.0	-10.0	0.1 1	0.2	-24.3	-5.4	27.4	0.0	5.7
15	Möhren13	GE	BSPG-1972XI2186	Epiaceratherium magnum	left M3	P - Rhinocerotidae	MP22	31.7	18.1	0.1													
15	Möhren13	GE	BSPG-1972XI2186	Epiaceratherium magnum	left M3	P - Rhinocerotidae	MP22	31.7	19.7	0.1				-11.7	0.0					-4.1	26.7	0.1	3.4
15	Möhren13	GE	BSPG-1972XI2197	Epiaceratherium sp.	left M2	P - Rhinocerotidae	MP22	31.7	17.8	0.2				-12.3	0.1					-5.6	25.1	0.1	2.4
15	Möhren13	GE	BSPG-1972XI2107	Epiaceratherium magnum	left m3	P - Rhinocerotidae	MP22	31.7	18.0	0.2				-12.0	0.1					-6.2	24.6	0.1	3.2
15	Möhren13	GE	BSPG-1972XI2230	Epiaceratherium magnum	left m3	P - Rhinocerotidae	MP22	31.7	18.7	0.2				-12.1	0.1					-4.8	26.0	0.1	3.3
15	Möhren13	GE	BSPG-1972XI1451	Elomervx crispus crispus	M3?	A - Anthracotheriidae	MP22	31.7	17.5	0.3													
15	Möhren13	GE	BSPG-1712BC 6.4.76	Elomeryx crispus crispus	M	A - Anthracotheriidae	MP22	31.7	16.4	0.3													
15	Möhren13	GE	BSPG-no number	Elomeryx crispus	M frg.	A - Anthracotheriidae	MP22	31.7	15.7	0.1				-11.1	0.1					-7.0	23.7	0.1	4.9
15	Möhren13	GF	BSPG-no number	Elomeryx crispus crispus	M frg.	A - Anthracotheriidae	MP22	31.7	16.4	0.1				-11.7	0.1					-7.0	23.7	0.1	4.7
15	Möhren13	GF	BSPG-no number	Elomeryx crispus	M frg.	A - Anthracotheriidae	MP22	31 7	17.2	0.0				-11.0	0.0					-6.4	24.3	0.1	5.2
15	Möhren13	GF	BSPG-M89 4D 220	Elomeryx crispus crispus	њ. m	A - Anthracotheriidae	MP22	31.7	15.8	0.1				-10.7	0.0					-7 1	24.5	0.1	43
15	Möhren13	GF	BSPG-no number	Anthracotherium monsvialense	M3?	A - Anthracotheriidae	MP22	31.7	18.3	0.2				-11 3	0.0					-5.7	25.0	0.1	3.0
15	Möhren13	GF	BSPG-no number	Anthracotherium monsvialense	M	A - Anthracotheriidae	MP22	31.7	18.9	0.0				-11.3	0.1					-4.9	25.8	0.0	5.1
15	Möhren13	GF	BSPG-no number	Anthracotherium monsvialense	enamel frø	A - Anthracotheriidae	MP22	31.7	19.7	0.2				-12 5	0.1					-4.8	25.0	0.1	4 5
15	Möhren13	GF	BSPG-1972XI2277	Epiaceratherium maanum	right P3	P - Rhinocerotidae	MP22	31.7	18.3	0.2	17.8	1.3 1	5 0.6	-11.2	0.0	-11.6	0.5 12	0.3	-25.3	-5.7	25.0	0.1	4.5
				,	0										2.5			0.0	2010				

												-										-			
									-18	PHOS	SPHAIL	5							CAR	(BONATE IN	PHOSPHAI	-18	-18		
				_	Sampled		MAMMAL	Age	δ ⁶⁰ 0-PO4	std.*	AV.	STD.**	* N	1.96×SE	δ ¹³ C	std.	AV.	. STD.	. N	1.96×SE	δ ¹³ C _{diet}	δ 0-CO3	δ 0-CO3	std.	CO3
Map-Nr	Locality		Collection & Nr.	Taxon	material	Family	LEVEL	(Ma)	SMOW				_									VPDB	VSMOW		Nt.%
19	Budapest - Bohn clay pit	HU	MTM-V.83.40	Ronzotherium velaunum	m1/2	P - Rhinocerotidae	MP23+	30.2	17.1	0.1	1 17 .	1 0.3	3 1	0.6	-11.1	0.1	-1	11.1 0.1	1 1	0.2	-24.8	-7.0	23.6	0.1	5.5
19	Budapest - Ujlak	HU	MTM-V.60.308	? Eggysodon sp.	right p3?	P - Hyracodontidae	MP23-24	30	16.2	0.2	2 16.	2 0.3	31	0.6	-13.6	0.1	-1	13.6 0.1	l 1	0.2	-27.3	-8.3	22.4	0.0	3.3
16	Cluj	RO	UBB-no number	Elomeryx borbonicus	Ρ?	A - Anthracotheriidae	MP23-24	30	16.9	0.1	1														
16	Cluj	RO	UBB-no number	Elomeryx borbonicus	I	A - Anthracotheriidae	MP23-24	30	16.8	0.1	1 16.	9 0.1	1 2	0.1											
20	Aghires	RO	UBB-no number	? Anthracotherium monsivalense		A - Anthracotheriidae	MP23-24	30	15.2	0.1	1 15.	2 0.3	3 1	0.6											
	0							30			16.	3 1.0	D 3	1.1											
21	Csákberény	HU	MTM-V.60.284	Protaceratherium albigense	right M2 frg.	P - Rhinocerotidae	MP23-25	29.4	16.0	0.0	C				-13.3	0.1						-6.9	23.8	0.1	5.9
21	Csákberény	HU	MTM-V.60.289	Protaceratherium albigense	right M2 frg.	P - Rhinocerotidae	MP23-25	29.4	16.6	0.2	2 16.	3 0.4	4 2	0.6	-12.8	0.1	-1	13.1 0.3	3 2	0.5	-26.8	-7.0	23.7	0.1	3.2
22	Poillat	СН	MJSN-POI007-346	Ronzotherium	tooth frg.	P - Rhinocerotidae	MP24-	29.6	17.6	0.3	3				-9.2	0.1						-4.8	26.0	0.1	
22	Poillat	CH	MJSN-POI007-236	Ronzotherium	tooth frg.	P - Rhinocerotidae	MP24-	29.6	19.9	0.3	3				-10.0	0.1						-4.2	26.5	0.1	
22	Poillat	CH	MJSN-POI007-188	Ronzotherium	tooth frg.	P - Rhinocerotidae	MP24-	29.6	18.7	0.3	3				-10.3	0.1						-3.1	27.7	0.1	
22	Poillat	СН	MJSN-POI007-211	Ronzotherium	tooth frg.	P - Rhinocerotidae	MP24-	29.6	16.8	0.3	3 18.	3 1.3	34	1.3	-10.0	0.1	-	-9.9 0.5	54	0.5	-23.6	-6.6	24.1	0.1	
23	Tatabánya - Felsőgalla	HU	MTM-V.60.154	? Ronzotherium cf. romani *	left P2	P - Rhinocerotidae	?MP24-25	28.6	14.6	0.2	2				-12.0	0.1						-8.2	22.4	0.2	3.9
23	Tatabánya - Felsőgalla	HU	MTM-V.60.192	Ronzotherium cf. romani*	left m2/3	P - Rhinocerotidae	MP24-25	28.6	14.9	0.1	1				-12.3	0.1						-8.1	22.5	0.1	4.7
23	Tatabánya - Felsőgalla	HU	MTM-V.60.590	? Anthracotherium monsivalense*	M1/2 frg.	A - Anthracotheriidae	MP24-25	28.6	16.0	0.0	С				-11.3	0.1						-7.6	23.0	0.2	4.6
23	Tatabánya - Felsőgalla	HU	MTM-V.60.1569	? Anthracotherium monsivalense*	C/c frg.	A - Anthracotheriidae	MP24-25	28.6	15.1	0.1	1 15 .	2 0.6	6 4	0.6	-11.2	0.0	-1	11.7 0.5	54	0.5	-25.5	-8.3	22.4	0.1	9.3
24	Bumbach	СН	NMB-UM7155	Anthracotherium bumbachense	i	A - Anthracotheriidae	MP25-	28	16.1	0.2	2				-10.0	0.0						-8.4	22.2	0.1	3.2
24	Bumbach	CH	NMB-UM13	Ronzotherium sp.	р	P - Rhinocerotidae	MP25-	28	15.6	0.4	4				-11.3	0.1						-8.2	22.5	0.1	4.2
24	Bumbach	СН	NMB-UM6279	Ronzotherium sp.	p	P - Rhinocerotidae	MP25-	28	16.7	0.3	3 16.	1 0.6	6 3	0.6	-9.9	0.0	-1	10.4 0.8	3 3	0.8	-24.2	-7.8	22.8	0.1	3.3

P - Perissodactyla, A - Artiodactyla

CH - Switzerland * DB and LS new classification here (MP levels too)

GE - Germany

FR- France HU - Hungary

IT - Italy RO - Romania

**for single sample analyses 0.3 std is used derived from the max. error on standard calibration

* standard deviation of triplicate analyses

Preparation of the samples and their stable isotope analyses

The surface of the teeth was always cleaned before sampling, then tooth enamel was carefully shaven off by a micro-drill, while bigger enamel pieces were powdered and homogenized in an agate mortar. The sample powders were pre-treated in two steps (Koch et al., 1997): 1) leached in 2.5% NaOCl for 24 hours to remove any possible residual organic matter; 2) a wash in 1N acetic acid-Ca-acetate (pH=4.5, 6 hours) to eliminate any exogenous carbonates. Between and after these steps the samples were rinsed several times in distilled water. NBS-120c phosphorite reference material was always prepared parallel with each batch of sample set.

The <u>oxygen and carbon isotopic compositions of structural carbonate</u> in phosphate [$\delta^{18}O_{CO3}$, $\delta^{13}C$] were directly analyzed on the pre-cleaned sample powders using a Gasbench II coupled to a Finnigan MAT Delta Plus XL mass spectrometer. The measured isotopic ratios were normalized to an in-house Carrara marble calcite standard that is calibrated against NBS-19. The analytical precision for this method is better than $\pm 0.1\%$ for O and C isotopes (e.g., Spötl and Vennemann, 2003). The $\delta^{18}O$ and $\delta^{13}C$ values are expressed in δ -notation relative to VPDB (Vienna Pee Dee Belemnite).

The <u>phosphate oxygen isotopic composition</u> [$\delta^{18}O_{PO4}$] The PO₄³⁻ group was further separated from other oxygen bearing ions in the apatite structure (CO₃²⁻, OH⁻), applying a silver phosphate precipitation method (O'Neil et al., 1994; Dettman et al., 2001; Kocsis, 2011). The $\delta^{18}O_{PO4}$ was analyzed on a TC/EA (high-temperature conversion elemental analyzer) (Vennemann et al., 2002) coupled to a Finnigan MAT Delta Plus XL mass spectrometer, where the silver-phosphate is converted to CO at 1450°C via reduction with graphite. The results were corrected to in-house Ag₃PO₄ phosphate standards (LK-2L: 12.1‰ and LK-3L: 17.9‰) that had better than ±0.3‰ (1 σ) standards deviations during measurements. These Ag₃PO₄ phosphate standards were calibrated by TC/EA to TU-1 and TU-2 standards using values defined by conventional fluorination method (CF) (cf. Vennemann et al., 2002) and were also calibrated with laser-fluorination method yielding identical values.

For the NBS-120c phosphorite reference material an average values of $21.6 \pm 0.3\%$ (n=21) was obtained. Oxygen isotope compositions are expressed in the δ -notation relative to Vienna Standard Mean Ocean Water (VSMOW). All the stable isotope analyses were carried out in the stable isotope laboratory of the Institute of Earth Sciences at University of Lausanne, Switzerland.

Figure DR1. Phosphate and structural carbonate oxygen isotopic compositions in bioapatite

The grey dots and grey regression line are derived from datasets of modern mammals (Iacumin et al., 1996; Bryant et al., 1996). Note that the late Eocene-early Oligocene samples show parallel regression line with significant correlation and with similar slope (a) and slightly higher intercept (b) to the modern mammals. Considering the standard errors (SE) on both (a) and (b), the 95% confidential intervals cover the parameters of the modern dataset (a \pm 0.11; b \pm 2.79). Moreover, assuming that the modern data represent the real correlation between $\delta^{18}O_{CO3}$ and $\delta^{18}O_{PO4}$ of the whole population (statistically speaking from which the fossil sub-samples may have been taken), then a simply Z-test on the SE of the slope and the intercept in the fossil dataset yield no significant

differences from the mean of these parameters of the modern population (95% conf. limit, i.e. $1.96 \times SE$). All these suggest that the fossil teeth are well-preserved and no significant diagenetic isotopic alteration occurred in tooth enamel.

Further notes: The $\delta^{18}O_{CO3}$ is chosen as the "independent" variable (x) because these values have much smaller error associated with them concerning their measurements when compared to $\delta^{18}O_{PO4}$ analyses. The apparently more disperse fossil dataset may perhaps link to minor alteration in $\delta^{18}O_{CO3}$, hence the reason for using $\delta^{18}O_{PO4}$ in this work to investigate *in-vivo* environmental factors (see also Kohn and Cerling, 2002; Zazzo et al., 2004 cited in the paper).

Table DR3. t-tests on the major taxa at four localities MAMMAL Age δ^{12} O

					MANINAL	Age	δ O-PO4 etd	\$13c	ctd		
Map-Nr.	Locality		Taxon	Family	LEVEL	(Ma)	SMOW	οc	siu.		
				Artiodactula							
				Artiouactyla							-19
15	Möhren 19	GE	Diplobune sp.	A - Anoplotheriidae	MP21	33.25	21.4 0.1	-11.1	0.0	t(8)= 0.42, p=0.69	δ 0
15	Möhren 19	GF	Dinlobune of querovi	A - Anonlotheriidae	MP21	33 25	18.9 01			t(7)= 1.02, n=0.34	δ ¹³ C
15	Möhren 19	GE	Diplobune of quercui	A - Anoplotheriidae	MD21	22.25	18 4 0 1	-12.2	0.1	,,p	
15	Momen 19	OL CE	Diplobule ci. quercy	A Anopiotheritae	NIF 21	22.25	10.4 0.1	-12.2	0.1		
15	Monren 19	GE	Diplobune sp.	A - Anopiotheriidae	MP21	33.25	20.2 0.3	-10.7	0.0		
15	Möhren 19	GE	Anoplotherium commune	A - Anoplotheriidae	MP21	33.25	18.1 0.1	-14.1	0.1		
15	Möhren 19	GE	Anoplotherium commune	A - Anoplotheriidae	MP21	33.25	17.1 0.1	-13.2	0.1		
				Perissodactyla							
15	Möhron 10	CE	Balasstharium madium	P. Palaoothoriidao	MD21	22.25	179 01	12.1	0.1		
13	Wollien 19	GE		F - Falaeotheniuae	IVIF21	33.23	17.8 0.1	-12.1	0.1		
15	Monren 19	GE	Palaeotherium medium	P - Palaeotheriidae	MP21	33.25	17.7 0.0	-11.4	0.1		
15	Möhren 19	GE	Palaeotherium medium	P - Palaeotheriidae	MP21	33.25	18.0 0.1	-11.9	0.1		
15	Möhren 19	GE	Palaeotherium medium	P - Palaeotheriidae	MP21	33.25	20.9 0.0	-10.4	0.1		
											e 18 -
				Artiodactyla						t(13)= 1.78, p=0.10	<u>8-0</u>
15	Möhren13	GE	Elomeryx crispus crispus	A - Anthracotheriidae	MP22	31.7	17.5 0.3			t(10)= 1.54, p=0.16	δ ¹³ C
15	Möhren13	GF	Flomervy crisnus crisnus	A - Anthracotheriidae	MP22	31 7	16.4 03				
15	Möhren13	GE	Elomenux crisnus crisnus	A - Anthracotheriidae	MD22	21.7	157 01	.11.1	0.1		
15	Womenis	OL	Elonieryx enspus enspus	A - Antinacothemidae	1017 22	51.7	13.7 0.1	-11.1	0.1		
15	Monren13	GE	Elomeryx crispus crispus	A - Anthracotheriidae	MP22	31.7	16.4 0.1	-11./	0.1		
15	Möhren13	GE	Elomeryx crispus crispus	A - Anthracotheriidae	MP22	31.7	17.2 0.0	-11.0	0.0		
15	Möhren13	GE	Elomeryx crispus crispus	A - Anthracotheriidae	MP22	31.7	15.8 0.1	-10.7	0.0		
15	Möhren13	GF	Anthracotherium monsvialense	A - Anthracotheriidae	MP22	31 7	18.3 0.2	-11.3	01		
15	Mähren12	CE	Anthraeotherium mensuialense	A Anthrasathariidaa	MD22	21.7	18.0 0.0	11.4	0.1		
15	wonren15	GE	Anthracothenam monsvialense	A - Antinacothernuae	IVIPZZ	51.7	18.9 0.0	-11.4	0.1		
15	Möhren13	GE	Anthracotherium monsvialense	A - Anthracotheriidae	MP22	31.7	19.7 0.2	-12.5	0.1		
				Perissodactyla							
15	Möhren13	GE	Epiaceratherium magnum	P - Rhinocerotidae	MP22	31.7	18.1 0.1				
15	Möhren13	GE	Enjaceratherium maanum	P - Rhinocerotidae	MP22	317	197 01	-11 7	0.0		
15	Mähren13	CE	Epideeratherium en	D Dhineseretidee	MD22	21.7	17.0 0.1	12.2	0.0		
12	wonren15	GE	Epiaceratherium sp.	P - Khinocerotidae	IVIPZZ	51.7	17.8 0.2	-12.5	0.1		
15	Möhren13	GE	Epiaceratherium magnum	P - Rhinocerotidae	MP22	31.7	18.0 0.2	-12.0	0.1		
15	Möhren13	GE	Epiaceratherium magnum	P - Rhinocerotidae	MP22	31.7	18.7 0.2	-12.1	0.1		
15	Möhren13	GE	Epiaceratherium magnum	P - Rhinocerotidae	MP22	31.7	18.3 0.2	-11.2	0.0		
			-								
				Artiodactula							
				Artiodactyla							-18
17	Villebramar	FR	Entelodon sp.	A - Entelodontidae	MP22	31.7	19.4 0.2	-11.2	0.0	t(12)= 0.04, p=0.97	δ°°0
17	Villebramar	FR	Entelodon sp	A - Entelodontidae	MP22	31 7	18.9 03	-10.5	01	t(12)= 0.88, n=0.23	δ ¹³ C
17	Villobramar	ED	Enteleden spi	A Enteledentidae	MD22	21.7	22 1 0 3	10.7	0.1	((12) 0100) p 0120	• •
17	Villeprainai	FN	Entelouon sp.	A - Entelodontidae	IVIF 22	51.7	23.1 0.2	-10.7	0.1		
				Perissodactyla							
17	Villebramar	FR	Plagiolophus sp.	P - Pachynolophidae	MP22	31.7	21.9 0.2	-10.6	0.1		
17	Villebramar	FR	Plagiolophus sp.	P - Pachynolophidae	MP22	31.7	21.5 0.2	-10.0	0.1		
17	Villebramar	FR	Plagiolophus sp.	P - Pachynolophidae	MP22	31.7	24.0 0.2	-9.9	0.0		
17	Villebramar	ED	Plagiolophus sp	P - Pachynolonhidae	MD22	21 7	22 2 0 2	.0.9	0.1		
17	Villebraman	50	Planislankus sp.	P - Pachynolophidae	NIF 22	24.7	23.3 0.2	-5.0	0.1		
17	villebramar	FK	Plagiolophus sp.	P - Pachynolophidae	IVIP22	31.7	21.4 0.2	-11.0	0.0		
17	Villebramar	FR	Ronzotherium sp.	P - Rhinocerotidae	MP22	31.7	18.4 0.3	-10.8	0.1		
17	Villebramar	FR	Ronzotherium sp.	P - Rhinocerotidae	MP22	31.7	18.9 0.0	-10.5	0.1		
17	Villebramar	FR	Ronzotherium sp.	P - Rhinocerotidae	MP22	31.7	20.1 0.2	-11.4	0.1		
17	Villebramar	FR	Ronzotherium sp	P - Rhinocerotidae	MP22	31.7	184 07	-8.8	0.1		
17	Villebraman	50	Remerthanisment and	D Bhissessetides	14022	24.7	20.4 0.2	40.0	0.1		
17	villebramar	FK	konzotnerium sp.	P - Rhinocerotidae	IVIP22	31.7	20.2 0.2	-10.4	0.1		
17	Villebramar	FR	Ronzotherium sp.	P - Rhinocerotidae	MP22	31.7	17.6 0.1	-11.2	0.1		
				Artiodactyla						t(14)= 1.45. p=0.17	δ ¹⁸ O
13	Monteviale	IT	Anthracotherium monsvialense	A - Anthracotheriidae	MP21-	33.4	200 01	-9.8	01	t(10)= 2.01 n=0.07	S13C
13	Monteviale		Anthracotherium monsvialense		14024	22.4	20.0 0.3	0.0	0.1	(10)- 2.01, p-0.07	0.0
13	wonteviale		Anthracotherium monsvialense	A - Anthracotherildae	IVIP21-	33.4	20.8 0.2	-8.5	0.1		
13	Monteviale	IT	Anthracotherium monsvialense	A - Anthracotheriidae	MP21-	33.4	21.7 0.1	-8.3	0.1		
13	Monteviale	IT	Anthracotherium monsvialense	A - Anthracotheriidae	MP21-	33.4	21.2 0.1				
13	Monteviale	IT	Anthracotherium monsvialense	A - Anthracotheriidae	MP21-	33.4	22.2 0.1	-7.7	0.0		
12	Monteviale	IT	Anthracotherium monsvialense	A - Anthracotheriidao	MP21-	32.4	20.2 0.1	.0.2	0.1		
13	Montovicio	17	Anthrasotherium monsuislanse	A Anthracotherilde	MD21	22.4	20.2 0.1	0.0	0.1		
13	wonteviale		Anthrucotherium monsvialense	A - Anthracotheriidae	WP21-	55.4	20.3 0.3	-8.2	0.0		
13	Monteviale	IT	Anthracochoerus stehlini	A - Anthracotheriidae	MP21-	33.4	20.0 0.2				
13	Monteviale	IT	Anthracochoerus stehlini	A - Anthracotheriidae	MP21-	33.4	20.1 0.1				
13	Monteviale	IT	Anthracochoerus stehlini	A - Anthracotheriidae	MP21-	33.4	20.7 0.3				
15	enuie			Parissodactula		33.4	_0., 0.3				
				renssouactyla					0.0		
13	Wonteviale	11	Epiaceratherium boicense (Trigonias ombonii)	P - Khinocerotidae	MP21-	33.4	21.0 0.2	-9.0	0.0		
13	Monteviale	IT	Epiaceratherium bolcense (Trigonias ombonii)	P - Rhinocerotidae	MP21-	33.4	20.5 0.0	-9.1	0.1		
13	Monteviale	IT	Epiaceratherium bolcense (Trigonias ombonii)	P - Rhinocerotidae	MP21-	33.4	21.2 0.2	-8.9	0.1		
13	Monteviale	IT	Enjaceratherium bolcense (Trigonias ombonii)	P - Rhinocerotidae	MP21-	33.4	203 03	-9.9	01		
13	Manteviale		Episcentherium boleense (Trigonius omboliii)	D Dhinesenstide	14024	22.4	20.5 0.2		0.1		
13	wonteviale		epiaceratherium boicense (Trigonias ombonii)	P - Kninocerotidae	MP21-	33.4	22.4 0.2	-9.5	0.1		
13	Monteviale	IT	Epiaceratherium bolcense (Trigonias ombonii)	P - Rhinocerotidae	MP21-	33.4	22.8 0.3	-9.8	0.1		

Figure DR2. Detailed paleogeographic maps (from Figure 3)

The paleomaps are based on compilation of data from many different works. See reference list for details.

Abbreviations on the maps:

AMB – Alpine Molasse Basin, Ap – Apulia, Aq – Aquitanian basin, BM – Bohemian Massif, Ca – Calabria, CF – Carpathian Foreland, Da – Dacides, EA – Estern Alps, EB – Ebro Basin, ED – External Dinarides, IM – Iberian Massif, MC – Massif Central, Mo – Moesian, NSB – North Sea Basin, PB – Paris Basin, PL – Polish Lowlands, Rh – Rhodopes, RhG – Rhine Graben, SA – Southern Alps, SG – Supra Getic, SM – Serbo-Macedonian Massif, SZ – Sava Zone, Td – Transdanubian, ThB – Thrace Basin, Ti – Tisza unit, Ts – Transylvanian Paleogene Basin, VH – Volhynian High, WA – Western Alps, WCp – Western Carpathians.

PRIABONIAN - RUPELIAN

BARTONIAN - PRIABONIAN

REFERENCES CITED

<u>Table DR1</u>

- Aguilar, J.-P., Legendre, S., and Michaux, J., 1997, Actes du Congrès BiochroM'97: Mémoires et Travaux de l'Ecole pratique des Hautes Etudes, Institut de Montpellier, v. 21, p. 769–805.
- Báldi-Beke, M., 1984, The nannoplankton of the Transdanubian Palaeogene Formations: Geologica Hungarica, series Palaeontologica, v. 43, p. 1–307.
- Báldi, T., and Báldi-Beke, M., 1985, The evolution of the Hungarian Paleogene Basins: Acta Geologica Hungarica, v. 28, p. 5–28.
- Becker, D., 2009, Earliest record of rhinocerotoids (Mammalia: Perissodactyla) from Switzerland: Systematics and biostratigraphy: Swiss Journal of Geosciences, v. 102, p. 375–390.
- Becker, D., Antoine, P.-O., and Maridet, O., 2013, A new genus of Rhinocerotidae (Mammalia, Perissodactyla) from the Oligocene of Europe: Journal of Systematic Palaeontology, doi.org/10.1080/14772019.2012.699007
- Brunet, M., 1970, Villebramar (Lot-et-Garonne): trés important gisement de vertébrés Stampien inférieur du Basin d'Aquitaine: Comptes rendus de l'Académie des Sciences, Paris, v. 270, p. 2535–2538.
- Brunet, M., 1979, Les grands mammifères chefs de file de l'immigration oligocène et le problème de la limite Eocène–Oligocène en Europe. Fondation Singer-Polignac, Paris, 281 pp.
- Dal Piaz, G.B., 1930, I mammiferi dell' Oligocene veneto, *Trigonias ombonii*: Mem. Ist. Geol. Univ. Padova, v. 9, p. 2–63.
- Dal Piaz, G.B., 1931, I mammiferi dell' Oligocene veneto. *Anthracochoerus* n.g. *A. stehlini* n. sp. *A. fabianii* n. sp.: Mem. Ist. Geol. Univ. Padova, v. 9, p. 1–36.
- Depéret, Ch., and Carrière, G., 1901, Sur un nouveau gisement de Mammifères fossiles de l'Eocène moyen à Robiac, près St. Mamert du Gard: C.R. Ac. Sc.t., v. 133, p. 1–616.
- Engesser, B., and Mödden, C., 1997, A new version of the biozonation of the Lower Freshwater Molasse (Oligocene, Agenian) of Switzerland and Savoy on the basis of fossil mammals, *in*

Aguilar, J.-P., Legendre, S., and Michaux, J., eds., Actes du Congrès BiochroM'97: Mémoires et Travaux de l'Ecole pratique des Hautes Etudes, Institut de Montpellier, v. 21, p. 581–590.

- Fărcaş, C., 2011, Study of the Upper Eocene-Lower Oligocene continental Formations from northwestern side of the Transylvanian depression – Biostratigraphy and Paleoenvironmental Reconstructions based on land vertebrate assemblages [PhD Thesis]: University of Cluj-Napoca, Romania, 41 p.
- Fărcaș, C., and Codrea, V., 2008, Overview on the Eocene/Oligocene boundary formations bearing mammals in northwestern Transylvania: Drobeta Seria Științele Naturii, v. 18, p. 24–32.
- Filipescu, S., 2001, Cenozoic Lithostratigraphic units in Transylvania, *in* Bucur, I.I., Filipescu, S., and Săsăran, E., eds., Algae and Carbonate Platforms in Western Part of Romania. Field Trip Guide: 4th Regional Meeting of IFAA., p. 75–92.
- Hooker, J.J., and Weidmann, M., 2000, The Eocene mammal faunas of Mormont, Switzerland: Systematic revision and resolution of dating problems: Schweizerische Paläontologische Abhandlungen, v. 120, p. 1–143.
- Kocsis, L., 2002, Middle Eocene Hyrachyus cf. stehlini (Mammalia, Perissodactyla) from the Gerecse Hills, Hungary: Jb. Geol. Paläont. Mh., Stuttgart, v. 11, p. 649–658.
- Kordos, L., 1978, Eocene, Oligocene and Miocene Palaeovertebrate localities in Hungary: Annual Report of the Hungarian Geological Institute, v. 1976, p. 291–295.
- Kretzoi, M., 1940, Alttertiäre Perissodactylen aus Ungarn: Annales Musei Nationali Hungarici, v. 33, p. 87–97.
- Ozsvárt, P., 1999, Middle Eocene foraminifer, mollusc and ostracod fauna from the Csordakút Basin (Gerecse Mountains, Hungary): palaeoenviroments recorded in a transgressive sequence: Annales Universitatis Scientiarum Budapestinensis, sectio Geologica, v. 32, p. 73– 135.
- Scherler, L., 2011, Terrestrial paleoecosystems of large mammals (Tapiridae, Anthracotheriidae, Suoidea) from the Early Oligocene to the Early Miocene in the Swiss Molasse Basin:

biostratigraphy, biogeochemistry, paleobiogeography and paleoecology [PhD Thesis]: Department of Geoscience, University of Fribourg, Switzerland, 227 p.

- Scherler, L., Mennecart, B., Hiard, F., and Becker, D., (accepted): Evolutionary history of hoofed mammals during the Oligocene-Miocene transition in Western Europe: Swiss Journal of Geosciences.
- Scherzinger, A., Franz, M., Heizmann, E.P.J., and Hofmann, F., 2005, New fissure fillings from northern Hegau and the area around Sigmaringen (western Swabian Alb, SW Germany): Stuttgarter Beitr. Naturk. Ser. B Nr., v. 354, p. 1–45.
- Tuchtan, G., 1953, Nuovi resti di Anthracotherium monsvialense De Zigno delle ligniti oligoceniche di Monteviale nel Vicentino [Thesis]: University of Padova, Thesis, Nr.42497.
- Uhlig, U., 1999, Die Rhinocerotoidea (Mammalia) aus der unteroligozänen Spaltenfüllung Möhren 13 bei Treuchtlingen in Bayern: Abhandlungen der Bayerische Akademie der Wissenschaften, Mathematisch-Naturwis-senschaftliche Klasse, Neue Folge, v. 170, p. 1–254.

Sample preparations & analyses

- Dettman, D.L., Kohn, M.J., Quade, J., Ryerson, F.J., Ojha, T.P., and Hamidullah, S., 2001, Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y.: Geology, v. 29, p. 31–34.
- Koch, P.L., Tuross, N., and Fogel, M.L., 1997, The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite: J. Archaeol. Sci., v. 24, p. 417–429.
- Kocsis, L., 2011, Geochemical compositions of marine fossils as proxies for reconstructing ancient environmental conditions: Chimia, v. 65, p. 87–91.
- O'Neil, J.R., Roe, L.J., Reinhard, E., and Blake, R.E., 1994, A rapid and precise method of oxygen isotope analysis of biogenic phosphate: Israel J. Earth Sci., v. 43, p. 203–212.

- Spötl, C., and Vennemann, T.W., 2003, Continuous-flow IRMS analysis of carbonate minerals: Rapid Commun. Mass Spectrom., v. 17, p. 1004–1006.
- Vennemann, T.W., Fricke, H.C., Blake, R.E., O'Neil, J.R., and Colman, A., 2002, Oxygen isotope analyses of phosphates: a comparison of techniques for analysis of Ag3PO4: Chem. Geol., v. 185, p. 321–336.

Figure DR1

- Bryant J.D., Koch P.L., Froelich P.N., Showers W.J., and Genna B.J., 1996, Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite: Geochim. Cosmochim. Acta v. 60, p. 5145–5148.
- Iacumin, P., Bocherens, H., Mariotti, A., and Longinelli, A., 1996, Oxygen isotope analyses of coexisting carbonate and phosphate in biogenic apatite: A way to monitor diagenetic alteration of bone phosphate?: Earth and Planetary Science Letters, v. 142, p. 1–6.

Figure DR2

- Badiola, A., Checa, L., Cuesta, M. A., Quer, R., Hooker, J. J., and Astibia, H., 2009, The role of new Iberian finds in understanding European Eocene mammalian paleobiogeography: Geologica Acta, v. 7, p. 243–258.
- Berger, J-P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., Storni, A., Pirkenseer, C., Derer, C., and Schaefer, A., 2005, Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene: International Journal of Earth Sciences, v. 94, p. 697–710.
- Dercourt, J., Ricou, L. E., and Vrielynck, B., 1993, Atlas Tethys palaeoenvironmental maps. 14 maps: Gauthier-Villars, Paris, 307 p.
- Meulenkamp, J.E., and Sissingh, W., 2003, Tertiary palaeogeography and tectonostratigraphic evolution of the northern and southern Peri-Tethys platform and the intermediate domains of the African-Eurasian convergent plate boundary zone: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 196, p. 206–228.

- Popov, S. V., Rögl, F., Rozanov, A. Y., Steininger, F. F., Sherba, I. G., & Kovac, M. 2004, Lithological-Palaeogeographic maps of Paratethys, 10 maps Late Eocene to Pliocene, Courier Forschungsinstitut Senckenberg 250, 1–46.
- Rögl, F., 1998, Palaeogeographic Consideration for Mediterranean and Paratethys Seaways
 (Oligocene to Miocene): Annalen des Naturhistorischen Museums in Wien, v. 99A, p. 279–310.
- Schettino, A., and Turco, E., 2011, Tectonic history of the western Tethys since the Late Triassic: Geological Society of America Bulletin, v. 123, p. 89–105.
- Stampfli, G., and Kozur, H.W., 2006, Europe from the Variscan to the Alpine cycles, *in* Gee, D.G., and Stephenson, R.A., eds., European Lithosphere Dynamics: Geological Society [London] Memoirs, v. 32, p. 57–82.
- Van Hinsbergen, D.J.J., Dupont-Nivet, G., Nakov, R., Oud, K., and Panaiotu, C., 2008, No significant post-Eocene rotation of the Moesian Platform and Rhodope (Bulgaria): implications for the kinematic evolution of the Carpathian and Aegean arcs: Earth and Planetary Science Letters, v. 273, p. 345–358.
- Ziegler, P.A., 1990, Geological Atlas of Western and Central Europe. 2nd edition. The Hague: Shell International Petroleum Maatschappij B.V., 239 p.