Supplemental Information for

'Persistent intermediate water warming during cold stadials in the SE Nordic seas

during the last 65 kyr'

By

Mohamed M. Ezat, Tine L. Rasmussen, Jeroen Groeneveld

 Table DR1.
 Tephra layers in JM11-F1-19PC.

	Donth (am) in IM11 FI	NGRIP Age	
Tephra horizons	Depth (cm) in JM11-F1- 19PC	(b2k) Svensson et al. (2008)	
Saksunarvatn tephra	83	10.347	
Vedde ash	130	12.171	
Faroe Marine Ash Zone (FMAZ) II	305	26.740	
FMAZ III	440	38.122	
FMAZ IV*	540		
North Atlantic Ash Zone (NAAZ) II**	~620	55.380	

^{*} Located in the lower part of interstadial 12 (Wastegård and Rasmussen, 2014). It has not yet been located in the ice cores.

^{**} Because of no distinct peak (Fig. DR1) it has not been included in the final age model.

Table DR2.	Calibrated radiocarbo	n dates using the	Calib7.01 an	d Marine13 p	programs
(Reimer et al., 2013)). The reservoir correc	tions of the Calib	7.01 program	n were used.	

Depth (cm) in JM11-FI- 19PC	Conventional Radiocarbon ages (kyr)	Calibrated Ages (kyr)	calibrated Ages ±1σ (b2k)	Laboratory code	Species
15	2.229 ± 0.03	1.822	1.822 ± 0.07	UBA- 21487	N. pachyderma s
40	4.570 ± 0.03	4.774	4.774 ±0.09	UBA- 21488	N. pachyderma s
70	8.083 ± 0.04	8.534	8.534 ±0.08	UBA- 21489	N. pachyderma s
130	10.905 ± 0.05	12.418	12.418 ±0.17	UBA- 21490	N. pachyderma s
150	12.186 ± 0.05	13.632	13.632 ±0.12	UBA- 21594	N. pachyderma s
195	13.493 ± 0.06	15.663	15.663 ±0.19	UBA- 21595	N. pachyderma s
230	15.786 ± 0.08	18.653	18.653 ±0.13	UBA- 21492	N. pachyderma s
305	23.962 ± 0.17	27.709	27.709 ±0.17	UBA- 21493	N. pachyderma s
350	27.459 ± 0.2	31.103	31.103 ±0.18	UBA- 21494	N. pachyderma s
430	33.614 ± 0.41	37.41	37.41 ±0.89	UBA- 21495	N. pachyderma s
555	46.045 ± 2.02	48.162	48.162 ±1.89	UBA- 21496	N. pachyderma s

Table DR3. Tie points of JM11-F1-19PC to NGRIP used in the construction of the age model. The final age model is based on a radiocarbon date from a core-top sample (15 cm, Table DR1), 4 tephra layers and 15 MS-K/Ti based tie points (see Fig. DR1). The ice core ages are taken from Svensson et al. (2008 and references therein).

Tie Points Saksunarvatn	Depth (cm) in JM11-FI- 19PC	NGRIP Age (b2k) Svensson et al. (2008)
tephra	83	10.347
Vedde ash	130	12.171
IS 1 onset	190	14.692
IS 2 onset	260	23.340
FMAZ II	305	26.740
IS 3 onset	313	27.780
IS 4 onset	323	28.900
IS 5 onset	348	32.500
IS 6 onset	362	33.740
IS 7 onset	387	35.480
FMAZ III	440	38.122
IS 10 onset	486	41.460
IS 11 onset	513	43.340
IS 12 onset	545	46.860
IS 13 onset	567	49.280
IS 14 onset	590	54.220
IS 15 onset	625	55.800
IS 16 onset	638	58.280
IS 17 onset	670	59.440

Figure DR1. Correlation of core JM11-F1-19PC to NGRIP based on location of tephra layers, magnetic susceptibility (MS) and XRF-K/Ti ratios. MS and K/Ti counts vary oppositely; high (low) MS correlates with low (high) K/Ti ratios during interstadials (stadials) (Rasmussen et al., 1996; Richter et al., 2006). Black and red lines mark the depths of the tephra and start of interstadials, respectively. Faroe Marine Ash Zone (FMAZ) IV and NAAZ II (North Atlantic Ash Zone) (dashed black lines) are used only as supporting tie points. Abbreviations: FMAZ (Faroe Marine Ash Zone), NAAZ (North Atlantic Ash Zone). NGRIP data are from Svensson et al. (2008).

Figure DR2. Plots of Mg/Ca versus Fe/Ca, Al/Ca and Mn/Ca ratios for both *M. barleeanus* and *C. neoteretis* showing the absence of contamination by clay minerals and/or Mn-Fe-carbonates and oxyhydroxides (Boyle 1983; Barker et al 2003); for 13% of the samples the concentration of Fe, Al, and/or Mn was below the detection limit. All units are in mmol/mol.

Figure DR3. Correlation between benthic δ^{18} O records measured on *Melonis barleeanus* of JM11-F1-19PC and nearby core ENAM93-21 from 1020 m water depth (Rasmussen et al., 1996). The two records are very similar and with similar values. The magnetic susceptibility and XRF-K/Ti ratios for ENAM93-21 (Richter et al., 2006) are the same as in JM11-FI-19PC (Fig. DR. 1). The percentage of planktic species *N. pachyderma* sinistral for ENAM93-21 (green line) indicates relatively warmer surface/subsurface temperatures during the interstadials than in the stadials.

Figure DR4. A. XRF-scanner image of the upper 7 m of JM11-FI-19PC. The dark layers correlate with interstadials, while the light layers represent stadials/Heinrich events and the LGM. The same was recorded in ENAM93-21 (Rasmussen et al., 1998). Blue arrows refer to the tephra layers (see Table DR. 1). FMAZ: Faroe Marine Ash Zone. **B. Sedimentation rate of JM11-FI-19PC based on the tuned age model.**

Atlantic species

Benthic foraminiferal species linked to warm bottom water were grouped as 'Atlantic Species' (Rasmussen et al., 1996) and comprised predominantly specimens of *Epistominella decorata*, *Cibicidoides pachyderma* (=*C. aff C. floridanus*), *Gyroidina umbonata*, *Miliolinella irregularis*, *Sigmoilopsis schlumbergeri*, *Valvulineria sp.*, *Anomalinoides minimus*, *Eggerella bradyi*, *Bulimina costata*, and *Sagrina subspinescens*. The ecological preferences and systematics of those species assemblages are treated in detail in Rasmussen et al. (2003) and Rasmussen (2005). They are subtropical–boreal species adapted to low food supply. They do not occur in the Nordic seas today except two of them (*Gyroidina neosoldani*i and *Sigmoilopsis schlumbergeri*) that can be found on the shelf of western Norway in bottom water with a temperature >4 °C (Sejrup et al., 2004).

Table DR 4. Mg/Ca data for core JM11-F1-19PC.

Depth (cm)	Age (kyr)	Mg/Ca	BWT (°C)	Species
		(mmol/mol)		
1	0.085	0.78	0.3	M. barleeanus
5	0.581	0.81	0.6	M. barleeanus
5	0.581	0.91	0.6	C. neoteretis
10	1.200	0.75	-0.1	M. barleeanus
15	1.822	0.78	0.3	M. barleeanus
20	2.448	0.84	0.9	M. barleeanus
25	3.075	0.84	0.8	M. barleeanus
30	3.702	0.82	0.8	M. barleeanus
30	3.702	0.89	1.4	M. barleeanus
35	4.329	0.81	0.7	M. barleeanus
35	4.329	0.86	1.1	M. barleeanus
40	4.956	0.90	1.5	M. barleeanus
45	5.583	0.89	1.3	M. barleeanus
50	6.209	0.86	1.1	M. barleeanus
55	6.836	0.85	1.0	M. barleeanus
60	7.463	0.86	1.1	M. barleeanus
65	8.090	0.86	1.1	M. barleeanus
65	8.090	0.83	0.8	M. barleeanus
70	8.717	0.87	1.2	M. barleeanus
75	9.344	0.86	1.1	M. barleeanus
80	9.971	0.91	1.5	M. barleeanus

83	10.347	0.85	1.0	M. barleeanus
85	10.425	0.80	0.4	M. barleeanus
90	10.619	0.78	0.3	M. barleeanus
95	10.813	0.73	-0.3	M. barleeanus
100	11.007	0.74	-0.2	M. barleeanus
105	11.201	0.73	-0.3	M. barleeanus
110	11.395	0.87	1.2	M. barleeanus
110	11.395	0.81	0.6	M. barleeanus
115	11.589	0.70	-0.7	M. barleeanus
117.5	11.686	0.74	-0.2	M. barleeanus
120	11.783	0.81	0.6	M. barleeanus
125	11.977	0.79	0.4	M. barleeanus
127.5	12.074	0.78	0.2	M. barleeanus
130	12.171	0.95	1.9	M. barleeanus
133	12.289	1.01	2.4	M. barleeanus
135	12.368	0.84	0.8	M. barleeanus
137	12.447	0.86	1.1	M. barleeanus
140	12.565	0.73	-0.3	M. barleeanus
142.5	12.663	0.86	1.1	M. barleeanus
145	12.762	0.76	0.1	M. barleeanus
147.5	12.860	0.88	1.3	M. barleeanus
150	12.959	0.84	0.9	M. barleeanus
152.5	13.057	0.86	1.1	M. barleeanus
152.5	13.057	0.96	1.2	C. neoteretis

155	13.156	0.81	0.6	M. barleeanus
157.5	13.254	0.90	1.5	M. barleeanus
160	13.353	0.76	0.0	M. barleeanus
162.5	13.451	0.82	0.7	M. barleeanus
165	13.550	0.74	-0.2	M. barleeanus
167.5	13.648	0.76	0.0	M. barleeanus
170	13.747	0.81	0.6	M. barleeanus
172.5	13.845	0.79	0.4	M. barleeanus
175	13.944	0.75	-0.1	M. barleeanus
177.5	14.042	0.81	0.6	M. barleeanus
180	14.141	0.75	-0.1	M. barleeanus
185	14.337	0.76	0.0	M. barleeanus
190	14.692	0.82	0.7	M. barleeanus
192.5	15.001	0.88	1.3	M. barleeanus
195	15.310	0.90	1.4	M. barleeanus
195	15.310	1.11	3.0	C. neoteretis
196	15.433	0.89	1.4	M. barleeanus
197	15.557	0.93	1.7	M. barleeanus
198	15.680	1.05	2.8	M. barleeanus
198	15.680	1.06	2.5	C. neoteretis
199	15.804	1.33	5.3	C. neoteretis
200	15.927	1.29	4.9	C. neoteretis
205	16.545	1.20	4.0	C. neoteretis
210	17.163	1.25	4.5	C. neoteretis

210	17.163	1.37	5.6	C. neoteretis
210	17.163	0.94	1.8	M. barleeanus
212.5	17.472	1.21	4.1	C. neoteretis
212.5	17.472	1.07	2.9	M. barleeanus
215	17.781	1.13	3.3	C. neoteretis
220	18.398	1.15	3.5	C. neoteretis
225	19.016	1.09	2.8	C. neoteretis
225	19.016	1.07	2.9	M. barleeanus
230	19.634	1.15	3.5	M. barleeanus
230	19.634	1.11	3.1	C. neoteretis
235	20.251	1.12	3.2	C. neoteretis
240	20.869	1.11	3.1	C. neoteretis
245	21.487	1.13	3.3	C. neoteretis
247.5	21.796	1.12	3.1	C. neoteretis
250	22.105	1.08	2.7	C. neoteretis
252.5	22.413	1.13	3.3	C. neoteretis
255	22.722	1.04	2.2	C. neoteretis
255	22.722	1.07	2.9	M. barleeanus
260	23.340	1.12	3.1	C. neoteretis
265	23.718	1.10	3.0	C. neoteretis
270	24.096	1.12	3.2	C. neoteretis
272.5	24.284	1.07	2.6	C. neoteretis
277.5	24.662	0.89	1.6	C. neoteretis
280	24.851	0.98	2.4	C. neoteretis

285	25.229	1.05	0.6	C. neoteretis
290	25.607	0.91	1.5	C. neoteretis
295	25.984	0.98	2.9	C. neoteretis
300	26.362	1.1	2.0	C. neoteretis
300	26.362	1.02	2.1	M. barleeanus
302.5	26.551	1.03	2.2	C. neoteretis
305	26.740	1.04	2.3	C. neoteretis
307.5	27.065	1.02	2.0	C. neoteretis
310	27.390	1.09	3.0	M. barleeanus
312.5	27.715	1.02	2.0	C. neoteretis
312.5	27.715	1.10	3.2	M. barleeanus
317.5	28.284	0.99	2.3	M. barleeanus
317.5	28.284	1.07	2.6	C. neoteretis
320	28.564	1.12	3.3	M. barleeanus
322.5	28.844	1.02	2.5	M. barleeanus
322.5	28.844	1.04	2.2	C. neoteretis
325	29.188	1.12	3.3	M. barleeanus
327.5	29.548	1.04	2.7	M. barleeanus
327.5	29.548	1.04	2.2	C. neoteretis
330	29.908	1.19	4.0	C. neoteretis
332.5	30.268	1.00	1.8	C. neoteretis
332.5	30.268	1.04	2.7	M. barleeanus
335	30.628	1.11	3.2	M. barleeanus
335	30.628	0.97	1.4	C. neoteretis

337.5	30.988	1.03	2.1	C. neoteretis
340	31.348	1.07	2.6	C. neoteretis
342.5	31.708	1.06	2.5	C. neoteretis
342.5	31.708	1.05	2.7	M. barleeanus
345	32.068	1.10	3.2	M. barleeanus
347.5	32.428	0.97	2.1	M. barleeanus
347.5	32.428	1.09	2.8	C. neoteretis
350	32.677	1.05	2.7	M. barleeanus
352.5	32.899	0.91	1.5	M. barleeanus
355	33.120	1.07	2.9	M. barleeanus
357.5	33.341	1.07	2.9	M. barleeanus
360	33.563	0.85	0.9	M. barleeanus
362.5	33.775	0.99	2.2	M. barleeanus
365	33.949	0.99	2.3	M. barleeanus
367.5	34.123	0.96	2.0	M. barleeanus
370	34.297	0.96	2.0	M. barleeanus
372.5	34.471	0.96	2.0	M. barleeanus
375	34.645	0.93	1.7	M. barleeanus
377.5	34.819	0.92	1.6	M. barleeanus
380	34.993	0.99	2.3	M. barleeanus
383	35.202	0.89	1.4	M. barleeanus
385	35.341	0.83	0.8	M. barleeanus
387.5	35.505	0.93	1.8	M. barleeanus
390	35.630	0.94	1.8	M. barleeanus

392.5	35.754	1.04	2.7	M. barleeanus
395	35.879	0.94	1.8	M. barleeanus
397.5	36.003	0.86	1.0	M. barleeanus
400	36.128	0.80	0.4	M. barleeanus
402	36.228	0.92	1.6	M. barleeanus
405	36.377	0.86	1.0	M. barleeanus
407.5	36.502	0.91	1.6	M. barleeanus
410	36.627	0.85	1.0	M. barleeanus
412.5	36.751	0.83	0.7	M. barleeanus
415	36.876	0.83	0.8	M. barleeanus
417.5	37.000	0.92	1.6	M. barleeanus
420	37.125	0.93	1.7	M. barleeanus
422.5	37.250	0.94	1.8	M. barleeanus
425	37.374	0.98	2.1	M. barleeanus
427.5	37.499	0.92	1.6	M. barleeanus
430	37.624	0.84	0.9	M. barleeanus
432.5	37.748	0.10	2.3	M. barleeanus
435	37.873	0.92	1.6	M. barleeanus
437.5	37.997	0.93	0.9	C. neoteretis
440	38.122	0.94	1.8	M. barleeanus
440	38.122	0.98	1.5	C. neoteretis
442.5	38.303	1.22	4.2	C. neoteretis
445	38.485	1.07	2.6	C. neoteretis
447.5	38.666	1.14	3.4	C. neoteretis

452.5	39.029	1.19	3.9	C. neoteretis
452.5	39.029	1.00	2.4	M. barleeanus
455	39.210	1.11	3.2	M. barleeanus
457.5	39.392	1.04	2.7	M. barleeanus
457.5	39.392	1.11	3.0	C. neoteretis
460	39.573	0.94	1.1	C. neoteretis
462.5	39.755	0.91	1.5	M. barleeanus
465	39.936	0.99	2.2	M. barleeanus
467.5	40.118	0.91	1.5	M. barleeanus
472.5	40.480	0.89	1.3	M. barleeanus
475	40.662	0.81	0.6	M. barleeanus
477.5	40.843	0.87	1.1	M. barleeanus
480	41.025	0.92	1.7	M. barleeanus
482.5	41.206	1.01	2.4	M. barleeanus
482.5	41.206	0.99	2.3	M. barleeanus
485	41.387	0.83	0.8	M. barleeanus
487.5	41.564	0.93	1.7	M. barleeanus
490	41.739	1.03	2.6	M. barleeanus
495	42.087	0.98	2.2	M. barleeanus
497.5	42.261	0.90	1.4	M. barleeanus
500	42.435	0.86	1.1	M. barleeanus
505	42.783	1.01	2.5	M. barleeanus
507.5	42.957	0.94	1.8	M. barleeanus
510	43.131	0.10	2.3	M. barleeanus

512.5	43.305	0.98	2.2	M. barleeanus
515	43.560	0.92	1.6	M. barleeanus
520	44.110	1.28	4.4	M. barleeanus
525	44.660	1.04	2.7	M. barleeanus
530	45.210	0.73	-0.4	M. barleeanus
532	45.43	0.78	0.3	M. barleeanus
535	45.760	0.87	1.2	M. barleeanus
537	45.98	0.85	1.0	M. barleeanus
541	46.42	0.85	1.0	M. barleeanus
545	46.860	1.10	3.1	M. barleeanus
547.5	47.135	0.87	1.2	M. barleeanus
550	47.410	1.15	3.5	M. barleeanus
555	47.960	0.95	1.9	M. barleeanus
560	48.510	0.86	1.1	M. barleeanus
565	49.060	1.01	2.5	M. barleeanus
570	49.924	0.71	-0.6	M. barleeanus
575	50.998	0.72	-0.4	M. barleeanus
580	52.072	0.73	-0.3	M. barleeanus
585	53.146	0.74	-0.2	M. barleeanus
590	54.220	0.70	-0.7	M. barleeanus
595	54.446	1.04	2.7	M. barleeanus
600	54.671	0.90	1.4	M. barleeanus
605	54.897	0.86	1.0	M. barleeanus
610	55.123	0.75	-0.0	M. barleeanus

615	55.349	0.80	0.5	M. barleeanus
620	55.574	1.03	2.6	M. barleeanus
625	55.800	0.90	1.5	M. barleeanus
630	56.754	0.91	1.5	M. barleeanus
635	57.708	0.82	0.7	M. barleeanus
640	58.353	0.72	-0.4	M. barleeanus
645	58.534	0.88	1.2	M. barleeanus
650	58.715	1.05	2.3	C. neoteretis
655	58.896	0.79	0.3	M. barleeanus
660	59.078	0.78	0.3	M. barleeanus
660	59.078	0.90	0.5	C. neoteretis
665	59.259	0.82	0.6	M. barleeanus
670	59.440	0.96	2.0	M. barleeanus
670	59.440	1.02	2.0	C. neoteretis
675	60.893	0.93	0.8	C. neoteretis
677.5	61.620	1.26	4.6	C. neoteretis
682.5	63.073	1.15	3.5	C. neoteretis
685	63.800	1.20	4.0	C. neoteretis

References

- Barker, S., Greaves, M., and Elderfield, H., 2003, A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry: Geochemistry Geophysics Geosystems, v. 4, no. 8407, doi: 10.1029/2003GC000559.
- Boyle, E.A., 1983, Manganese carbonate overgrowths on foraminifera tests: Geochimica et Cosmochimica Acta, v. 47, p. 1815–1819.
- Rasmussen, T.L., 2005, Systematic paleontology and ecology of benthic foraminifera from the Plio-Pleistocene Kalithea Bay Section, Rhodes (Greece): Cushman Foundation for Foraminiferal Research Special Publication Series, v. 39, p. 53-157.
- Rasmussen, T.L., and Thomsen, E., 2004, The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 210, p. 101–116, doi:10.1016/j.palaeo.2004.04.005.
- Rasmussen, T.L., Thomsen, E., Kuijpers, A., Troelstra, S.R., Prins, M., 2003, Millennialscale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60,000 years: Marine Micropaleontology, v. 47, p. 143–176.
- Rasmussen, T.L., Thomsen, E., Van Weering, T.C.E., 1998, Cyclic changes in sedimentation on the Faeroe Drift 53-9 kyr BP related to climate variations: Geological Society Special Publication, v. 129. P. 255–267.
- Rasmussen, T.L., Thomsen E., Labeyrie L., and van Weering T.C.E., 1996, Circulation changes in the Faeroe-Shetland Channel correlating with cold events during the last glacial period (58–10 ka): Geology, v. 24, p. 937–940.
- Reimer, P.J., and 29 others, 2013, IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP: Radiocarbon, v. 55, p. 1869–1887, doi:10.2458/azu_js_rc.55.16947.

- Richter, T.O., et al., 2006, The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. New Techniques in Sediment Core Analysis. Geol. Soc. London, Spec. publ., v. 267, p. 39–50 (2006).
- Sejrup, H.P., Birks, H.J.B., Klitgaard Kristensen, D., Madsen, H., 2004, Benthonic foraminiferal distributions and quantitative transfer functions for the northwest European continental margin: Marine Micropaleontology, v. 53, p. 197–226.
- Svensson, A., et al., 2008, A 60 000 year Greenland stratigraphic ice core chronology: Climate of the Past, v. 4, p. 47–57.
- Wastegård, S., and Rasmussen, T.L., 2014, Faroe Marine Ash Zone IV a new MIS 3 ash zone on the Faroe Islands margin. Geol. Soc. London, Spec. publ. in press.