2014240

#### **GSA Data Repository Figure Captions**

**Figure S1**. Schematic representation <sup>87</sup>Sr/<sup>86</sup>Sr sources of uncertainty on individual data points. Six sources of uncertainty are identified in our Ordovician samples. The range of values is approximate and in many cases poorly constrained in terms of variation estimates (e.g., diagenesis, sample impurities, global seawater homogeneity in the Ordovician).

**Figure S2.a-c.** Conodonts from the Antelope Range section in Nevada (see Table S1). Width between lines (forming a box) shown in slide is 3.5 mm. **a.** sample 5-25-82AI, mixture of rastrate forms transitional between coniform and ramiform conodont elements, and blade-type conodonts. **b.** sample 5-25-82J, mixture of single cone (coniform)- type conodonts. **c.** sample 5-25-82R, mixture of coniform and ramiform (denticulate) conodonts.

**Figure S3**. <sup>87</sup>Sr/<sup>86</sup>Sr for the Hainesville, WV and Row Park, MD sections (see Boger, 1976). Values corroborate that seen in the same time interval in other sections. These data are not plotted in Fig. 11 in the paper, but are listed in Table S2 – supplementary data.

**Figure S4**. <sup>87</sup>Sr/<sup>86</sup>Sr for the Marble Hollow section in Tennessee together with conodont species range data (Bergström, 1973). Data are plotted in Fig. 11 in the paper.

**Figure S5**. <sup>87</sup>Sr/<sup>86</sup>Sr for the Yellow Creek core in Mississippi (see Dwyer, 1996; Dwyer and Repetski, 2012). Data are plotted in Fig. 11 in the paper.

**Figure S6**. <sup>87</sup>Sr/<sup>86</sup>Sr for the East River Mountain section in West Virginia together with conodont species range data and K-bentonite radiometric age (Leslie et al., 2012). Data point is plotted in Fig. 11 in the paper.

**Figure S7**. <sup>87</sup>Sr/<sup>86</sup>Sr for the New Point core in Indiana (see Dwyer, 1996). Data are plotted in Fig. 11 in the paper.

**Figure S8.** <sup>87</sup>Sr/<sup>86</sup>Sr vs. Sr concentration (ppm) for conodont samples analyzed here (note that not all conodonts in Dwyer, 1996 include concentration data) emphasizing that Sr concentrations are much greater than expected from a consideration of the Sr partition coefficient in biogenic apatite (and much higher than the Sr concentrations in living marine fish teeth today) (see Holmden et al., 1996). As discussed by Holmden et al. (1996) this is likely because most of the Sr in the conodont apatite is incorporated post-mortem, at the sediment water interface, and during early diagenesis. Although it may eventually be possible to use the high concentrations as a screening tool for best preserved samples for reconstructing seawater <sup>87</sup>Sr/<sup>86</sup>Sr, it appears that older samples in our study have higher concentrations of Sr. The reasons for this are not yet known by us.

**Figure S9**. Plots showing direct comparisons between our <sup>87</sup>Sr/<sup>86</sup>Sr data and McArthur et al. (2012). **a.** This is simply a larger version of the inset plotted in our paper Fig. 11 with <sup>87</sup>Sr/<sup>86</sup>Sr trend for all sections studied and calibrated to the Geologic Time Scale 2012 (Cooper and Sadler, 2012). LOWESS fit curve (in red) for the Ordovician from McArthur et al. (2012) plotted over our data are calibrated to the same age model of Cooper and Sadler (2012). Our data are

corrected to a preferred value for SRM 987 standard of 0.710245 (see text for discussion and GSA Data Repository Tables S1, S3), which is essentially the same as McArthur et al. (2012) who use 0.710248. The fact that much of our data is less radiogenic for a given time period compared to McArthur et al. (2012) could be a result of systematic differences in how individual samples were assigned ages using biostratigraphy or could reflect real differences in how conodonts and brachiopods preserve seawater <sup>87</sup>Sr/<sup>86</sup>Sr. **b.** This represents a scanned image of the Ordovician portion of the McArthur et al. (2012) <sup>87</sup>Sr/<sup>86</sup>Sr curve with density of sampling shown relative to data plotted in our paper Fig. 11 (green dots) (note that our smaller data sets - Meiklejohn Peak, Marble Hollow, Yellow Creek, and East River Mountain – were not plotted here).

SUPPLEMENTARY DATA REPOSITORY



Fig. S1, Saltzman et al



Fig. S2.a Antelope Range sample 5-25-82AI



Fig. S2.b. Antelope Range sample 5-25-82J Saltzman et al



Fig. S2.c Antelope Range sample 5-25-82R Saltzman et al





Fig. S3, Saltzman et al



Fig. S4, Saltzman et al



Fig. S5, Saltzman et al



Fig. S6, Saltzman et al



Fig. S7, Saltzman et al



Fig. S8, Saltzman et al



### TABLE S1 - Sr ISOTOPE DATA

|                  |                  |                                    |                       | ppm            |                                    |            |
|------------------|------------------|------------------------------------|-----------------------|----------------|------------------------------------|------------|
| Sample ID/       |                  | Uncorrected                        | Uncertainty           | (conc.)        | *Corrected                         | Age        |
| Locality         | Meters           | <sup>87</sup> Sr∕ <sup>86</sup> Sr | (x 10 <sup>-6</sup> ) | Sr             | <sup>87</sup> Sr∕ <sup>86</sup> Sr | (Ma)       |
| *Corrected va    | lues are to      | o a preferred va                   | lue for SRM 98        | 7 of 0.710     | 0245; note tha                     | t          |
| these corrected  | l values are     | e only plotted in                  | the compilation       | on Figs. 11    | I and 12 (see t                    | ext)       |
| to account for i | nter-labora      | atory bias betwe                   | en Ohio State         | (OSU) and      | d North Carolir                    | na (UNC).  |
| The amount of    | the correct      | ion was to add                     | 0.000021 to O         | SU data a      | nd subtract 0.0                    | 00024      |
| from UNC data    | , which wou      | uld fall within th                 | ne symbols use        | d to plot c    | data points in F                   | igs. 4-10. |
| I-35, Oklahor    | na (OSU)         | - CAI = 1-2                        |                       |                |                                    |            |
| 72SB-13          | 0.0              | 0.708779                           | 11                    | 12441          | 0.708800                           | 468.75     |
| 72SB-139         | 38.4             | 0.708720                           | 9                     | 9309           | 0.708741                           | 468.00     |
| 72SB-239         | 68.9             | 0.708756                           | 9                     | 8341           | 0.708777                           | 467.50     |
| 72SB-365         | 107.0            | 0.708791                           | 13                    | 17230          | 0.708812                           | 466.73     |
| 72SC-120         | 143.6            | 0.708699                           | 8                     | 18287          | 0.708720                           | 466.30     |
| 72SC-220         | 174.1            | 0.708700                           | 12                    | 20272          | 0.708721                           | 465.90     |
| 72SC-390         | 225.9            | 0.708671                           | 10                    | 16505          | 0.708692                           | 465.10     |
| 72SC-500         | 259.5            | 0.708701                           | 12                    | 18022          | 0.708722                           | 464.51     |
| 72SC-630         | 299.1            | 0.708718                           | 9                     | 19870          | 0.708739                           | 464.13     |
| 83JD-20          | 320              | 0.708678                           | 10                    | 10686          | 0.708699                           | 463.77     |
| 83JD-21          | 321              | 0.708686                           | 8                     | 23373          | 0.708707                           | 463.68     |
| 83JD-26          | 326              | 0.708663                           | 8                     | 11508          | 0.708684                           | 463.24     |
| 83JD-33          | 333              | 0.708627                           | 7                     | 8722           | 0.708648                           | 462.62     |
| 83JD-42          | 342              | 0.708637                           | 7                     | 11546          | 0.708658                           | 462.30     |
| 83JD-80          | 380              | 0.708665                           | 17                    | 8750           | 0.708686                           | 461.94     |
| 83JD-104         | 404              | 0.708596                           | 8                     | 8041           | 0.708617                           | 461.72     |
| 83JD-110         | 410              | 0.708611                           | 12                    | 5392           | 0.708632                           | 461.66     |
| 83JD-120         | 420              | 0.708595                           | 9                     | 8782           | 0.708616                           | 461.57     |
| 83 ID-166        | 466              | 0 708487                           | 13                    | 8411           | 0 708508                           | 460 72     |
| 83 ID-184        | 484              | 0 708425                           | 6                     | 12323          | 0 708446                           | 459.80     |
| 83 ID-191        | 491              | 0 708541                           | 7                     | 7159           | 0 708562                           | 459 44     |
| 83 ID-211        | 511              | 0 708486                           | 7                     | 7997           | 0 708507                           | 458 41     |
| 83 IF-0 8        | 511.8            | 0 708482                           | ,<br>10               | 9072           | 0 708503                           | 458 37     |
| 83 IE-5 6        | 516.6            | 0.708474                           | 10                    | 9337           | 0.708495                           | 458 12     |
| 83 IF-18 5       | 529.5            | 0.708355                           | 0                     | 1/3/8          | 0.708376                           | 457.46     |
| 83 IF-33         | 544              | 0.708263                           | 8                     | 10150          | 0.708284                           | 456 72     |
| 83 IE-66         | 577              | 0.708125                           | 0                     | 16737          | 0.708146                           | 455.72     |
| 83 IF-81         | 592              | 0.708151                           | 8                     | 10737          | 0.708172                           | 454 80     |
| Shingle Pass     |                  | -CAI = 3.5-5                       | 0                     | 12172          | 0.700172                           | 434.00     |
| SP300            | 91.46            | 0 709003                           | 12                    | 19891          | 0 709024                           | 480.22     |
| SP573            | 174 70           | 0.709092                           | 9                     | 13967          | 0.709113                           | 480.22     |
| SP991            | 302 13           | 0.709015                           | 9                     | 24696          | 0.709036                           | 479 94     |
| SP10/2           | 317.68           | 0.707015                           | 10                    | 24070          | 0.707030                           | 170 72     |
| SP1200           | 365.85           | 0.702045                           | 11                    | 17521          | 0 709017                           | 479 O2     |
| SP1200           | 380 33           | 0.708063                           | 11                    | 17880          | 0.709017                           | 178 68     |
| SP1/02           | 107.33<br>177 11 | 0.700703                           | 0                     | 21172          | 0.700704                           | 470.00     |
| SD1602           | 427.44<br>160 51 | 0.700701                           | 7                     | 211/J<br>10/72 | 0.700722                           | 470.13     |
| SP1340<br>SD1740 | 407.01<br>526 50 | 0.700720                           | 7<br>20               | 11076          |                                    | 475 01     |
| SD1000           | 550.57           |                                    | 27<br>12              | 0617           | 0.700703                           | 470.01     |
| 51 1020          | 554.00           | 0.700001                           | 10                    | 7047           | 0.100012                           | 4/4.00     |

| SP1980        | 603.66     | 0.708807      | 11            | 12222    | 0.708828 | 473.12 |
|---------------|------------|---------------|---------------|----------|----------|--------|
| SP2404        | 732.93     | 0.708815      | 7             | 12738    | 0.708836 | 470.52 |
| SP2653        | 808.84     | 0.708800      | 10            | 16621    | 0.708821 | 468.90 |
| SP2848        | 868.29     | 0.708842      | 12            | 11355    | 0.708863 | 467.73 |
| SP-212        | 1084       | 0.708817      | 12            | 11635    | 0.708838 | 465.63 |
| SP-237        | 1109       | 0.708767      | 12            | 17635    | 0.708788 | 465.25 |
| SP-248.5      | 1120.5     | 0.708789      | 21            | 15918    | 0.708810 | 465.08 |
| SP-290        | 1162       | 0.708749      | 13            | 13119    | 0.708770 | 464.46 |
| SP-366        | 1238       | 0.708716      | 8             | 13365    | 0.708737 | 463.32 |
| Antelope Ran  | ge, NV (OS | U) - CAI = 1- | 2; see Fig. S | 2 photos |          |        |
| 5-15-78Q      | 297.62     | 0.708724      | 10            | 12968    | 0.708745 | 464.5  |
| 5-15-78P      | 304.94     | 0.708751      | 19            | 20532    | 0.708772 | 464    |
| 5-25-82A      | 313.78     | 0.708702      | 11            | 17350    | 0.708723 | 463.77 |
| 5-25-82J      | 320.18     | 0.708667      | 6             | 20350    | 0.708688 | 463.10 |
| 5-25-82N      | 322.93     | 0.708650      | 11            | 14144    | 0.708671 | 462.81 |
| 5-25-82R      | 325.98     | 0.708659      | 8             | 10875    | 0.708680 | 462.50 |
| 5-25-82U      | 329.94     | 0.708628      | 12            | 5879     | 0.708649 | 462.29 |
| 5-25-82AB     | 333.90     | 0.708547      | 6             | 10961    | 0.708568 | 462.08 |
| 8-8-75B       | 350.37     | 0.708410      | 13            | 9923     | 0.708431 | 461.23 |
| 5-25-82AI     | 352.50     | 0.708448      | 9             | 13005    | 0.708469 | 461.05 |
| 5-25-82AK     | 355.85     | 0.708454      | 17            | 3233     | 0.708475 | 460.76 |
| 5-26-82A      | 368.96     | 0.708343      | 10            | 9418     | 0.708364 | 459.63 |
| 5-26-82M      | 388.78     | 0.708266      | 7             | 8432     | 0.708287 | 457.93 |
| 8-8-75F       | 414.39     | 0.708244      | 14            | 2676     | 0.708265 | 456.26 |
| 8-8-75Fb      | 414.39     | 0.708184      | 21            | 2973     | 0.708205 | 456.26 |
| 5-26-82AS     | 425.98     | 0.708026      | 13            | 7425     | 0.708047 | 454.80 |
| 8-8-751       | 472.93     | 0.707973      | 10            | 6765     | 0.707994 | 453.81 |
| 5-15-78J      | 482.07     | 0.707952      | 19            | 6069     | 0.707973 | 453.29 |
| Clear Spring, | MD (OSU)   | - CAI = 4-5   | 0             |          |          |        |
| 170-9         | 9          | 0.708755      | 12            | 17649    | 0.708776 | 470.06 |
| 170-20        | 20         | 0.708685      | 10            | 5891     | 0.708706 | 469.62 |
| 170-20b       | 20         | 0.708718      | 6             | 15209    | 0.708739 | 469.62 |
| 170-30.2      | 30.2       | 0.708752      | 12            | 11193    | 0.708773 | 469.22 |
| 170-30.2b     | 30.2       | 0.708698      | 8             | 18171    | 0.708719 | 469.22 |
| CS-50         | 50         | 0.708775      | 19            | 3424     | 0.708796 | 468.43 |
| CS-90         | 90         | 0.708769      | 20            | 8779     | 0.708790 | 466.85 |
| CS-122        | 122        | 0.708748      | 24            | 6771     | 0.708769 | 465.14 |
| CS-130        | 130        | 0.708721      | 21            | 2012     | 0.708742 | 464.59 |
| 170-140       | 140        | 0.708735      | 14            | 15030    | 0.708756 | 463.91 |
| 170-146       | 146        | 0.708642      | 14            | 9790     | 0.708663 | 463.59 |
| 170-152       | 152        | 0.708625      | 44            | 8020     | 0.708646 | 463.06 |
| 170-166       | 166        | 0.708688      | 13            | 4317     | 0.708709 | 462.29 |
| 170-220       | 220        | 0.708559      | 18            | 8569     | 0.708580 | 461.74 |
| 170-240       | 240        | 0.708501      | 11            | 11346    | 0.708522 | 461.54 |
| 170-250       | 250        | 0.708474      | 10            | 5482     | 0.708495 | 461.44 |
| 170-260       | 260        | 0.708439      | 9             | 9270     | 0.708460 | 461.33 |
| 170-270       | 270        | 0.708479      | 13            | 7418     | 0.708500 | 461.23 |
| 170-280       | 280        | 0.708417      | 35            | 8409     | 0 708438 | 460.70 |
|               |            |               |               |          | 0.700100 |        |

| 170-300         | 300       | 0.708403       | 7               | 8288       | 0.708424 | 459.63 |
|-----------------|-----------|----------------|-----------------|------------|----------|--------|
| 170-300b        | 300       | 0.708429       | 19              | 7927       | 0.708450 | 459.63 |
| 170-310         | 310       | 0.708324       | 9               | 9364       | 0.708345 | 459.10 |
| 170-320         | 320       | 0.708325       | 11              | 8429       | 0.708346 | 458.57 |
| 170-330         | 330       | 0.708269       | 11              | 10771      | 0.708290 | 458.03 |
| 170-332         | 332       | 0.708318       | 8               | 5818       | 0.708339 | 457.93 |
| 170-435.4       | 435.4     | 0.708096       | 22              | 9691       | 0.708117 | 453.35 |
| Meiklejohn Pea  | k, NV (OS | SU) - CAI = 4  | 0               |            |          |        |
| MP-18           | 322       | 0.708757       | 19              | 8542       | 0.708778 | 464.00 |
| 5-8-78-0        | 398.4     | 0.708727       | 12              | 6370       | 0.708748 | 463.77 |
| 5-8-78-I        | 449.9     | 0.708778       | 9               | 4476       | 0.708799 | 463.10 |
| 5-8-78-H        | 456       | 0.708788       | 12              | 5895       | 0.708809 | 463.00 |
| 5-7-78Q         | 538.9     | 0.708698       | 18              | 10033      | 0.708719 | 462.35 |
| 5-7-78-M        | 560.28    | 0.708537       | 10              | 10186      | 0.708558 | 461.23 |
| 5-7-78-L        | 568.5     | 0.708401       | 10              | 6882       | 0.708422 | 456.26 |
| Marble Hollow,  | TN (OSU)  | ; only plotte  | d in Fig. 11; : | see Fig. S | 4        |        |
| MH64B7-6        | 22.5      | 0.708799       | 11              | 4237       | 0.708820 | 462.35 |
| 68B5-5          | 49.5      | 0.708626       | 9               | 4754       | 0.708647 | 461.6  |
| MH70B29-2       | 52.5      | 0.708623       | 21              | 3930       | 0.708644 | 461.5  |
| 69B2-5          | 163.5     | 0.708520       | 16              | 31325      | 0.708541 | 460.4  |
| East River Mou  | ntain (OS | U); only plott | ted in Fig. 11  | ; see Fig. | S6       |        |
| ERMBent         | 0         | 0.708341       | 8               | 9639       | 0.708362 | 458.76 |
| Cominco core, l | KY (UNC)  | - CAI = 1-2    |                 |            |          |        |
|                 | 363       | 0.707880       |                 | 12190      | 0.707856 | 449.50 |
|                 | 363       | 0.707945       |                 | 4700       | 0.707921 | 449.50 |
|                 | 363       | 0.707982       |                 | 8210       | 0.707958 | 449.50 |
|                 | 335       | 0.707919       |                 | 7342       | 0.707895 | 449.86 |
|                 | 335       | 0.707949       |                 | 5902       | 0.707925 | 449.86 |
|                 | 319       | 0.707996       |                 | 5483       | 0.707972 | 450.00 |
|                 | 319       | 0.707979       |                 | 3652       | 0.707955 | 450.00 |
|                 | 284       | 0.707973       |                 | 3398       | 0.707949 | 450.15 |
|                 | 266       | 0.707985       |                 |            | 0.707961 | 451.00 |
|                 | 232       | 0.707997       |                 |            | 0.707973 | 452.27 |
|                 | 214       | 0.707961       |                 |            | 0.707937 | 452.50 |
|                 | 214       | 0.707983       |                 | 4225       | 0.707959 | 452.50 |
|                 | 198       | 0.707998       |                 |            | 0.707974 | 452.80 |
|                 | 186       | 0.708028       |                 |            | 0.708004 | 452.97 |
|                 | 173       | 0.708035       |                 |            | 0.708011 | 453.50 |
|                 | 167       | 0.708050       |                 |            | 0.708026 | 453.81 |
|                 | 150       | 0.708103       |                 |            | 0.708079 | 454.80 |
|                 | 150       | 0.708118       |                 | 8444       | 0.708094 | 454.80 |
|                 | 91        | 0.708159       |                 |            | 0.708135 | 455.60 |
|                 | 91        | 0.708167       |                 |            | 0.708143 | 455.60 |
|                 | 91        | 0.708164       |                 | 10813      | 0.708140 | 455.60 |
|                 | 82        | 0.708138       |                 |            | 0.708114 | 455.70 |
|                 | 82        | 0.708142       |                 | 13463      | 0.708118 | 455.70 |
|                 | 73        | 0.708195       |                 |            | 0.708171 | 455.70 |
|                 | 73        | 0.708199       |                 | 9894       | 0.708175 | 455.70 |
|                 |           |                |                 |            |          |        |

|                 | 66       | 0.708235                |                    | 6413    | 0.708211     | 455.90 |
|-----------------|----------|-------------------------|--------------------|---------|--------------|--------|
|                 | 66       | 0.708206                |                    | 1027    | 0.708182     | 455.90 |
|                 | 54       | 0.708221                |                    |         | 0.708197     | 455.95 |
|                 | 54       | 0.708239                |                    | 15785   | 0.708215     | 455.95 |
|                 | 54       | 0.708199                |                    | 8800    | 0.708175     | 455.95 |
|                 | 54       | 0.708228                |                    | 11454   | 0.708204     | 455.95 |
|                 | 30       | 0.708253                |                    |         | 0.708229     | 456.62 |
|                 | 30       | 0.708311                |                    |         | 0.708287     | 456.62 |
|                 | 30       | 0.708216                |                    |         | 0.708192     | 456.62 |
|                 | 30       | 0.708237                |                    | 7425    | 0.708213     | 456.62 |
|                 | 25       | 0.708348                |                    |         | 0.708324     | 456.72 |
|                 | 25       | 0.708290                |                    | 9702    | 0.708266     | 456.72 |
|                 | 25       | 0.708332                |                    | 6143    | 0.708308     | 456.72 |
| New Point core, | IN (UN   | C) - CAI = <sup>·</sup> | 1-2; only plotted  | in Fig. | 11; see Fig. | S7     |
|                 | 285      | 0.707950                |                    |         | 0.707926     | 445.53 |
|                 | 285      | 0.707963                |                    |         | 0.707939     | 445.53 |
|                 | 276      | 0.707920                |                    |         | 0.707896     | 446.20 |
|                 | 268      | 0.707975                |                    |         | 0.707951     | 447.14 |
|                 | 236      | 0.707915                |                    |         | 0.707891     | 448.40 |
|                 | 218      | 0.707911                |                    |         | 0.707887     | 448.80 |
|                 | 210      | 0.707919                |                    |         | 0.707895     | 449.12 |
|                 | 206      | 0.707928                |                    | 4348    | 0.707904     | 449.25 |
|                 | 197      | 0.707965                |                    |         | 0.707941     | 449.50 |
|                 | 177      | 0.707910                |                    |         | 0.707886     | 449.86 |
|                 | 160      | 0.707967                |                    |         | 0.707943     | 449.92 |
|                 | 146      | 0.707916                |                    |         | 0.707892     | 449.95 |
|                 | 142      | 0.707928                |                    |         | 0.707904     | 450.00 |
|                 | 115      | 0.707948                |                    |         | 0.707924     | 450.15 |
|                 | 107      | 0.707993                |                    |         | 0.707969     | 451.50 |
|                 | 99       | 0.707958                |                    |         | 0.707934     | 452.27 |
|                 | 26       | 0.707995                |                    |         | 0.707971     | 452.97 |
|                 | 16       | 0.708008                |                    |         | 0.707984     | 453.60 |
|                 | 8        | 0.708099                |                    |         | 0.708075     | 453.81 |
|                 | 8        | 0.708099                |                    |         | 0.708075     | 453.81 |
| Yellow Creek, M | IS (UNC) | ; only plotte           | ed in Fig. 11; see | Fig. S  | 5            |        |
|                 | 363      | 0.708594                |                    | 4582    | 0.708570     | 461.5  |
|                 | 388      | 0.708710                |                    | 3947    | 0.708686     | 466.38 |
|                 | 388      | 0.708751                |                    | 3814    | 0.708727     | 466.38 |
|                 | 388      | 0.708737                |                    | 5786    | 0.708713     | 466.38 |
|                 | 404      | 0.708794                |                    | 9835    | 0.708770     | 468.75 |
|                 | 404      | 0.708778                |                    | 5952    | 0.708754     | 468.75 |
| Oklahoma (UNC   | ) - CAI  | = 1-2                   |                    |         |              |        |
| Chapman Ranch   | 1584     | 0.708867                |                    | 16486   | 0.708843     | 468.75 |
| Chapman Ranch   | 1584     | 0.708772                |                    | 12274   | 0.708748     | 468.75 |
| Chapman Ranch   | 1430     | 0.708813                |                    | 14016   | 0.708789     | 470.75 |
| Chapman Ranch   | 1250     | 0.708929                |                    | 17123   | 0.708905     | 476.00 |
| Chapman Ranch   | 1250     | 0.708946                |                    | 21087   | 0.708922     | 476.00 |
| Chapman Ranch   | 1250     | 0.708884                |                    | 14083   | 0.708860     | 476.00 |
| Chapman Ranch   | 1016     | 0.708938                |                    | 28690   | 0.708914     | 478.50 |

| Chapman Ranch  | 1016 | 0.708921 |
|----------------|------|----------|
| Chapman Ranch  | 1016 | 0.708921 |
| Chapman Ranch  | 1016 | 0.708905 |
| Chapman Ranch  | 773  | 0.708950 |
| Chapman Ranch  | 616  | 0.708954 |
| Chapman Ranch  | 616  | 0.708969 |
| Chapman Ranch  | 616  | 0.709011 |
| Chapman Ranch  | 616  | 0.708967 |
| I-35           | 255  | 0.709014 |
| I-35           | 206  | 0.709083 |
| I-35           | 53   | 0.709040 |
| I-35           | 53   | 0.709035 |
| I-35           | 53   | 0.709034 |
| Hwy-77         | 140  | 0.708752 |
| Hwy-77         | 115  | 0.708757 |
| Hwy-77         | 34   | 0.708756 |
| Sycamore Creek | 117  | 0.708754 |
| Sycamore Creek | 87   | 0.708795 |
| Sycamore Creek | 42   | 0.708817 |
| Sycamore Creek | 42   | 0.708858 |
|                |      |          |

| 28745 | 0.708897 | 478.50 |
|-------|----------|--------|
| 25279 | 0.708897 | 478.50 |
| 25268 | 0.708881 | 478.50 |
| 14396 | 0.708926 | 479.94 |
| 9136  | 0.708930 | 479.96 |
| 15694 | 0.708945 | 479.96 |
| 9056  | 0.708987 | 479.96 |
| 9145  | 0.708943 | 479.96 |
| 21131 | 0.708990 | 480.20 |
| 15970 | 0.709059 | 482.20 |
| 17277 | 0.709016 | 484.28 |
| 10388 | 0.709011 | 484.28 |
| 10394 | 0.709010 | 484.28 |
| 7080  | 0.708728 | 466.65 |
| 8110  | 0.708733 | 467.00 |
| 6300  | 0.708732 | 468.00 |
| 10458 | 0.708730 | 468.00 |
| 9577  | 0.708771 | 470.42 |
| 11792 | 0.708793 | 474.00 |
| 11787 | 0.708834 | 474.00 |

| Sample ID/     |          | Uncorrected                        | Uncertainty           |        |
|----------------|----------|------------------------------------|-----------------------|--------|
| Locality       | Meters   | <sup>87</sup> Sr∕ <sup>86</sup> Sr | (x 10 <sup>-6</sup> ) | ppm Sr |
| Row Park, MD   | ) (OSU)  |                                    |                       |        |
| 74JB1-16       | -0.30    | 0.708693                           | 11                    | 5352   |
| 74JB1-9        | 0.30     | 0.708644                           | 13                    | 5233   |
| 74JB1-11       | 9.15     | 0.708621                           | 12                    | 6569   |
| Hainesville, W | /V (OSU) |                                    |                       |        |
| 74JB5-4        | 1        | 0.708604                           | 13                    | 10215  |

TABLE S2 - SUPPLEMENTAL DATA (see Fig. S3)

### TABLE S3 - INTERLABORATORY COMPARISON

|           |            |            | Difference |
|-----------|------------|------------|------------|
|           | *Duke      | Ohio State | (Duke-     |
| Sample ID | University | University | OSU)       |
| 83JD-42   | 0.708661   | 0.708637   | 0.000024   |
| SP-300r   | 0.709068   | 0.709038   | 0.000030   |
| SP-300c   | 0.709043   | 0.709003   | 0.000040   |
| 5-25-82AI | 0.708467   | 0.708448   | 0.000019   |
| 74JB1-9   | 0.708622   | 0.708644   | -0.000022  |
|           |            |            |            |
| Standard  | Long tern  | n average  |            |

|              | -        | -        |          |
|--------------|----------|----------|----------|
| NIST SRM 987 | 0.710269 | 0.710224 | 0.000045 |

\*Note that Duke University is the current home of G. Dwyer (samples for Dwyer's 1996 PhD thesis were run at Univ of North Carolina)

| TABLE S4 - DUPLICATE SAMPLE ANALYSES |   |  |
|--------------------------------------|---|--|
|                                      | - |  |

| Sample ID                       | <sup>87</sup> Sr/ <sup>86</sup> Sr | Difference<br>(x 10 <sup>-6</sup> ) | Sample<br>I D | <sup>87</sup> Sr/ <sup>86</sup> Sr | Difference<br>(x 10 <sup>-6</sup> ) |
|---------------------------------|------------------------------------|-------------------------------------|---------------|------------------------------------|-------------------------------------|
|                                 |                                    |                                     | CC-66a        | 0.708286                           |                                     |
|                                 |                                    |                                     | CC-66b        | 0.708235                           | 80                                  |
|                                 |                                    |                                     | CC-66c        | 0.708206                           |                                     |
|                                 |                                    |                                     | CC-54a        | 0.708221                           |                                     |
|                                 |                                    |                                     | CC-54b        | 0.708239                           | 40                                  |
|                                 |                                    |                                     | CC-54c        | 0.708199                           | 40                                  |
| 8-8-75Fa                        | 0.708244                           | 60                                  | CC-54d        | 0.708228                           |                                     |
| 8-8-75Fb                        | 0.708184                           | 00                                  | CC-30a        | 0.708253                           |                                     |
| 170-20a                         | 0.708685                           | 33                                  | CC-30b        | 0.708311                           | 95                                  |
| 170-20b                         | 0.708718                           | 00                                  | CC-30c        | 0.708216                           | 75                                  |
| 170-30.2a                       | 0.708752                           | 54                                  | CC-30d        | 0.708237                           |                                     |
| 170-30.2b                       | 0.708698                           | 01                                  | CC-25a        | 0.708348                           |                                     |
| 170-300a                        | 0.708403                           | 26                                  | CC-25b        | 0.708290                           | 58                                  |
| 170-300b                        | 0.708429                           | 20                                  | CC-25c        | 0.708332                           |                                     |
| CC-363a                         | 0.707880                           |                                     | NP-285a       | 0.707950                           | 13                                  |
| CC-363b                         | 0.707945                           | 102                                 | NP-285b       | 0.707963                           | 10                                  |
| CC-363c                         | 0.707982                           |                                     | NP-8a         | 0.708099                           | 0                                   |
| CC-335a                         | 0.707919                           | 30                                  | NP-8b         | 0.708099                           | C C                                 |
| CC-335b                         | 0.707949                           |                                     | CR-1584a      | 0.708867                           | 95                                  |
| CC-319a                         | 0.707996                           | 17                                  | CR-1584b      | 0.708772                           | , 0                                 |
| CC-319b                         | 0.707979                           |                                     | CR-1250a      | 0.708929                           |                                     |
| CC-214a                         | 0.707961                           | 22                                  | CR-1250b      | 0.708946                           | 62                                  |
| CC-214b                         | 0.707983                           |                                     | CR-1250c      | 0.708884                           |                                     |
| CC-150a                         | 0.708103                           | 15                                  | CR-1016a      | 0.708938                           |                                     |
| CC-150b                         | 0.708118                           | -                                   | CR-1016b      | 0.708921                           | 33                                  |
| CC-91a                          | 0.708159                           | 0                                   | CR-1016c      | 0.708921                           |                                     |
| CC-91b                          | 0.708167                           | 8                                   | CR-1016d      | 0.708905                           |                                     |
| CC-91c                          | 0.708164                           |                                     | CR-616a       | 0.708954                           |                                     |
| CC-82a                          | 0.708138                           | 4                                   | CR-616D       | 0.708969                           | 57                                  |
| UC-82D                          | 0.708142                           |                                     | CR-616C       | 0.709011                           |                                     |
| CC-73a                          | 0.708195                           | 4                                   | CR-616d       | 0.708967                           |                                     |
| CC-73b                          | 0.708199                           |                                     | 135-53a       | 0.709040                           |                                     |
|                                 |                                    |                                     | 135-53b       | 0.709035                           | 6                                   |
|                                 |                                    |                                     | 135-53c       | 0.709034                           |                                     |
| Total                           | ~ 4                                |                                     | SC-42a        | 0.708817                           | 41                                  |
|                                 | 24                                 |                                     | SC-42D        | 0.708858                           |                                     |
| Minimum(x $10^{-6}$ ):          | 0                                  |                                     |               |                                    |                                     |
| Maximum(x $10^{\circ}$ ):       | 102                                |                                     |               |                                    |                                     |
| Average(x 10 <sup>-6</sup> ):   | 40                                 |                                     |               |                                    |                                     |
| Std. Dev.(x 10 <sup>-6</sup> ): | 31                                 |                                     |               |                                    |                                     |

# Calibration of a conodont apatite-based Ordovician <sup>87</sup>Sr/<sup>86</sup>Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution

The following represents a more complete version of what appears in the Discussion section of the paper under the same subheading:

### 1 Ordovician Sr isotope stratigraphy and stratigraphic resolution

For parts of the Ordovician when rates of change in  ${}^{87}$ Sr/ ${}^{86}$ Sr are relatively high (~ 5.0 to 2  $10.0 \times 10^{-5}$  per myr). Sr isotope stratigraphy (SIS) is likely to be useful as a high resolution tool 3 4 for correlation that is on par with, or potentially better than, conodont biostratigraphy. This is 5 especially true for rocks that only preserve long-ranging conodonts or conodont species that have 6 poorly constrained age rages, such as those at the Clear Spring section where there are low yields 7 of shallow-water Midcontinent Realm conodonts in dominantly tidal to shallow subtidal facies. Maximum stratigraphic resolution using <sup>87</sup>Sr/<sup>86</sup>Sr is limited by sample reproducibility of 8 9 Ordovician conodonts. Our study indicates that samples run in duplicate are on average different by 4.0 x  $10^{-5}$  with a  $2\sigma$  standard deviation of 6.2 x  $10^{-5}$  (Table S4). Thus, if duplicate or 10 11 stratigraphically adjacent samples are analyzed, it may be possible in the best case scenario to subdivide parts of the Ordovician into Sr isotope 'slices' of approximately 0.5 to 1.0 myr 12 resolution (i.e., during a 1 myr time period in which  ${}^{87}$ Sr/ ${}^{86}$ Sr changed by 8.0 x 10<sup>-5</sup>, it may be 13 14 possible to resolve two distinct 0.5 myr intervals - see Table 1 and Fig. 12). Table 1 compares 15 resolution possible with Sr isotope stratigraphy and conodont zones, and in Fig. 12 we show an example of how SIS can be used in the Ordovician. Fig. 12 utilizes Oklahoma <sup>87</sup>Sr/<sup>86</sup>Sr data 16 17 only in an effort to eliminate scatter in the curve from uncertainty in relative positioning of 18 samples from different regions within individual conodont zones (which is a significant source of 19 uncertainty in the North American compilation in Fig. 11). In Fig. 12, the potential resolution in 20 different parts of the Ordovician curve at high versus low rates of  ${}^{87}$ Sr/ ${}^{86}$ Sr change is depicted, as 21 are the best and worst case scenarios (i.e., depending on whether a duplicate analysis is run, and 22 whether the assumed  ${}^{87}$ Sr/ ${}^{86}$ Sr precision is based on the average difference or 2 $\sigma$  standard 23 deviation).

The Ordovician absolute time scale (Cooper and Sadler, 2012) and placement of an individual sample accurately within a conodont zone (Table 1) are also sources of error in calculating rates of change in <sup>87</sup>Sr/<sup>86</sup>Sr, which in turn affect estimates of potential stratigraphic resolution (Fig. 12). In the discussion that follows we use the durations of Ordovician stages and conodont zones from Cooper and Sadler (2012) to estimate potential stratigraphic resolution.

29 The resolution of SIS in Lower Ordovician stages (Tremadocian-Floian) is relatively low compared to more rapidly changing parts of the Middle and Upper Ordovician <sup>87</sup>Sr/<sup>86</sup>Sr curve 30 (Table 1; Figs. 11, 12). The  ${}^{87}$ Sr/ ${}^{86}$ Sr value for the base of the Lower Ordovician is ~ 0.70905 31 32 and the base of the Middle Ordovician is 0.70880 in Nevada (Shingle Pass) and Oklahoma. The calculated Lower Ordovician  ${}^{87}$ Sr/ ${}^{86}$ Sr rate of fall ~ 1.6 x 10<sup>-5</sup> per myr (note that some potential 33 34 structure on this overall fall may be substantiated with future work) is similar to other slowly 35 changing time periods in the Phanerozoic such as the early Cenozoic (McArthur et al., 2012). Using our best estimate of  $\sim 4.0 \times 10^{-5}$  for sample precision (see Table S3, S4), it is possible to 36 37 subdivide the Lower Ordovician into about 6 resolvable Sr isotope 'slices' of about 2-3 myr 38 each. This resolution is somewhat less than that provided by the roughly 9 conodont zones 39 (Cooper and Sadler, 2012) that average 1.7 myr in duration (Table 1; Fig. 12). For the Middle Ordovician, <sup>87</sup>Sr/<sup>86</sup>Sr falls from 0.70880 to 0.70875 within the Dapingian 40 41 Stage (Figs. 11, 12), which represents 2.7 myr (Cooper and Sadler, 2012). The calculated

Dapingian rate of change is  $1.9 \times 10^{-5}$  per myr and thus similar to the Lower Ordovician (Table 42 1). Even if we place the top of the Dapingian at 0.70870 which is possible resulting from 43 uncertainty in biostratigraphy, the rate of change goes up to  $\sim 3.7 \times 10^{-5}$  per myr but the 44 45 resolving power using SIS is still not much different than conodont zones (3 conodont zones are 46 included in the Dapingian, with an average resolution of 0.9 myr). The possibility of an older 47 age for the base of the Dapingian at 473 myr (Thompson and Kah, 2012; Thompson et al., 2012) 48 would result in a longer duration for the Dapingian and shorter Lower Ordovician, making rates of change in <sup>87</sup>Sr/<sup>86</sup>Sr similarly slow for both intervals. 49

50 The Middle Ordovician Darriwilian Stage represents a critical time period in which the rate of fall in <sup>87</sup>Sr/<sup>86</sup>Sr steepens significantly. If the base of the Darriwilian is taken from near 51 52 the Joins-Oil Creek formation transition in Oklahoma at 0.70875 and the top from the upper part of the C. sweeti zone at 0.70835 (Figs. 11, 12), then this <sup>87</sup>Sr/<sup>86</sup>Sr change over the 8.9 myr 53 duration of the Darriwilian (Cooper and Sadler, 2012) results in a drop of  $4.5 \times 10^{-5}$  per myr (a 54 55 similar rate of fall is observed in parts of the late Cenozoic; McArthur et al., 2012). The dates of 56 Thompson et al. (2012) raise the possibility that the base of the Darriwilian could be as old as 469 myr and would lower the  ${}^{87}$ Sr/ ${}^{86}$ Sr rate of change to 3.5 x 10<sup>-5</sup> per myr (ages for the middle 57 58 and top of the Darriwilian seem unlikely to move by more than 1-2 myr based on the dates in Sell et al., 2011). Assuming a rate of change of  $\sim 4.5 \times 10^{-5}$  per myr over about 8.9 myr for the 59 60 Darriwilian, it may be possible to discern about 10 Sr isotope 'slices' with an average resolution 61 of 0.9 myr compared to 5 conodont zones with an average resolution of 1.8 myr (Table 1).

62 The Sandbian  ${}^{87}$ Sr/ ${}^{86}$ Sr change is from 0.70835 to 0.70800 in 5.4 myr and the calculated 63 rate of change at 6.5 x 10<sup>-5</sup> per myr is higher than the Darriwilian. There are about 9 possible Sr 64 isotope 'slices' in the Sandbian with 0.6 myr resolution compared to about 5 conodont zones

with an average resolution of 1.1 myr (Table 1). Rates of change in <sup>87</sup>Sr/<sup>86</sup>Sr slow dramatically in the Katian Stage until the curve reverses course and begins to rise somewhere in the upper part of the Katian through the terminal Ordovician Hirnantian Stage. Use for SIS is thus more limited in the 7.8 myr long Katian (average resolution of a Sr isotope 'slice' is 3.1 myr compared to 7 conodont zones with average resolution of 1.1 myr), although it may be possible to recognize the turnaround from falling to rising <sup>87</sup>Sr/<sup>86</sup>Sr as a marker horizon in long continuous stratigraphic sections.

72

## 73 Calibration of <sup>87</sup>Sr/<sup>86</sup>Sr to mid Darriwilian to mid Sandbian conodont zones

<sup>87</sup>Sr/<sup>86</sup>Sr stratigraphy has great potential to improve global correlations in parts of the 74 Darriwilian and Sandbian with average rates of change between  $\sim 4.5$  to  $6.5 \times 10^{-5}$  per myr 75 (Table 1; Figs. 11, 12). Here we focus in greater detail on <sup>87</sup>Sr/<sup>86</sup>Sr rates of change as calculated 76 77 for individual conodont zones in this time interval that in some cases greatly exceed these 78 averages and are on par with some of the highest rates in the Phanerozoic such as the Late 79 Cenozoic, Middle Jurassic or Early Triassic (Fig. 1; McArthur et al., 2012). The time resolution possible using <sup>87</sup>Sr/<sup>86</sup>Sr varies not only with the rate of change but also with how well calibrated 80 81 the curve is to biostratigraphy and geochronology, and in the sections below we use the wellstudied sections in Oklahoma as the primary reference standard in calibration of the <sup>87</sup>Sr/<sup>86</sup>Sr 82 83 curve to conodont zones unless otherwise noted.

The *E. variabilis* and *H. holodentata* conodont zones of the middle Darriwilian are 2.61 myr (Cooper and Sadler, 2012) and  ${}^{87}$ Sr/ ${}^{86}$ Sr changes from less than ~ 0.70880 to 0.70875 for a maximum rate of change of 1.9 x 10<sup>-5</sup> per myr (Table 1). This rate of change is similar to the average rate for the preceding Lower and Middle Ordovician time interval, and thus represents a

baseline <sup>87</sup>Sr/<sup>86</sup>Sr rate of change for comparison with subsequent zones. The next younger 88 89 conodont zone is the North Atlantic E. suecicus Zone of the middle Darriwilian (within stage 90 slice Dw2 of Bergström et al., 2009). The E. suecicus zone is 1.27 myr (Cooper and Sadler, 2012) and <sup>87</sup>Sr/<sup>86</sup>Sr changes from 0.70875 to 0.70865 for a significant increase in the rate of 91 92 change to 7.9 x  $10^{-5}$  per myr. The partly time equivalent North American Midcontinent P. 93 *polonicus* Zone is slightly longer at 1.42 myr and may reach 0.70860 at the top yielding a rate of change of  $10.5 \times 10^{-5}$  per myr that is among the highest in the Phanerozoic. However, despite the 94 95 potential to subdivide the E. suecicus and P. polonicus zones into between 2 and 4 Sr isotope 'slices' of 0.4 to 0.5 myr resolution (Table 1), the number of <sup>87</sup>Sr/<sup>86</sup>Sr data points used to 96 97 calibrate these zones is relatively limited (based on a single data point at Meiklejohn Peak and 98 two data points in a thin interval near the base of the McLish Formation in Oklahoma for the P. 99 polonicus zone, and three data points at Meiklejohn Peak in Nevada for the E. suecicus zone; 100 Figs. 5, 8).

101 The *P. serra* Zone (marking the base of Dw3 of Bergström et al., 2009) is 1.99 myr (Cooper and Sadler, 2012) and the <sup>87</sup>Sr/<sup>86</sup>Sr change from 0.70865 to 0.70852 is well defined by 102 103 two data points at Marble Hollow in Tennessee (Figs. 11, S4) that capture the transition to the 104 overlying P. anserinus Zone, as well as three data points in the Antelope Range of Nevada and two in Oklahoma (from *E. foliaceus* Subzone). The *P. serra* Zone rate of change of  $6.5 \times 10^{-5}$ 105 106 per myr and the average resolution possible with SIS is comparable to underlying zones (Table 107 1). The Cahabagnathus friendsvillensis Zone is shorter than the partly time equivalent P. serra 108 Zone at 1.12 myr and falls near 0.70860 at the bottom and 0.70850 at the top yielding a rate of change of 8.9 x  $10^{-5}$  per myr and potential 0.4 myr resolution. <sup>87</sup>Sr/<sup>86</sup>Sr data directly from the C. 109 110 friendsvillensis Zone includes seven horizons in the McLish and Tulip Creek formations of

Oklahoma (including the ranges of *C*. n. sp. and *C. directus*), one data point each in the St. Paul
Group of Maryland and the top Antelope Valley Limestone in Nevada, and two in the section at
Marble Hollow.

| 114 | The <i>P. anserinus</i> Zone, which includes the base of the Sandbian (Sa1 Stage Slice) within                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| 115 | it, is 2.58 myr (Cooper and Sadler, 2012) and <sup>87</sup> Sr/ <sup>86</sup> Sr changes from 0.70852 to 0.70832 yielding          |
| 116 | a rate of change of 7.8 x $10^{-5}$ per myr and 0.5 myr resolution possible with SIS (Table 1).                                    |
| 117 | <sup>87</sup> Sr/ <sup>86</sup> Sr directly from stratigraphic horizons yielding conodonts of the <i>P. anserinus</i> zone include |
| 118 | one data point in the section at Marble Hollow (Figs. 11, S4) which closely approximates the                                       |
| 119 | base of the zone, as well as one data point in Nevada (possibly more depending on discrepancy                                      |
| 120 | of first occurrence of <i>P. anserinus</i> in Harris et al., 1979 versus Sweet et al., 2005). The <i>C. sweeti</i>                 |
| 121 | Zone is longer than the partly time equivalent <i>P. anserinus</i> Zone at 4.51 myr and falls near                                 |
| 122 | 0.70850 at the bottom and 0.70830 at the top yielding a rate of change of $4.4 \ge 10^{-5}$ per myr and                            |
| 123 | 0.9 myr resolution with SIS. Data directly from stratigraphic horizons yielding conodonts of the                                   |
| 124 | C. sweeti Zone include three data points in the Tulip Creek and Bromide formations of                                              |
| 125 | Oklahoma, and four data points in the Copenhagen Formation in Nevada. However,                                                     |
| 126 | considerable uncertainty exists in placement of the top of the C. sweeti Zone. The Cominco core                                    |
| 127 | in the type Cincinnati region contains the overlying <i>Plectodina aculeata</i> Zone with a value of $\sim$                        |
| 128 | 0.70830, consistent with where the top of the C. sweeti Zone should fall in the Copenhagen                                         |
| 129 | Formation in Nevada and the Bromide Formation in Oklahoma.                                                                         |
| 130 | The <i>B. variabilis</i> Zone is 1.67 myr and ${}^{87}$ Sr/ ${}^{86}$ Sr changes from 0.70832 to ~ 0.70822 at                      |
| 131 | the base of <i>B. gerdae</i> Zone yielding a rate of change of $6.0 \ge 10^{-5}$ per myr and the potential for                     |
| 132 | 0.7 myr resolution with SIS (Table 1). ${}^{87}$ Sr/ ${}^{86}$ Sr data directly from stratigraphic horizons                        |
| 133 | yielding conodonts of the <i>B. variabilis</i> Zone are absent, but if we use <i>E. elongatus</i> as a proxy for                   |

134 this zone, then there are two points from the Bromide Formation in Oklahoma and one data point in the Antelope Range in Nevada. The <sup>87</sup>Sr/<sup>86</sup>Sr value at the base of the *B. gerdae* Zone (close to 135 136 the base of Stage Slice Sa2; Bergström et al., 2009) is problematic because calibration is based 137 on single data points in the Antelope Range and Meiklejohn Peak sections that show significant 138 disagreement (the more radiogenic value of about 0.70840 at Meiklejohn Peak could reflect 139 uncertainty in conodont identifications; Harris et al., 1979). The partly equivalent P. aculeata 140 zone is 0.82 myr (Cooper and Sadler, 2012) and falls near 0.70830 at the bottom and 0.70815 at the top yielding an anomalously high rate of change of  $18.3 \times 10^{-5}$  per myr (Table 1). This high 141 rate of change is likely an artifact because it is problematic to calibrate <sup>87</sup>Sr/<sup>86</sup>Sr to conodonts of 142 143 the P. aculeata Zone due in part to uncertainty over taxonomy of P. aculeata s.s. and s.l. and 144 limited data on where to place the top and bottom of the zone (the overlying E. quadridactylus Zone yields a value of about 0.70815 at the base in the Cominco core; Figs. 10, 11). 145