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POROSITY MEASUREMENTS 

Samples were cored into cylinders of 1 cm diameter and 1-5 cm length. Pycnometry was 
performed using a Micromeritics AccuPyc II 1340©, which determined the skeletal sample 
volume, Vske  (the sum of the volumes of both solid and isolated pores), by measuring the 
pressure change of helium within the calibrated volume and using Boyle’s law. Then the volume 
of connected pores was calculated asVcon Vsample Vske, where Vsample is the volume of cylindrical 

core of the sample. Powderized samples were also measured using the AccuPyc II 1340© to 
determine the density of the skeleton (solid plus any isolated vesicles that not somehow 
connected to the sample surface), which then was used to calculate the volume of isolated pores, 
Viso. Finally, connected and total porosity were calculated ascon Vcon /Vsample, and 

total  (Vcon Viso) /Vsample. Measured porosity values of all samples are listed in Table DR1. 

Table DR1. Porosity and permeability of all samples from five episodes of Novarupta 1912 
eruption. 

Sample ID con (%) total (%) k1(m2) k2(m)

Episode I 89 – 1 – 5 – 1 – 2  65.46 77.81 2.63 x 10-14 6.63 x 10-11 

(Plinian) 89 – 1 – 5 – 2 – 1 56.01 76.02 7.47 x 10-14 1.44 x 10-10

89 – 1 – 5 – 2 – 2 – 1 58.02 76.86 3.11 x 10-13 4.90 x 10-10

89 – 1 – 5 – 5 – 2  45.46 69.28 4.13 x 10-14 1.68 x 10-10

89 – 1 – 5 – 6 – 1  63.54 77.76 4.21 x 10-13 1.65 x 10-9

89 – 1 – 5 – 6 – 2  59.41 75.60 9.87 x 10-13 5.81 x 10-9

89 – 1 – 5 – 9 63.21 78.69 4.45 x 10-14 1.44 x 10-10

89 – 1 – 5 – 21 70.28 82.36 5.17 x 10-14 9.18 x 10-11

89 – 1 – 5 – 27 49.50 68.35 1.82 x 10-15 2.36 x 10-10

89 – 1 – 12 – 3  66.68 75.62 2.16 x 10-12 3.64 x 10-9

89 – 1 – 12 – 4 – 2 63.81 73.65 3.65 x 10-15 9.76 x 10-12

89 – 1 – 12 – 6 63.65 73.05 1.24 x 10-14 2.04 x 10-11

89 – 1 – 12 – 7 – 1 72.48 84.31 1.44 x 10-13 2.72 x 10-10

89 – 1 – 12 – 7 – 2 70.05 83.21 4.52 x 10-14 1.30 x 10-10



 

 

Episode II 94 – 01 – 11 – 02  70.77 75.30 1.28 x 10-13 4.05 x 10-10 

(Plinian) 94 – 01 – 11 – 03 71.07 75.17 2.16 x 10-14 2.70 x 10-11

 94 – 01 – 11 – 04 81.97 84.19 9.41 x 10-14 4.31 x 10-10

 94 – 01 – 11 – 05 72.99 77.84 2.50 x 10-13 4.96 x 10-10

Episode III 94 – 01 – 2003 – 17 – 1  60.41 65.20 1.82 x 10-13 7.24 x 10-10 

(Plinian) 94 – 01 – 2003 – 17 – 2 81.11 84.15 8.88 x 10-13 5.01 x 10-9

 94 – 01 – 2003 – 17 – 3 68.86 74.51 4.18 x 10-12 1.40 x 10-7

 94 – 01 – 2003 – 17 – 4 69.58 76.49 4.34 x 10-14 6.20 x 10-10

 94 – 01 – 2003 – 17 – 14 59.59 66.44 1.26 x 10-14 3.27 x 10-11

 94 – 01 – 2D – 01  62.02 74.09 9.98 x 10-13 7.67 x 10-9

 94 – 01 – 2D – 02 61.41 62.54 3.06 x 10-13 9.81 x 10-10

 94 – 01 – 2D – 03 62.32 69.51 2.20 x 10-12 8.40 x 10-8

 94 – 01 – 2D – 04 65.36 70.18 4.87 x 10-13 2.05 x 10-9

 94 – 01 – 7D – 01 64.90 74.59 2.16 x 10-12 9.86 x 10-8

 94 – 01 – 7D – 02 63.22 74.34 2.34 x 10-12 3.97 x 10-7

Episode IV Post – H – Blocks – 7  53.07 62.34 4.06 x 10-14 9.21 x 10-11 

(Pumiceous) Post – H – Blocks – 9 54.21 59.31 5.42 x 10-15 1.44 x 10-11

 Post – H – Blocks – 15 – 2 74.22 78.80 2.10 x 10-12 1.92 x 10-8

 Post – H – Blocks – 17 – 1  56.51 62.36 1.35 x 10-13 2.94 x 10-10

 Post – H – Blocks – 22 65.65 71.84 3.68 x 10-13 2.29 x 10-9

 Post – H – Blocks – 24 71.67 76.67 3.83 x 10-12 1.28 x 10-7

 Post – H – Blocks – 43 61.30 67.78 1.07 x 10-13 3.57 x 10-10

Episode V R – Dome – 5 – 1  34.97 46.63 3.78 x 10-15 5.25 x 10-12 

(Dome) R – Dome – 5 – 2 37.67 48.60 1.98 x 10-14 6.50 x 10-11

 R – Dome – 8 – 2  28.70 41.98 5.28 x 10-16 7.57 x 10-14

 R – Dome – 10 23.64 36.28 1.97 x 10-16 6.13 x 10-15

 R – Dome – 15 17.44 29.86 1.62 x 10-15 1.41 x 10-12

 R – Dome – 22 – 1  19.90 30.57 1.11 x 10-15 5.63 x 10-13

 R – Dome – 22 – 2 16.90 29.23 2.48 x 10-16 3.21 x 10-14

 R – Dome – 32 43.33 54.00 2.31 x 10-13 2.33 x 10-9

 

PERMEABILITY MEASUREMENTS 

Permeability was measured using Capillary Flow Porometer (Model CFP-1100AXL-AC, Porous 

Media, Inc. ©). Samples were sealed with impermeable epoxy resin and then mounted on plexi-
glass plates for permeability measurements. These samples were then placed in a chamber and 
completely sealed except at the two ends. At the inlet air pressure, Pin, varied from 1.1x105 Pa up 
to 6x105 Pa; whereas the outlet pressure, Pout , at the other end was at atmospheric pressure. Each 
sample was measured using 2-3 interchangeable flow meters, in order to achieve several orders 
of magnitude in flow rates at optimal accuracy. For all measurements, the controlled pressure 
gradient across the sample length was thus between 0 and 5x105 Pa m‐1, and the measured 
volumetric flow rate of air, Q, was between 3x10-3 and 5x10-7 m3 s‐1, with an accuracy ~ 5x10‐8 
m3 s‐1 (~ 1% of the minimum measured flow rate). After the measurements, samples were 
sectioned and examined under a transmitted light microscope, as well as a scanning electron 
microscope for cracks. Only samples that showed no cracks of any size are reported. 

 



 

 

PERMEABILITY ESTIMATION 

We estimate permeability using Forchheimer’s equation (Reynolds, 1901; Forchheimer, 1900; 
Rust and Cashman, 2004) for a compressible gas as follows, 

  
Pin

2  Pout
2

2PL


k1

Q

A


k2

Q

A









2

,      (1) 

where P  is the pressure at which flow rate is measured, that is P  Pout  1 atmosphere. 

Furthermore,   1.86x10-5 Pa s is the air viscosity,  1.28 kg m‐3 is the air density, A is the 
cross-sectional area of the sample, k1 is the Darcian permeability and k2 is known as the inertial 
permeability. 

 Due to the turbulent viscous dissipation flow curves become parabolic (Fig. 1a), instead 
of linear, at high values of Q. This turbulent dissipation is accounted for by the k2 term of Eq. 
(1) when fitting the Q vs. outin PPP   data (i.e., the flow curves). In order to determine the 

combination of k1 and k2, we calculated the root-mean-square error between measured values of 
 and those predicted by Eq. (1) for systematically different combinations of k1 and k2. In 

other words, we use a grid search to find the values of k1 and k2 that minimize the root-mean-
square error, defined as 
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where N is the number of data points for a given sample. A typical example of such grid search 
is shown in Fig. DR1. This result is typical of all our data and illustrates that the flow curves are 
indeed well fitted by Eq. (1). The relationship between k1 and k2 for all of our samples is shown 
in Fig. (2) and similar to what has been reported elsewhere (e.g., Rust and Cashman, 2004). 
Permeability values of all samples are listed in Table DR1.  

 

 

Figure DR1. Illustrative example of permeability estimation. (a) Measured volumetric flow rate 

(blue circles) as a function of pressure difference across sample, obtained using two different 
flow meters (100 cm3 min-1 and 1000 cm3 min‐1), and the best fit to the data (red curve).           



 

 

(b) Misfit  as a function of log10 k1  and log10 k2 . The combination of k1 and k2 that gives the 

best fit shown as the red star. 

 

NUMERICAL MODELING 

We performed numerical modeling of magma ascent coupled with diffusive bubble growth for 
both H2O and CO2. The change in ambient pressure with depth is calculated from the momentum 
and mass balance of magma flow within the conduit. The conduit flow calculations depend on 
viscosity of the magma, which in turn depends on the dissolved H2O within the melt and the 
volume fraction of bubbles, both of which are calculated from diffusive bubble growth. Diffusive 
bubble growth in turn depends on the change in ambient pressure, which thereby couples 
diffusive bubble growth with conduit flow. 
 

Modeling was for the sustained explosive Episodes I-III, as well as a case equivalent to 
Episodes II and III, but at a lower discharge rate, in order to illustrate the effect of lower 
discharge rate on eruption dynamics. Discharge rates were based on estimates published in 
Hildreth and Fierstein (2012) and details of the model parameters are listed in Tables 2 and 3. 

 
Table DR2. Compositions of Novarupta samplesa and parameters used for modelingb 
 

Sample SiO2 matrix glass 
wt.% 

wt.% 
phenocryst 

vol.% 
rhyolitec

vol.% 
dacitec,d 

vol.% 
andesitec 

Ave. mass discharge 
rate (kg s-1) 

Episode I (A) 78.8 1-5 100 0 0 5x108 

Episode I (B) 72.9-78.7 1-42 47 27 26 5x108 
Episode II 76.6 25-42 0 100 0 1.6x108 
Episode III 76.6 25-42 6 94 0 1.1x108 
Episode IV 76.6 25-42 N/A N/A N/A N/A 
Episode V 78.1 1-5 >95 <5 <1 N/A 
a Hildreth and Fierstein (2012) and references therein. 
b Modeling was limited to Epsiodes I (A), II and III. 
c Relative volumetric proportion of compositional components erupted during the given episode. 
d Matrix (melt) is rhyolitic in composition and bulk composition is due to phenocrysts. 
 
 
 
Table DR3. Model parameters and values 
 Episode I Episode II Episode III Low discharge 
Mass dischargea, Q (kg s-1) 5x108 1.6x108 1.1x108 6x105 
Initial pressureb, pm (MPa) 100 125 125 125 
Vapor saturationb (mole fraction CO2) 0 0.5 0.5 0.5 
Volume fraction phenocryst in matrixa 0.02 0.4 0.4 0.4 
Bubble number density (m-3) 1014 1014 1014 1014 
Conduit radius, a (m) 100 100 100 100 

Percolation threshold, c  0.65 (0.5) 0.58 0.55 0.55 

Power-law coefficient, n 4 3.75 3.5 3.5 
a Based on Hildreth and Fierstein (2012) and references therein. 
b Initial pressures and vapor saturation are based on the work of Coombs and Gardner (2001) and Hammer et al. 
(2002) 

 



 

 

Conduit Flow Model 

The model assumes steady isothermal flow at a constant discharge rate, Q, within a one-
dimensional cylindrical conduit of constant radius, a. The change in ambient pressure pm is 
calculated from the equation of momentum balance (e.g., Wilson et al., 1980; Dobran, 1992; 
Mastin, 2002) 
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together with the equation of mass balance, 
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Here   m 1  is the magma density; m is the density of the melt; g is the gravitational 

acceleration; u  dz /dt Q /(a2) is the magma ascent velocity; fm  64 /Re f0 is the friction 
factor for pipe flow. Re  ua / is the Reynolds number, and f0 = 0.02 (e.g., Wilson et al., 1980; 
Dobran, 1992; Mastin, 2002) .  
 

Magma viscosity, , is calculated using the viscosity formulation for bubble-bearing 
liquids (Pal, 2003), with the liquid viscosity given by the composition-, temperature- and 
dissolved water-dependent viscosity of the melt phase, using the formulation of Hui and Zhang 
(2007). In addition, the effect of phenocrysts is accounted for using the Krieger-Dougherty 
equation (e.g., Mader et al., 2013) with a critical packing fraction of 0.65 and an exponent of -2.5 
(e.g., Gonnermann and Manga, 2007). 

 

Diffusive Bubble Growth Model 

As ambient pressure, pm, decreases the solubility of H2O and CO2 decreases, causing them to 
diffuse into bubbles. In addition, the density of the exsolved H2O-CO2 vapor mixture decreases 
as pressure decreases. Together, diffusion of H2O and CO2 into bubble and decrease in density 
result in bubble growth, which in turn is resisted by viscosity of the surrounding melt. Therfore, 
diffusive bubble growth couples the conservation of mass for H2O and CO2 with the diffusion of 
H2O and CO2 within the melt and momentum balance for the bubble and surrounding melt. 

We use the isothermal formulation first published by Amon and Denson (1984) and Arefmanesh 
and Advani (1991) and subsequently applied to bubbles in magma by Proussevitch et al. (1993). 
The approach follows close to that presented in Gonnermann and Houghton (2012). 

Assuming that the bubbles exist in a uniform packing geometry, we model one idealized 
representative bubble of spherical shape, which is surrounded by a melt shell with the thickness 
of S – R, where S is the outer radius and R is the final bubble radius. The momentum balance is 
in this case given by (e.g., Proussevitch et al., 1993) 
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where r  is bubble radius, ci is the concentration of volatile species i (either H2O or CO2), 
vr  dR /dt is the radial growth rate at the melt-vapor interface (r = R), and Di is diffusion 



 

 

coefficient of volatile species i. The boundary conditions are given by 0
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),()( cgiRri xpsc   (Gonnermann and Houghton, 2012). Here si is solubility of species i as 

formulated in Liu et al. (2005), pg is the gas pressure within the bubble, and xc is the mole 
fraction of CO2 of the H2O-CO2 vapor mixture within the bubble. 

We assume that each bubble grows in a closed system. Therefore, it follows that mass 
conservation is given by 
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where m is melt density, and g is the density of the H2O-CO2 vapor mixture calculated from 
and equation of state (Kerrick and Jacobs, 1981). qi is the diffusive mass flux of volatile species i 

and is calculated from the boundary condition 
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The momentum balance is given by 

   pg t   pm t   2
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where t denotes time, pg is gas pressure inside the bubble, pm is the pressure in the surrounding 
melt,  is surface tension, e is effective viscosity of the melt (Lensky et al., 2001), which 
depends on the concentration of dissolved H2O (Hui and Zhang, 2007). 

 

Fragmentation and Permeability 

The model calculations stop once the difference between pressure of the H2O-CO2 vapor mixture 
inside bubbles and the ambient pressure, P = pg – pm, exceeds the fragmentation threshold of 
Mueller et al. (2008) 

  P >Pf = (8.21105 MPa m-1 1k  1.54 MPa) /.      (6) 

 Here =R3/S3 is the volume fraction of bubbles and the Darcian permeability, k1, is calculated 
from  using the formulation n

crk )(2
1    (e.g., Blower, 2001; Rust and Cashman, 2004; 

2011) with values for c, critical porosity, and n, power-law coefficient, as shown in Table 3 and 
corresponding to the curves shown in Fig. 3K. 

 

CHARACTERISTIC TIME SCALE FOR PERMEABLE GAS FLOW  
 

The characteristic time scale for pressure change by permeable gas flow, τk, is obtained from the 
equation for pore pressure diffusion (Wang, 2000), with the vapor phase approximated as an 
ideal gas (Kerrick and Jacobs, AJS, 1981), and the coefficient of storage approximated to first 
order by the inverse of gas pressure. The characteristic length scale, L ~ 100 m, is consistent with 
both the radial flow path, that is conduit radius, as well as the distance below fragmentation over 
which the magma attains significant permeability (Fig. 3). 
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