## Material and methods

## 1. Sample Descriptions

### 1.1 Milliwindi dolerite dike

Sample Z01 consists of seven zircons that vary between $150 \mu \mathrm{~m}$ and $400 \mu \mathrm{~m}$ in length and appear to be unzoned (Fig. DR1). These zircons were extracted from the original SHRIMP sample mount analysed by Hanley and Wingate (2000). The original sample was taken from a fresh surface exposure of the Milliwindi dike which, although discontinuous, can be traced for at least 200 km (1). Petrographic analysis by (1) revealed that the sample is a coarse-grained dolerite consisting primarily of plagioclase, augite, and pigeonite, with minor ilmenite and apatite. Sample Z01 was also shown by these authors to be intimately associated with latestage mineral assemblages, including alkali feldspars, quartz, biotite, and baddeleyite.


Figure DR1. Low-resolution images of individual zircons from sample Z01.

### 1.2 Unnamed dike, Canning basin.

Sample B01 was taken from petroleum exploration well Munro 1, drilled in the southern Canning basin. This hole penetrated a thick succession of Phanerozoic sediments before intersecting inferred Precambrian granitic basement at a depth of 2113.5 m (Fig. DR2a). Sample B01 consists of 28 baddeleyite crystals that vary between 25 and $200 \mu \mathrm{~m}$ long (Fig. DR2b). These grains are igneous in origin. The rock within which the mafic enclaves are hosted is characterised by micrographic intergrowths of orthoclase and quartz, making up approximately $70 \%$ of the rock (2) (Fig. DR2a). Apatite, ilmenite, and chlorite (after plagioclase and biotite) are also present (2). It is possible that the mafic enclaves were derived from earlier erupted basalt that have been trapped in the intrusive rock, which represents the differentiated center of a thick dolerite sill.


Figure DR2: Images of sample B01. (a) Mafic enclaves within an alkaline syenite. (b) Separated crystals including many baddeleyite that may originate from the intrusive rock, the mafic enclaves, or both.

### 1.3 Table Hill Volcanics

Sample 028 (Fig. DR3) of the Table Hill Volcanics was collected from drillcore 09THD-028 over a depth interval of 65.5-66.0 m (Fig. DR4). The dolerite sill continues undivided to a depth of 87.5 m . The base of the sill exhibits a chilled margin and is inter-fingered with the underlying sediments of the Boondawari Formation. From hand-sample observations, sample 028 exhibits a subophitic texture, characterized by clinopyroxene (augite), plagioclase, and magnetite. Chlorite and actinolite alteration gives the sample a mottled green appearance. Thin-section analysis of the nearby Boondawari and Akubra sills by (3) outlined the presence of brown-green hornblende, sericite, and chlorite, which replace labradorite and augite. The presence of these alteration minerals suggests sills within this area underwent greenschist metamorphism, possibly in relation to uplift within the Savory area of the northwest Officer Basin.


Figure DR3: Hand sample photograph of sample 028.
Sample 002 (Fig. DR5) of the Table Hill Volcanics was sampled from drillcore 07THD-002 over a depth interval of $95.75-96.1 \mathrm{~m}$. This dolerite sill continues undivided to a depth of 172.95 m . A chilled margin is observed with a sharp, angular contact against underlying diamictite. Sample 002 exhibits a subophitic texture, characterised by clinopyroxene (augite), cloudy (sericitized) plagioclase, and transparent plagioclase (Fig. DR5). Minor hornblende, chlorite, and magnetite are also observed.


Figure DR4: Core-tray photographs of drillcore 09THD-028. A chilled margin and interfingering with sediments of the Boondawari Formation can be observed.


Figure DR5: Hand-sample photograph of sample 002. Note the relatively fresh plagioclase amongst more altered (white) plagioclase.

## Melt inclusions

Melt inclusions are melt pockets a few micrometers in diameter that can retain the composition of the magma at the time of entrapment (i.e. pre-differentiation). It is assumed that they can thus provide indication on the amount of volatiles contained in the magma. Details about the significance of melt inclusions are summarized by (4).
We analyzed the composition of melt inclusions from 100-300 $\mu \mathrm{m}$ plagioclase crystals from sample EMP255. Plagioclase crystals from this sample have been used by (5) to carry out ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ dating of the Table Hill Volcanics. The mini-plateau obtained for this sample indicates that some of the plagioclase crystals are fresh and can be used for melt inclusion S analyses. Plagioclase crystals from this sample were observed to contain numerous melt inclusions and individual crystals were carefully selected based on their freshness and melt inclusion contents.

## Whole rocks

372 whole-rock samples have been recovered from 15 boreholes that intersected the Table Hills Volcanics. S and MgO analyses have been obtained at the analytical company Genalysis (Perth, Australia) by AusQuest Limited, a publically listed Australian exploration company.

Data and sample locations have been made available for publication in this study (Table DR4) based on an unpublished internal report by the company (6).

## 2. Analytical Methods

### 2.1 U-Pb CA-TIMS (zircon)

Zircon crystals were extracted from the original SHRIMP sample mount from which (1) determined an imprecise SHRIMP U-Pb date of $513 \pm 12 \mathrm{Ma}$. They were selected by hand in reflected light under a binocular microscope. Sample sizes were small, thus all zircons were selected for analysis. To minimize potential discordance due to Pb loss, all crystals were annealed in quartz crucibles at $900^{\circ} \mathrm{C}$ for at least 72 hours and then leached in in Savillex PFA beakers for 12-16 hours in concentrated HF and a trace amount of $\mathrm{HNO}_{3}$ at $180^{\circ} \mathrm{C}$. After leaching, the remaining zircons were cleaned with ultra-pure reagents ( $\mathrm{HCl}, \mathrm{HNO}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ ) for several iterations using a hotplate and ultrasonic bath. Each crystal was carefully photographed and transferred to PFA microcapsules with the addition of several drops of HF and a weighed amount of (approximately 0.004 to 0.006 grams) isotopic tracer. The tracer is composed of ${ }^{202} \mathrm{~Pb}^{205} \mathrm{~Pb}^{233} \mathrm{U}_{-}^{235} \mathrm{U}$ and was prepared by the EARTHTIME organization. Microcapsules were then place inside a Parr bomb with a moat of seven millilitres of concentrated HF and trace amount of $\mathrm{HNO}_{3}$. The zircons were dissolved for no less than 72 hours at $210^{\circ} \mathrm{C}$. After dissolution, the samples were dried down on a hotplate within a clean laminar-flow hood and returned to the oven with 6 N HCl . The samples were dried again and 3 N HCl was added prior to single-column anion exchange chemistry (see Krogh, 1973) where U and Pb were collected in the same PFA beaker. The separated U and Pb were dried down with a drop of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and loaded onto single Re filaments with a silica gel (7).

Analysis of U and Pb was performed on a Thermo-Finnegan Triton thermal ionization mass spectrometer at the University of Geneva. First, Pb was measured in dynamic mode using the secondary electron multiplier for at least 100 cycles. Next, U was typically measured for at least 200 cycles as an oxide in static mode with Faraday cups ( $10^{12} \mathrm{ohms}$ ). A few samples had low $U$ concentrations that necessitated the use of the SEM in dynamic mode. Regular measurements of NBS 981 glass and a synthetic zircon solution of known composition were made so that various machine parameters, such as dead-time, linearity, and yield, could be monitored. Mass 203.5 accounted for baseline for Pb with interferences monitored by masses 202 and 205. The ratio of ${ }^{202} \mathrm{~Pb} /{ }^{205} \mathrm{~Pb}$ for the tracer is 0.99989 . Mass fractionation corrections for U were made using a sample ratio for ${ }^{238} \mathrm{U} / /^{235} \mathrm{U}$ of 137.88 . Pb blanks were monitored by periodically performing total procedural blank measurements and regular measurements of lead concentrations in reagents (Table DR1).

All U-Pb zircon data were reduced using Tripoli software, and U-Pb zircon ages were calculated using U-Pb_Redux, version 2.60.042 (8). Isotopic ratios were reduced using twosigma outlier rejection in Tripoli.

## 2. 2 U-Pb TIMS (Baddeleyite)

Baddeleyite was separated using a Wilfley water-shaking table and hand-picked under a binocular microscope. Grains were transferred into Teflon dissolution bombs and washed successively with 2-3 N nitric acid and water. A small amount of ${ }^{236-233} \mathrm{U}_{-}^{205} \mathrm{~Pb}$ tracer solution was added before the sample was completely dissolved in $\mathrm{HF}: \mathrm{HNO}_{3}(10: 1)$ at $210^{\circ} \mathrm{C}$ over 3 days. U and Pb were loaded together on an outgassed Re filament and measured in a Thermo

Scientific Triton thermal ionisation multicollector mass spectrometer at the Museum of Natural History in Stockholm. The intensities of ${ }^{207} \mathrm{~Pb},{ }^{206} \mathrm{~Pb},{ }^{205} \mathrm{~Pb}$, and ${ }^{204} \mathrm{~Pb}$ were measured in dynamic (peak-switching) mode in an ion counter equipped with RPQ filter. Typical filament temperatures were $1190-1230{ }^{\circ} \mathrm{C}$ for Pb and $1260-1300{ }^{\circ} \mathrm{C}$ for U . Fractionationcorrected $U$ isotopic ratios were determined by monitoring the deviation in ${ }^{233} \mathrm{U} /{ }^{236} \mathrm{U}$ from that in the tracer solution (close to unity). The model composition of (9) was used to correct for initial common Pb , and total Pb and U blank were determined at 1 and 0.1 pg , respectively. The mass discrimination correction of Pb is constant at $0.1 \pm 0.04 \%$ per atomic mass unit. Decay constants used are from (10). Data reduction was performed using an inhouse program written in Microsoft Excel (Per-Olof Persson, Stockholm) with algorithms from (11). Analytical results have been calculated and plotted using Isoplot (11).

## $2.3^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ (plagioclase)

Weathered edges of selected samples were removed by a diamond-blade saw. The remainder of the sample was cut into smaller fragments to pass more easily through a jaw crusher. A bucket was used to collect crushed fragments of the sample. The bucket and jaw crusher were thoroughly cleaned between each sample using pressurized air and a damp cloth. The metal plates of the crusher were rigorously scrubbed with an array of wire brushes to prevent crosscontamination between samples. Each sample was then crushed and milled using a tungsten carbide ring mill. The mill was activated on short bursts between 4 to 8 seconds to prevent grains from becoming completely pulverised. The milled sample was passed through two sieves with mesh sizes of 250 and $125 \mu \mathrm{~m}$. Sample remaining above the $250 \mu \mathrm{~m}$ mesh was remilled, material between 250 and $125 \mu \mathrm{~m}$ was retained for analysis, and below $125 \mu \mathrm{~m}$ stored aside as waste pulp. The $125-250 \mu \mathrm{~m}$ size fraction of each sample was washed to remove any fine powder. Samples were washed with water and allowed to settle briefly before expelling the water. Once the water expelled became clear, samples were placed in an ultrasonic bath to remove any remaining fines. Samples were rinsed in ethanol and dried under a heat lamp. Plagioclase was separated using a Frantz magnetic separator. A vertical angle of $35^{\circ}$ was used on the first few runs with low magnetic fields to remove the highly magnetic fraction. This angle was reduced to $20^{\circ}$ with the magnetic field increased slightly on each consecutive run. Towards the end, when predominantly plagioclase is left, the vertical and horizontal angles are both lowered in order to remove the heavily altered grains. Plagioclase grains were then hand-picked using a binocular microscope. Only the most optically transparent grains were selected, and grains that showed any sign of sericite alteration (cloudiness) or fractures and cracks that could host sericite were eliminated. Any grains hosting inclusions internally or on grain edges were also eliminated. Each sample underwent multiple screenings. Between 5 and 10 milligrams of plagioclase were isolated from each sample for analysis. Each sample was leached for 1 minute in dilute hydrofluoric acid before being thoroughly rinsed with distilled water in an ultrasonic cleaner.

The two Antrim Plateau and Table Hill samples were loaded into the separate large wells of a 1.9 cm wide by 0.3 cm deep aluminum disc. These wells were bracketed by small wells that included Hb 3 gr (standard), used as a neutron fluence monitor for which a good in-between grain reproducibility has been demonstrated (12) and an age of $1080.4 \pm 1.1 \mathrm{Ma}(1 \sigma)$ based on the R -value of (13) has been adopted (14). The mean J-values computed from standard grains within the small pits range from $0.009481 \pm 0.0000137(0.145 \%)$ to $0.00968 \pm$ $0.0000203(0.21 \%)$, determined as the average and standard deviation of J-values of the small wells for each irradiation disc. Mass discrimination was monitored using an automated air pipette and provided a range in mean values of $1.005337 \pm 0.0025$ to $1.005447 \pm 0.0034$ per
dalton (atomic mass unit) relative to an air ratio of $298.56 \pm 0.31$ (Lee et al. 2006). The correction factors for interfering isotopes were $\left({ }^{39} \mathrm{Ar}{ }^{37} \mathrm{Ar}\right)_{\mathrm{Ca}}=7.30 \times 10^{-4}( \pm 11 \%)$,
$\left({ }^{36} \mathrm{Ar} /^{37} \mathrm{Ar}\right)_{\mathrm{Ca}}=2.82 \times 10^{-4}( \pm 1 \%)$ and $\left({ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}\right) \mathrm{K}=6.76 \times 10^{-4}( \pm 32 \%) . \mathrm{The}{ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ analyses were performed at the Western Australian Argon Isotope Facility at Curtin University, operated by a consortium consisting of Curtin University and the University of Western Australia. Multi-grain aliquots were wrapped in zero-blank niobium foil and stepheated using a 110 W Spectron Laser Systems, with a continuous Nd-YAG (IR; 1064 nm ) laser rastered over the sample for 1 minute to ensure a homogenously distributed temperature. The gas was purified in a stainless steel extraction line using three SAES AP10 getters and a liquid nitrogen condensation trap. Ar isotopes were measured in static mode using a MAP 215-50 mass spectrometer (resolution of $\sim 500$; sensitivity of $4 \times 10^{-14} \mathrm{~mol} / \mathrm{V}$ ) with a Balzers SEV 217 electron multiplier mostly using 9 to 10 cycles of peak-hopping. Data acquisition was performed with the Argus program written by M.O. McWilliams and running within a Labview environment. Raw data were processed using the ArArCALC software (15) and ages calculated using decay constants recommended by (14). Blanks were monitored every 3 to 4 steps and typical ${ }^{40}$ Ar blanks range from $1 \times 10-16$ to $2 \times 10-16 \mathrm{~mol}$. Ar isotopic data are corrected for blank, mass discrimination, and radioactive decay. Individual uncertainties are reported at the $1 \sigma$ level unless otherwise indicated. Our criteria for the determination of a plateau are as follows: 1. plateaus must include at least $70 \%$ of ${ }^{39} \mathrm{Ar}$, 2. the plateau should be distributed over a minimum of 3 consecutive steps agreeing at $95 \%$ confidence level and satisfying a probability of fit $(\mathrm{P})$ of at least 0.05 . Plateau ages are reported at the $2 \sigma$ level and are calculated using the mean of all the plateau steps, each weighted by the inverse variance of their individual analytical uncertainty. Integrated ages ( $2 \sigma$ ) are calculated using the total gas released for each Ar isotope. Inverse isochrons include the maximum number of steps with a probability of fit $\geq 0.05$. All sources of uncertainties are included in calculations.

### 2.4 Melt inclusions $S$ and $M g O$ analyses in plagioclase

Selected grains were carefully documented using optical microscopy. The melt inclusions were all devitrified and/or crystallized and contained water as was observed using infrared spectroscopy (FTIR). In order to quantify the volatile content, the inclusions required homogenisation. The furnace homogenization experiments involved placing the grains in platinum foil packets, which were hoisted up into the furnace and heated to required temperature, and then quenched by dropping the foil packet in cold water. A step-wise heating schedule was employed to quench the inclusions as close to the homogenisation temperature as possible. The quenched inclusions were then analysed with FTIR for determining the water content. However, due to apparent water loss during the homogenisation experiments (no water signal after homogenisation), the FTIR spectroscopy was abandoned in favour of elemental analysis by electron microscopy (EMPA). Plagioclase grains were mounted and polished until the inclusions were exposed. Devitrified and homogenised inclusions were analysed by with the Cameca SX50 EMPA at Uppsala University in March 2009. We used 20 Kv voltage and a 15 nA current, and a beam size of ca. $1 \mu \mathrm{~m}$. Twelve elements were analyzed simultaneously ( $\mathrm{F}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}, \mathrm{Si}, \mathrm{Cl}, \mathrm{K}, \mathrm{Ca}, \mathrm{Ti}, \mathrm{S}, \mathrm{Mn}, \mathrm{Fe}$ ). The instrument was calibrated using natural and synthetic standards, and raw data were ZAF-corrected. The detection limit for $S$ was ca $250 \mu \mathrm{~g} / \mathrm{g}$.

### 2.5 Whole rocks $S$ and $M g O$ analyses

MgO and S contents were analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) at the analytical company Genalysis (Perth, Australia) by AusQuest

Limited, a publically listed Australian exploration company.Precision on major elements and trace elements are $\pm 3 \%$ or better and $\pm 10 \%$ or better, respectively.

## 3. Analytical Results

### 3.1 Zircons from Milliwindi dolerite dike

Low-resolution photos (Fig. DR1) show the seven zircons of sample Z01. All individual zircon analyses are plotted on a Concordia diagram (Fig. DR6). Analysis Z7 appears to reflect minor loss of radiogenic Pb loss and was not used in age calculations. The remaining six zircons form a cluster on the Concordia plot (Fig. DR6a; Table DR1) and define a ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ age trend (Fig. DR6, inset) between $511.23 \pm 0.43$ [0.70] Ma for Z3, to $510.72 \pm 0.42$ [0.69] Ma for Z2. Five zircons produce a concordant ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ weighted mean age of $510.67 \pm 0.30$ [0.62] Ma (Fig. DR6). This population is statistically concordant with a MSWD and P-values of 2.00 .09 . Although other mean ages can be calculated by selecting different zircons (e.g., $\mathrm{Z4}, \mathrm{Z} 5, \mathrm{Z} 6, \mathrm{Z} 2$ only; $510.52 \pm 0.32$ [ 0.63$] \mathrm{Ma} ; \mathrm{P}=0.49$ ), the difference is within uncertainty and we believe these five results best represent the age of the Milliwindi dike. The slightly older ages indicated by Z 1 and Z 3 are believed to represent antecrysts - zircons that have crystallised within the magma chamber up to a few hundred thousand years prior to the emplacement of the dike. Therefore, the results from five consecutive zircons (red analyses in Fig. S6) are taken to represent the true emplacement age of the Milliwindi dike.


Figure DR6. Analytical data for single zircons from sample Z01. (a) ${ }^{206} \mathrm{~Pb} \rho^{238} U$ and ${ }^{207} \mathrm{~Pb}{ }^{235} U$ ratios in zircons of sample Z01. Note the concordance of six zircons. Red ellipses in the concordia diagram indicate analyses used in the age calculation; blue line is the concordia curve including uncertainties. Weighted mean age uncertainties are indicated as analytical/including tracers/all source of uncertainties. (b) ${ }^{206} \mathrm{~Pb}^{238} U$ dates for single-grains zircons. $R$; red boxes indicate dates included in the age calculation; Grey boxes outline zircons not used in age calculation. Blue bar show analytical uncertainties and green bar show all source of uncertainties on the weighted mean age.

Table DR1: U-Pb analytical data for zircons from sample Z01.

| Composition |  |  |  | Isotopic Ratios |  |  |  |  |  |  | Dates (Ma) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frac- | Ih | $\mathrm{Pb}^{*}$ | Pb* | ${ }^{265} \mathrm{pb}$ | ${ }^{208} \mathrm{~Pb}$ | ${ }^{201} \mathrm{~Pb}$ | $\pm 2 \sigma$ | ${ }^{206} \mathrm{pb}$ | $\pm 2 \sigma$ | ${ }^{207} \mathrm{~Pb}$ | $\pm 2 \sigma$ | ${ }^{238} \mathrm{U}$ |  | Corr. | ${ }^{207} \mathrm{~Pb}$ | $\pm 2 \sigma$ | ${ }^{207} \mathrm{pb}$ | $\pm 2 \sigma$ | ${ }^{238} \mathrm{U}$ | $\pm 2 \sigma$ |
| tion | $U$. | $\mathrm{Pb}_{\text {c }}$ | (pg) | ${ }^{205} \mathrm{~Pb}_{4}$ | ${ }^{20} \mathrm{~Pb}$. | ${ }^{20} \mathrm{~Pb}$. | \% | ${ }^{2 \times 1} \mathrm{U}^{0}$, | \% | ${ }^{23} \mathrm{U}_{0}$, | \% | <Th> | $\pm 2 \sigma \%$ | coef. | ${ }^{206} \mathrm{~Pb}_{3}$ | abs | ${ }^{215} \mathrm{U}_{5}$ | abs | <Th>, | abs |
| z1 | 1.76 | 87 | 85.4 | 3928 | 0.548 | 0.057553 | 0.14 | 0.082484 | 0.057 | 0.6545 | 0.16 | 0.082493 | 0.057 | 0.497 | 512.8 | 3.1 | 511.27 | 0.64 | 510.99 | 0.28 |
| 22 | 1.52 | 102 | 312 | 4875 | 0.474 | 0.057570 | 0.12 | 0.082448 | 0.068 | 0.65445 | 0.15 | 0.082458 | 0.068 | 0.646 | 513.4 | 2.6 | 511.22 | 0.60 | 510.78 | 0.34 |
| z3 | 1.40 | 167 | 297 | 8147 | 0.435 | 0.057554 | 0.072 | 0.082543 | 0.071 | 0.65502 | 0.12 | 0.082554 | 0.071 | 0.793 | 512.8 | 1.6 | 511.57 | 0.46 | 511.35 | 0.35 |
| 24 | 1.60 | 82 | 162 | 3824 | 0.498 | 0.057592 | 0.16 | 0.082386 | 0.072 | 0.6542 | 0.21 | 0.082396 | 0.072 | 0.757 | 514.3 | 3.5 | 511.07 | 0.82 | 510.41 | 0.35 |
| 25 | 1.74 | 81 | 118 | 3703 | 0.544 | 0.057683 | 0.15 | 0.082410 | 0.097 | 0.6554 | 0.20 | 0.082419 | 0.097 | 0.666 | 517.7 | 3.3 | 511.82 | 0.79 | 510.55 | 0.48 |
| 26 | 1.55 | 152 | 123 | 7163 | 0.484 | 0.057588 | 0.096 | 0.08240 | 0.13 | 0.6543 | 0.18 | 0.082409 | 0.13 | 0.838 | 514.1 | 2.1 | 511.10 | 0.71 | 510.49 | 0.66 |
| z7 | 1.41 | 41 | 84.5 | 2016 | 0.441 | 0.05760 | 0.27 | 0.082175 | 0.11 | 0.6526 | 0.31 | 0.082186 | 0.11 | 0.537 | 514.5 | 5.8 | 510.1 | 1.2 | 509.16 | 0.54 |

a Th contents calculated from radiogenic ${ }^{2089} \mathrm{~Pb}$ and the ${ }^{201} \mathrm{~Pb} /{ }^{2005} \mathrm{~Pb}$ date of the sample, assuming concordance between U - Th and Pb systems.
b Ratio of radiogenic Pb (including ${ }^{2 x e} \mathrm{~Pb}$ ) to common Pb .
c Total mass of radiogenic Pb .
d Measured ratio corrected for fractionation and spike contribution only.
e Measured ratios corrected for fractionation, tracer and blank.
f Corrected for initial $\mathrm{Th} / \mathrm{U}$ disequilibrium using radiogenic ${ }^{205} \mathrm{~Pb}$ and $\mathrm{Th} / \mathrm{U}[$ magma] $=4$.
g Isotopic dates calculated using the decay constants $\lambda_{255}=1.55125 \mathrm{E}-10$ and $\lambda_{255}=9.8485 \mathrm{E}-10$ (Jaffey et al. 1971).

### 3.2 Baddeleyite from Canning Basin basement intrusion

Six analyses ( $\mathrm{Bd}-\mathrm{A}$ to $\mathrm{Bd}-\mathrm{F}$ ) were conducted using U-Pb TIMS. Variable discordance is attributed to geologically-recent Pb loss. Analyses $\mathrm{Bd}-\mathrm{B}, \mathrm{Bd}-\mathrm{C}$, and $\mathrm{Bd}-\mathrm{E}$ are in good agreement at $\sim 500 \mathrm{Ma}$ (Fig. DR7) and collectively account for 17 of the total 28 grains. Analyses show the occurrence of between 6 and $36 \%$ of common lead. Regression of the five analyses, aligned with a forced lower intersection of $0 \pm 100 \mathrm{Ma}$, yields an upper intercept age of $513 \pm 4$ [6] Ma (MSWD $=1.5 ; \mathrm{P}=0.21$ ). Note that when using a non-anchored lower intercept of $-72 \pm 140 \mathrm{Ma}$, we calculate an indistinguishable age of $511 \pm 4$ [5] Ma (MSWD = $1.6 ; \mathrm{P}=0.20$ ) taken to represent the crystallization age of the sample. Analyses Bd-D and BdF yield slightly younger results and presumably reflect minor loss of radiogenic Pb . Group Bd-A, which yields an older discordant result, contained eight grains and, given that baddeleyite inheritance is very unlikely, may have included material that was not baddeleyite, but contained a small amount of Pb . Groups $\mathrm{Bd}-\mathrm{A}, \mathrm{Bd}-\mathrm{D}$, and $\mathrm{Bd}-\mathrm{F}$ were not used in age calculation.


Figure DR7: Analytical data for baddeleyite fractions (Bd-B-F) from sample B01. The concordia curve is shown with circles every 10 Ma ; error ellipses are $\pm 2$ sigma. The result for fraction Bd-A is not shown. The upper intercept age is based on a discordia regression through 5 analyses (excluding Bd-A).

Table DR2: U-Pb analytical data for Baddeleite from the Canning Basin intrustion.

| Analysis no. <br> (number of grains) | U/ Th | Pbc/ <br> Pbtot ${ }^{1)}$ | ${ }^{206} \mathrm{~Pb}$ <br> ${ }^{204} \mathrm{~Pb}$ | $\begin{aligned} & { }^{207} \mathrm{~Pb} / \\ & { }^{235} \mathrm{U} \end{aligned}$ | $\begin{gathered} \pm 2 \mathrm{~s} \\ \% \mathrm{err} \end{gathered}$ | ${ }^{206} \mathrm{~Pb} /$ ${ }^{238} \mathrm{U}$ | $\begin{gathered} \pm 2 \mathrm{~s} \\ \% \mathrm{err} \\ \hline \end{gathered}$ | $\begin{aligned} & { }^{207} \mathrm{~Pb} / \\ & { }^{235} \mathrm{U} \end{aligned}$ | $\begin{aligned} & { }^{206} \mathrm{~Pb} / \\ & { }^{238} \mathrm{U} \end{aligned}$ | $\begin{aligned} & { }^{207} \mathrm{~Pb} / \\ & { }^{206} \mathrm{~Pb} \end{aligned}$ | $\begin{gathered} \pm 2 \mathrm{~s} \\ \% \mathrm{err} \end{gathered}$ | Concord- <br> ance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | raw ${ }^{2}$ |  |  | $[\mathrm{corr}]^{3)}$ |  | [age, Ma] |  |  |  |  |  |
| Bd-A (8 grains) | 6.6 | 0.356 | 140.7 | 0.6981 | 1.06 | 0.08526 | 0.44 | 537.7 | 527.5 | 581.2 | 20.0 | 0.908 |
| Bd-B (4 grains) | 11.9 | 0.054 | 1219.5 | 0.6400 | 0.29 | 0.08067 | 0.20 | 502.3 | 500.1 | 512.3 | 4.3 | 0.976 |
| Bd-C (11 grains) | 8.0 | 0.096 | 649.9 | 0.6394 | 0.38 | 0.08052 | 0.24 | 502.0 | 499.2 | 514.5 | 6.3 | 0.970 |
| Bd-D (3 grains) | 5.8 | 0.230 | 250.4 | 0.5887 | 0.98 | 0.07398 | 0.77 | 470.0 | 460.1 | 518.9 | 13.7 | 0.887 |
| $\mathrm{Bd}-\mathrm{E}$ (2 grains) | 7.2 | 0.205 | 308.9 | 0.6362 | 1.80 | 0.08055 | 1.66 | 499.9 | 499.4 | 502.5 | 18.5 | 0.994 |
| $\mathrm{Bd}-\mathrm{F}$ (5 grains) | 13.9 | 0.055 | 1231.9 | 0.6274 | 0.90 | 0.07929 | 0.72 | 494.5 | 491.9 | 506.5 | 11.8 | 0.971 |
| ${ }^{1)} \mathrm{Pbc}=$ common $\mathrm{Pb} ; \mathrm{Pbtot}=$ total Pb (radiogenic + blank + initial $)$. <br> ${ }^{2)}$ measured ratio, corrected for fractionation and spike. |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{3)}$ isotopic ratios corrected for fractionation ( $0.1 \%$ per amu for Pb ), spike contribution, blank ( 1 pg Pb and 0.1 pg U ) and initial common Pb . Initial common Pb corrected with isotopic compositions from the model of Stacey and Kramers (1975) at the age of the sample. |  |  |  |  |  |  |  |  |  |  |  |  |

## 3.3. ${ }^{40} \mathrm{Ar}^{\beta^{9} \mathrm{Ar}}$ results (plagioclase)

Both samples from dolerite sills of the Table Hill Volcanics from the Officer Basin produced meaningful plateau ages (Fig. DR8). The success of these samples compared with those from the Antrim Plateau Volcanics may relate to the relative abundance and coarse-grained nature of plagioclase within the dolerite sills. Samples 002 and 028 originate from drillholes 07THD002 and $09 \mathrm{THD}-028$ respectively. These holes are located $\sim 65 \mathrm{~km}$ apart, and the two samples were taken from sills believed to be part of the Kalkarindji LIP. This is confirmed as both samples share the same major and trace element patterns. Sample 002 produced a plateau age of $\mathbf{5 1 0} \pm \mathbf{4}[4]^{1} \mathrm{Ma}$, with $74 \%$ of total ${ }^{39} \mathrm{Ar}$ released (Fig. DR8a). This age is statistically reliable (MSWD $=0.74 ; \mathrm{P}$ value of 0.69 ), and believed to represent the emplacement age of the Kalkarindji sills in the Officer Basin. The first few steps ( $\sim 28 \%$ ) show minor signs of 40 Ar diffusion, probably due to a minor thermal event, whereas the mid- to high-temperature steps define a plateau age of $\mathbf{5 1 0} \pm \mathbf{4}$ [4] Ma.

The $\mathrm{K} / \mathrm{Ca}$ plot for sample 002 shows a saddle-like shape with values around $0.02-0.03(\mathrm{Ca} / \mathrm{K}$ $\sim 30-50$ ). Such shapes, when correlated with step-age variation, usually indicate the occurrence of sericite within the plagioclase. Here, no such correlation is observed, and the $\mathrm{Ca} / \mathrm{K}$ variation is attributed to mineral zoning, Perthite exsolution, or the occurrence of minor syn-eruption sericite alteration. In any case, the age of $\mathbf{5 1 0} \pm \mathbf{4}$ [4] Ma indicates the age of crystallisation within error. The data define significant spread along the inverse isochron, and yield an age of $507 \pm 9[10] \mathrm{Ma}$. This age is in agreement with the plateau age and ${ }^{40} \mathrm{Ar} r^{36} \mathrm{Ar}$ intercept ( $307 \pm 14$ ), which is within the uncertainty of an atmospheric value.

Sample 028, from 09THD-028, produced a significantly younger plateau age of $\mathbf{4 7 5} \pm \mathbf{4}$ [4], with $94 \%$ of total 39Ar released (Fig. DR8b). This date is statistically reliable (MSWD = $1.27 ; \mathrm{P}=0.21$ ) yet significantly younger than that obtained from sample 002 . The $\mathrm{K} / \mathrm{Ca}$ plot exhibits a weak wave-like pattern but, most importantly, a $\mathrm{K} / \mathrm{Ca}$ value of $\sim 0.4-0.6(\mathrm{Ca} / \mathrm{K} \sim 2)$, which is consistent with a strong sericitisation of plagioclase (usual observed $\mathrm{Ca} / \mathrm{K}$ values $\sim 20-150$, e.g. (16) and numerous references within) and thus the plateau age probably indicates the age of a late hydrothermal alteration event. Sample 028 produced an isochron

[^0]age of $471 \pm 9$ [9] Ma, with the majority of steps forming a tight grouping near the radiogenic Ar axis. This prevents a proper determination of the trapped Ar ratio, which is reflected by the uncertainty obtained ( $\sim 320 \pm 22$ ). At face value, the approximate trapped Ar ratio falls within error of the atmospheric ratio. The slightly higher intercept, if significant, may result from excess Ar associated with the hydrothermal fluids responsible for the alteration event.


Figure DR8: ${ }^{40}$ Ar ${ }^{\beta 9}$ Ar plateau age and $K / C a$ spectra, and inverse isochron plots for samples 002 (a) and 028 (b) of the Table Hill Volcanics.

Table DR3. ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ data summary. Relative abundance values are corrected for mass discrimination, blanks, and radioactive decay. Measurement uncertainties are given at the $1 \sigma$ level. A. Sample 002, B. sample 028.

Table DR3A (Sample 002)

| Relative <br> Abundances |  | 36 Ar |  | 37 Ar |  | 38Ar |  | 39Ar |  | 40Ar |  | $\begin{aligned} & \text { Age } \pm 2 \sigma \\ & \text { (Ma) } \end{aligned}$ | $40 \operatorname{Ar}(r)$ (\%) | $\begin{aligned} & 39 \operatorname{Ar}(\mathrm{k}) \\ & (\%) \end{aligned}$ | $\mathrm{K} / \mathrm{Ca} \pm 2 \sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1A18042D | 61.00 W | 0.0000826 | 11.584 | 0.0027093 | 6.352 | 0.0001802 | 6.893 | 0.0002722 | 2757 | 0.0379331 | 0.304 | $699.71 \pm 247.23$ | 35.65 | 0.21 | $0.0429 \pm 0.0059$ |
| 1 A 18043 D | 62.50 W | 0.0001193 | 11.294 | 0.0188765 | 2885 | 0.0001495 | 5.334 | 0.0012782 | 1.504 | 0.0775344 | 0.220 | $508.74 \pm 83.19$ | 56.11 | 0.99 | $0.0288 \pm 0.0019$ |
| 1A18044D | 64.00w | 0.0001447 | 10.517 | 0.0827202 | 2334 | 0.0001546 | 7.289 | 0.0038429 | 1.086 | 0.1597748 | 0.058 | $486.16 \pm 32.78$ | 77.33 | 2.97 | $0.0197 \pm 0.0010$ |
| 1 Al 8046 D | 65.00 W | 0.0001057 | 11.434 | 0.1196290 | 2299 | 0.0000933 | 9.791 | 0.0043129 | 0.711 | 0.1643238 | 0.174 | $501.01 \pm 23.19$ | 86.93 | 3.31 | $0.0152 \pm 0.0007$ |
| 1 Al 18047 D | 66.00 w | 0.0001065 | 9.476 | 0.1597702 | 2.285 | 0.0000878 | 7.031 | 0.0050991 | 0.994 | 0.1893123 | 0.104 | $507.56 \pm 18.26$ | 90.31 | 3.91 | $0.0134 \pm 0.0007$ |
| 1 A18049D | 67.00 W | 0.0001270 | 8.322 | 0.1998120 | 2290 | 0.0001193 | 6.702 | 0.0066059 | 0.697 | 0.2388011 | 0.072 | $499.66 \pm 14.38$ | 91.17 | 5.07 | $0.0139 \pm 0.0007$ |
| 1A18051D | 68.00 w | 0.0002778 | 6.263 | 0.3046384 | 2.296 | 0.0002291 | 6.844 | 0.0127616 | 0.362 | 0.4736820 | 0.080 | $493.23 \pm 11.46$ | 87.90 | 9.84 | $0.0177 \pm 0.0008$ |
| 1 A 18052 D | 68.60 W | 0.0001817 | 8.858 | 0.2207675 | 2304 | 0.0001896 | 8.125 | 0.0118650 | 0.429 | 0.4356710 | 0.075 | $505.82 \pm 11.42$ | 91.82 | 9.18 | $0.0228 \pm 0.0011$ |
| 1 A 18053 D | 69.00 w | 0.0001771 | 6.837 | 0.1562553 | 2325 | 0.0001694 | 8.505 | 0.0104065 | 0.613 | 0.3912018 | 0.136 | $505.46 \pm 10.76$ | 89.85 | 8.07 | $0.0283 \pm 0.0014$ |
| 1A18054D | 69.50 W | 0.0002132 | 5.453 | 0.1085241 | 2354 | 0.0001673 | 8.167 | 0.0082020 | 0.681 | 0.3325766 | 0.152 | $506.51 \pm 12.75$ | 83.61 | 6.37 | $0.0322 \pm 0.0016$ |
| 1 A 18057 D | 70.30 W | 0.0001605 | 8.130 | 0.0614377 | 2360 | 0.0000979 | 15.161 | 0.0050014 | 1.089 | 0.2183134 | 0.161 | $521.77 \pm 22.54$ | 80.42 | 3.89 | $0.0347 \pm 0.0018$ |
| 1A18058D | 71.50w | 0.0004795 | 3.704 | 0.1052120 | 2482 | 0.0002347 | 8.718 | 0.0079434 | 0.620 | 0.4071043 | 0.107 | $512.26 \pm 18.31$ | 67.01 | 6.17 | $0.0322 \pm 0.0016$ |
| 1 A 18059 D | 72.50w | 0.0003977 | 3.949 | 0.1116803 | 2330 | 0.0002473 | 6.363 | 0.0080400 | 0.716 | 0.3823146 | 0.092 | $507.40 \pm 16.58$ | 71.40 | 6.24 | $0.0306 \pm 0.0015$ |
| 1A18061D | 79.70w | 0.0000588 | 15.727 | 0.0385498 | 2.559 | 0.0000802 | 18.921 | 0.0027926 | 1.436 | 0.1142673 | 0.327 | $531.14 \pm 28.96$ | 87.47 | 2.17 | $0.0308 \pm 0.0018$ |
| 1 A 18062 D | 81.50 W | 0.0004748 | 3.988 | 0.3460382 | 2286 | 0.0007274 | 3.326 | 0.0189599 | 0.510 | 0.7533253 | 0.045 | $506.74 \pm 9.20$ | 85.05 | 14.67 | $0.0232 \pm 0.0011$ |
| 1 A 18063 D | 82.00 W | 0.0002034 | 5.733 | 0.2383215 | 2324 | 0.0005646 | 3.360 | 0.0110470 | 0.622 | 0.4191061 | 0.120 | $513.94 \pm 10.25$ | 90.30 | 8.53 | $0.0196 \pm 0.0009$ |
| 1 A 18064 D | 82.50 W | 0.0001742 | 7.421 | 0.2088813 | 2300 | 0.0003414 | 4.686 | 0.0080071 | 0.712 | 0.3065650 | 0.143 | $511.87 \pm 14.47$ | 88.77 | 6.16 | $0.0162 \pm 0.0008$ |
| 1 A 18066 D | 83.00 W | 0.0001295 | 10.165 | 0.0744099 | 2364 | 0.0001453 | 10.755 | 0.0029142 | 0.800 | 0.1357474 | 0.271 | $530.90 \pm 36.01$ | 76.13 | 2.24 | $0.0165 \pm 0.0008$ |

Table DR3B (Sample 028)

| Relative Abundances |  | 36Ar |  | 37Ar |  | 38Ar |  | 39Ar |  | 40Ar |  | $\begin{aligned} & \text { Age } \pm 2 \sigma \\ & (\mathrm{Ma}) \end{aligned}$ | $\begin{gathered} 40 \operatorname{Ar}(\mathrm{r}) \\ (\%) \end{gathered}$ | $\begin{gathered} 39 \operatorname{Ar}(\mathrm{k}) \\ (\%) \end{gathered}$ | $\mathrm{K} / \mathrm{Ca} \pm 2 \sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 118083D | 61.00 W | 0.0001169 | 8.055 | 0.0002656 | 125.231 | 0.0000818 | 11.155 | 0.0002071 | 5.633 | 0.0368017 | 2.496 | $151.27 \pm 449.67$ | 5.19 | 0.15 | $0.335 \pm 0.840$ |
| 1A18084D | 62.50 W | 0.0002595 | 4.698 | 0.0008700 | 41.945 | 0.0002338 | 4.917 | 0.0011876 | 2.164 | 0.1117068 | 0.834 | $436.58 \pm 86.55$ | 30.72 | 0.83 | $0.587 \pm 0.493$ |
| 1 1.18085D | 64.00 W | 0.0001051 | 13.309 | 0.0015217 | 22.081 | 0.0001000 | 7.890 | 0.0042584 | 0.759 | 0.1522414 | 0.612 | $429.93 \pm 27.67$ | 79.47 | 2.99 | $1.203 \pm 0.532$ |
| 1 A 18086 D | 65.00 W | 0.0000588 | 15.455 | 0.0033530 | 9.934 | 0.0001023 | 10.735 | 0.0069833 | 0.420 | 0.2398283 | 0.384 | $475.90 \pm 11.34$ | 92.79 | 4.90 | $0.895 \pm 0.178$ |
| 1 A 18088 D | 65.50 W | 0.0000520 | 15.794 | 0.0035219 | 10.211 | 0.0000580 | 13.376 | 0.0045690 | 0.630 | 0.1630869 | 0.570 | $482.45 \pm 15.94$ | 90.66 | 3.20 | $0.558 \pm 0.114$ |
| 1A18089D | 66.00 W | 0.0000442 | 22.113 | 0.0053776 | 7.079 | 0.0000751 | 12.846 | 0.0050952 | 0.592 | 0.1819338 | 0.524 | $493.56 \pm 16.48$ | 92.99 | 3.57 | $0.407 \pm 0.058$ |
| 1 A 18090 D | 66.70 W | 0.0000566 | 19.722 | 0.0036241 | 9. 535 | 0.0000578 | 13.697 | 0.0041581 | 1.086 | 0.1540088 | 0.618 | $491.44 \pm 23.63$ | 89.22 | 2.91 | $0.493 \pm 0.095$ |
| 1 A18091D | 67.70 W | 0.0001006 | 9.321 | 0.0064736 | 6.659 | 0.0001252 | 11.587 | 0.0089380 | 0.823 | 0.3192195 | 0.305 | $483.14 \pm 11.13$ | 90.76 | 6.26 | $0.593 \pm 0.080$ |
| 1 A 18093 D | 68.60 W | 0.0001372 | 7.559 | 0.0073859 | 5.360 | 0.0001870 | 5.431 | 0.0110060 | 0.722 | 0.3943904 | 0.239 | $479.92 \pm 9.82$ | 89.77 | 7.71 | $0.640 \pm 0.069$ |
| 1 A 18094 D | 69.20 W | 0.0001395 | 10.540 | 0.0080209 | 5.347 | 0.0001453 | 7.853 | 0.0087055 | 1.164 | 0.3197818 | 0.309 | $478.11 \pm 16.72$ | 87.18 | 6.10 | $0.466 \pm 0.051$ |
| 1 A 18095 D | 69.70 w | 0.0000978 | 11.618 | 0.0049843 | 6.954 | 0.0000950 | 9.409 | 0.0049606 | 0.967 | 0.1852526 | 0.505 | $471.75 \pm 20.33$ | 84.46 | 3.48 | $0.428 \pm 0.060$ |
| 1 118096D | 70.20 W | 0.0001148 | 9.729 | 0.0049283 | 8.251 | 0.0001049 | 11.495 | 0.0049508 | 0.592 | 0.1921256 | 0.481 | $477.39 \pm 19.00$ | 82.38 | 3.47 | $0.432 \pm 0.071$ |
| 1 A 18098 D | 71.00 W | 0.0001865 | 5.767 | 0.0057421 | 6.589 | 0.0001428 | 6.200 | 0.0060064 | 0.679 | 0.2481014 | 0.387 | $479.32 \pm 15.70$ | 77.75 | 4.21 | $0.449 \pm 0.060$ |
| 1 A 18099 D | 72.00 W | 0.0002888 | 5.896 | 0.0097023 | 4.285 | 0.0002232 | 4.890 | 0.0103980 | 0.583 | 0.4219476 | 0.235 | $482.55 \pm 13.94$ | 79.75 | 7.29 | $0.461 \pm 0.040$ |
| 1 A 18100 D | 72.80 W | 0.0002404 | 5.399 | 0.0107615 | 4.695 | 0.0002618 | 5.173 | 0.0129776 | 0.501 | 0.4849264 | 0.207 | $476.51 \pm 9.12$ | 85.39 | 9.10 | $0.518 \pm 0.049$ |
| 1 A 18103 D | 79.60 W | 0.0000642 | 15.061 | 0.0045424 | 5.699 | 0.0000858 | 10. 140 | 0.0041053 | 1.460 | 0.1476229 | 0.298 | $469.72 \pm 22.30$ | 87.27 | 2.88 | $0.388 \pm 0.046$ |
| 1 A 18104 D | 80.80 W | 0.0001785 | 5.783 | 0.0105758 | 3.260 | 0.0002469 | 3.550 | 0.0128965 | 0.458 | 0.4575240 | 0.109 | $470.03 \pm 7.42$ | 88.55 | 9.04 | $0.524 \pm 0.035$ |
| 1A18105D | 81.50 W | 0.0001903 | 6.516 | 0.0173060 | 2.876 | 0.0003455 | 3.176 | 0.0181797 | 0.475 | 0.6247766 | 0.069 | $468.85 \pm 6.68$ | 91.14 | 12.74 | $0.451 \pm 0.026$ |
| 1 A 18106 D | 82.00 W | 0.0001687 | 6.803 | 0.0186398 | 2.635 | 0.0002351 | 3.845 | 0.0077739 | 0.668 | 0.2902559 | 0.109 | $465.87 \pm 12.93$ | 83.19 | 5.44 | $0.179 \pm 0.010$ |
| 1 A 18108 D | 82.50 W | 0.0001008 | 9.074 | 0.0123932 | 3.473 | 0.0001013 | 11.987 | 0.0018633 | 1.849 | 0.0885586 | 0.366 | $478.82 \pm 41.87$ | 67.21 | 1.30 | $0.064 \pm 0.005$ |
| 1A18109D | 83.00 W | 0.0005339 | 2.202 | 0.0746873 | 2.442 | 0.0007611 | 2.140 | 0.0035388 | 0.728 | 0.2716778 | 0.122 | $504.00 \pm 27.03$ | 43.65 | 2.44 | $0.020 \pm 0.001$ |

### 3.4. S and MgO of plagioclase melt inclusions

Data from 8 inclusions, that were glassy after quenching, are presented in Table DR5 and Fig. DR9. S content varies from 0 to $1254 \mu \mathrm{~m} / \mathrm{g}$ and is uncorrelated to MgO which varies from 6.2 to $2.8 \mathrm{wt} \%$. A S content of $0 \mu \mathrm{~g} / \mathrm{g}$ is associated with cracks in the minerals and likely indicate degassing during mineral preparation or heating.

Table DR4. EMPA data (Uppsala) of glassy inclusions from sample EMP255 (see sample description and ${ }^{40} \mathrm{Ar} r^{\beta^{9}} \mathrm{Ar}$ data in (5). Inclusions with $S$ loss due to cracks are indicated in italics.

| Inclusion ID | TiO2 (wt\%) | FeO (wt\%) | $\mathbf{M g O}(\mathbf{w t \%})$ | $\mathbf{S}(\boldsymbol{\mu g} / \mathbf{g})$ |
| :---: | :---: | :---: | :---: | :---: |
| $1165 \_9$ | 1.06 | 12.18 | 4.9 | 1254 |
| $1165 \_15$ | 1.1 | 10.5 | 4.1 | 913 |
| $1165 \_15 b$ | 1.1 | 13.0 | 5.4 | 0 |
| $1185 \_6$ | 0.8 | 5.7 | 4.3 | 113 |
| $1185 \_3$ | 0.8 | 9.7 | 6.2 | 830 |
| $11853 b$ | 0.6 | 10.1 | 5.9 | 840 |
| $1193 \_O$ | 0.8 | 5.2 | 2.8 | 0 |
| $1190 \_2$ | 0.6 | 6.1 | 4.6 | 310 |



Figure DR9. Sulfur content in glassy inclusions from EMP255, vs MgO wt\%. Note that inclusions with low $S$ content are associated with a crack through the inclusion and a large bubble, indicating loss of (volatile) material sometime during the heating-quenching treatment. The micrographs are BSE images: black scalebar is $20 \mu \mathrm{~m}$. The amount of S those inclusions compare well with data from Kalkarindji (Antrim) lava flows (from (5)), suggesting these have been partially degassed.

### 3.5. S and MgO of Whole-rock samples

Sulfur contents from 372 basalt samples range mostly from ca. 0 to $1900 \mu \mathrm{~g} / \mathrm{g}$, although a few rare analyses show content up to $7000 \mu \mathrm{~g} / \mathrm{g}$ (Fig. DR10A; Table DR5). S is not correlated with MgO and the average S content (and standard deviation) is $884 \pm 432 \mu \mathrm{~g} / \mathrm{g}$ (Fig. 4).


Figure DR10. $S(\mu \mathrm{~g} / \mathrm{g})$ vs. MgO (wt\%) plot for Table Hill dolerites. A. whole data set. B. enlargement of A. Maximum values of Columbia River and Deccan basalts after Blake et al., (2010) and Black et al., 2012. Glassy inclusion analyses are shown for comparison and display a similar range of values compared to whole-rock analyses.

### 3.6 Fractal analyses of the Blackfella Rockhole Member.

The Blackfella rockhole member is a ca. 70 m thick volcanic breccia unit that contains minor basaltic lavas (Fig. DR11). It is spatially associated with the Bingy Bingy volcanic unit, a ca. 40 m thick glomeroporphyritic basalt that is slightly more evolved compared to the much thicker lava pile of the Antrim Plateau. The Bingy Bingy formation occurred over ca. 10,500 $\mathrm{km}^{2}$ whereas the extent of the Blackfella formation is estimated to be at least $15,000 \mathrm{~km}^{2}$.


Figure DR11. Field map showing the extent of the Blackfella Rockhole volcanic breccia (yellow), near the top of the Antrim Plateau Volcanics sequence (black).


Figure DR12. The Blackfella Rockhole volcanic breccia Member


Figure DR13. Volcanic bomb in the Blackfella Rockhole volcanic breccia Member
Fractal analysis of breccia fragments from the Blackfella Rockhole member (Fig. DR12, DR13) was performed, to investigate the cause of fragmentation and the explosive potential of this type of volcanism. We used (18) fractal spectrum technique for objectively classifying particles as (1) quench granulation, (2) magmatic blast/surge, (3) magmatic tephra fall and (4) phreatomagmatic. Shape files of 60 fragments from two samples (W03 and 099) from the Blackfella Rockhole Member have been analysed with this method (Fig. DR14). The Fractal spectrum method indicates that, over 30 fragments, 11 clasts were fragmented by magmatic blast/surge, 14 by phreatomagmatic processes, and 5 by quench granulation for sample W03. for sample 099 , similar results are observed with 17 clasts that were fragmented by magmatic blast/surge, 11 by phreatomagmatic processes, and 2 by quench granulation. In total, for the 60 fragments from the two samples, $47 \%$ of clasts were fragmented by magmatic blast/surge, $42 \%$ by phreatomagmatic processes, and $11 \%$ by quench granulation (Fig. DR13). No tephra fall were apparent in our analyses. Therefore, these data suggest that the Blackfella Rockhole Member is the result of explosive fragmentation involving blast/surge and phreatomagmatic explosion due the interaction of magma with water.


Figure DR14. Examples of different types of volcanic breccias fragments identified by fractal analysis. Coloured curves and outlines are representative clasts of the three different fragmentation mechanisms identified; grey curves are from (18).

## 4. Discussion

## 1. Sulfur degassed from the magma.

Both whole-rock and glassy inclusion $S$ contents show a comparable range of values (Fig. 4 and DR9). Fresh groundmass glass was absent from our sample suites preventing us to estimate the proportion of $S$ that has been degassed from the magma. Nevertheless, we can compare our whole-rock data with similar data obtained from other LIPs, such as the Siberia or Deccan LIPs, within which basaltic flows have maximum S values of $\sim 1700$ and $\sim 1400$ $\mu \mathrm{g} / \mathrm{g}$ and average values of $\sim 800$ and $850 \mu \mathrm{~g} / \mathrm{g}$, respectively $(4,17,19)$. These studies showed that flows and intrusions have a degassing efficiency ranging between 50 and $90 \%$ (average $\sim 64 \%$ ). The range of values and average ( $\sim 884 \mu \mathrm{~g} / \mathrm{g}$ ) of S contents obtained for the Table Hill Volcanics whole-rock samples compared to the maximum value of $1900 \mu \mathrm{~g} / \mathrm{g}$ suggests that the that most of the magma has been fairly well degassed of its initial sulfur content. At face value, comparing the maximum value and the mean value, a crude estimation of $53 \%$ of S degassing can be calculated, in agreement with estimates calculated for other LIPs. The total S emission from the Kalkarindji province is hard to estimate because our knowledge of key parameters (i.e. the total volume of the province, the initial S content of the magma, the percentage of sulfate assimilation and the real degassing efficiency of each flow and sill) are ultimately not well constrained. Assuming a total area of the Kalkarindji LIP of 2.1 $\times 10^{6} \mathrm{~km}^{2}$, an average thickness of 1-1.5 km, an average rock density of $3.0 \mathrm{~g} / \mathrm{cm} 3$, and a quantity of $\sim 1215-1000 \mu \mathrm{~g} / \mathrm{g}$ emitted (based on a maximum value of $1900 \mu \mathrm{~g} / \mathrm{g}$ and a degassing percentage of 64-53\%), the Kalkarindji LIP might have emitted between 6,350 and 11,500 Gt sulfur during its lifespan. Thermal plumes produced during eruptions (cf. discussion by (4) and references inside) and especially the occurrence of explosive breccias preserved in the Kalkarindji volcanic stratigraphy (cf. above) suggest that a significant part of the $S$ could have rise sufficiently high to reach the lower stratosphere. Finally, it should be stressed that these values do not account for the $S$ that might have been directly degassed by contact metamorphism between intrusions and the abundant sulfate deposit of the Australian Central basins.

## 2. Randomness calculation

We have calculated the probability ( $\mathrm{P}_{\mathrm{tot}}$ ) that large-scale continental volcanism and global extinction events are due to chance. Note that such calculations can be drastically improve and the following equations only provide a crude estimate. Nevertheless, this series of calculations suffice to demonstrate that the mass extinctions - LIP association cannot be due to chance with a probability of $6 \times 10^{-9} \%$ that the synchronicity between LIPs and mass extinctions is random.

The probability of $6 \times 10^{-9} \%$ is calculated by assuming that each province lasts 2 Ma (except Viluy traps, for which age uncertainties are considered to be 10 Ma ), that each of the 7 mass extinctions lasts 1 Ma , and that the Phanerozoic extends from 550 Ma to the present day. The probability value calculated for each LIP is multiplied with the others.

Ptot $=P_{(D)} * P_{(C)} * P_{(S)} * P_{(E)} * P_{(V)} * P_{(K)}$
Where $D=$ Deccan, $C=$ CAMP, $S=$ Siberia, $E=$ Emeishan, $V=$ Viluy and $K=$ Kalkarindji

For a given flood basalt:
$\mathrm{P}(\mathrm{x})=\left[(\mathrm{N}-\mathrm{n}) * \mathrm{~d}_{(\mathrm{ME})}\right] /\left[\mathrm{d}_{(\mathrm{Ph})} / \mathrm{d}_{(\mathrm{LLP})}\right]$
Where N is the total number of mass extinction; $\mathrm{d}(\mathrm{ME})$ is the duration of a mass extinction (ME) assumed to be $1 \mathrm{Ma}, \mathrm{d}(\mathrm{Ph})$ is the duration of the Phanerozoic which is 550 Ma and $\mathrm{d}($ LIP ) is the duration of the LIP volcanism arbitrarily set at 2 Ma (20) except for the Viluy trap where the uncertainty on the duration due to the preliminary measurement of (21) is conservatively set at 10 Ma .
n varies between 0 and 5 and depends on the number of $\mathrm{P}(\mathrm{x})$ already calculated. In other words, once the probability for a LIP to be associated with one of the 7 mass extinctions has been calculated, this mass extinction is removed from the total (i.e. starting with 7 mass extinctions, then $6,5 \ldots 1$ ). For example, starting with the probability that the $\mathrm{K} / \mathrm{Pg}$ boundary and the Deccan traps synchronicity is due to chance alone is $2.5 \%$ using $n=0$. Once the Deccan- $\mathrm{K} / \mathrm{Pg}$ pair are removed from the total $(\mathrm{n}=1)$, the probability that the $\mathrm{Tr} / \mathrm{J}$ boundary and CAMP synchronicity is due to chance alone is then $2.2 \%$.

## References

1. Hanley LM, Wingate MTD (2000) A SHRIMP zircon age for an Early Cambrian dolerite dyke - an intrusive phase of the Antrim Plateau Volcanics of northern Australia. Aust. J. Earth Sci. 46:1029-1040
2. Williams CT, Munro No. 1 well (W.A.) Canning Basin E.P. 3 well completion report. West Australian Petroleum Pty. Limited. 1972.
3. Grey K et al. (2005) Lithostratigraphic nomenclature of the Officer Basin and correlative parts of the Patterson Orogen, Western Australia. Geological Survey of Western Australia Report 93.
4. Black BA, Elkins-Tanton, LT, Rowe MC, Peate IU (2012) Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317-318:363-373.
5. Evins L, Jourdan F, Philips D (2009) The Cambrian Kalkarindji Large igneous province: extent and characteristics based on new ${ }^{40} \mathrm{Ar}{ }^{\beta 9} \mathrm{Ar}$ and geochemical data. Lithos 110:294304.
6. Capill L, Jackson D. Unpublished Ausquest Ltd report to WA Dept of Mines, Perth, 72p.
7. Gerstenberger H, Haase G (1999) A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136:309-312
8. Bowring JF, McLean NM, Bowring SA (2011) Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb-Redux. Geochem. Geophys. Geosyst. 12, Q0AA19.
9. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26:207-221.
10. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U: Phys. Rev. C4:18891906.
11. Ludwig KR (2003) User's manual for isoplot 3. 00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication 4, 1-77.
12. Jourdan F, Verati C, Féraud G (2006) Intercalibration of the $\mathrm{Hb} 3 \mathrm{gr} 40 \mathrm{Ar} / 39 \mathrm{Ar}$ dating standard. Chem. Geol. 231:177-189.
13. Jourdan F, Renne PR (2007) Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K-Ar standards. Geochim. Cosmochim. Acta 71, 387-402.
14. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and $40 \mathrm{Ar}^{*} / 40 \mathrm{~K}$ for the Fish Canyon sanidine standard, and improved accuracy for $\left.{ }^{40} \mathrm{Ar}\right)^{39} \mathrm{Ar}$ geochronology. Geochim. Cosmochim. Acta 74: 5349-5367.
15. Koppers AAP (2002) ArArCALC-software for $40 \mathrm{Ar} / 39 \mathrm{Ar}$ age calculations. Comp. Geosci. 28:605-619.
16. A. Marzoli et al. (2011) Timing and duration of the Central Atlantic magmatic province in the Newark and Culpeper basins, eastern U.S.A. Lithos 122:175-188.
17. Blake S, Self S, Sharma K, Sephton S (2010) Sulfur release from the Columbia River Basalts and other flood lava eruptions constrained by a model of sulfide saturation. Earth Planet. Sci. Lett. 299: 328-338.
18. Maria A, Carey S (2007) Quantitative discrimination of magma fragmentation and pyroclastic transport processes using the fractal spectrum technique. J. Volcanol. Geotherm. Res. 161:234-246.
19. Self S, Thordarson T, Widdowson M (2005) Gas Fluxes from Flood Basalt Eruptions. Elements 1:283-287.
20. Courtillot VE, Renne PR (2003) On the ages of flood basalt events. C. R. Geosci. 335: 113-140.
21. Courtillot V, Kravchinsky VA, Quidelleur X, Renne PR, Gladkochub DP (2010) Preliminary dating of the Viluy traps (Eastern Siberia): Eruption at the time of Late Devonian extinction events? Earth Planet. Sci. Lett. 300: 239-245.
22. Shellnutt JG, Denyszyn SW, Mundil R (2010) Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gond. Res. 22:118-126.
23. Schoene B, Guex J, Bartolini A., Schaltegger U, Blackburn TJ (2010) Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38:387-390.
24. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277:490-500.
25. Ganino C, Arndt NT (2009) Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37:323-326.
26. Jourdan F, Féraud G, Bertrand H, Watkeys MK, Renne PR (2008) ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ages of the sill complex of the Karoo large igneous province: implications for the PliensbachianToarcian climate change. Geochem. Geophys., Geosyst. 9:Q06009.

Table DR5. S ( $\mu \mathrm{g} / \mathrm{g}$ ) and MgO ( $\mathrm{wt} \%$ ) content of gabbroic sills from the Table Hills volcanic, intersected by 15 bore holes drilled in the officer basins (Fig. 1). Analyses determined by ICPEOSDrilling carried out by AusQuest Limited company. Coordinates for each bore hole and depth of each sample are provided. Start of each bore hole data are indicated in bold font.

| Hole No | GDA E | GDA N | Sample No | From | To | Interval | MgO | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (m) | (m) |  | (m) | (m) | (m) | (wt\%) | ( $\mu \mathrm{g} / \mathrm{g}$ ) |
| 07THD001 | 340154 | 7367674 | 102813 | 61.9 | 62.1 | 0.2 | 3.49 | 1090 |
| 07THD001 |  |  | 102814 | 66.0 | 66.2 | 0.2 | 0.92 | 638 |
| 07THD001 |  |  | 102815 | 69.9 | 70.1 | 0.2 | 3.23 | 619 |
| 07THD001 |  |  | 102816 | 70.9 | 71.1 | 0.2 | 1.40 | 6963 |
| 07THD001 |  |  | 102817 | 73.9 | 74.1 | 0.2 | 2.83 | 1294 |
| 07THD001 |  |  | 102818 | 77.9 | 78.1 | 0.2 | 3.18 | 1522 |
| 07THD001 |  |  | 102819 | 81.9 | 82.1 | 0.2 | 3.61 | 1150 |
| 07THD001 |  |  | 102820 | 85.9 | 86.1 | 0.2 | 3.54 | 1081 |
| 07THD001 |  |  | 102821 | 89.9 | 90.1 | 0.2 | 3.56 | 1060 |
| 07THD001 |  |  | 102822 | 93.9 | 94.1 | 0.2 | 3.47 | 537 |
| 07THD001 |  |  | 102823 | 97.9 | 98.1 | 0.2 | 3.55 | 1010 |
| 07THD001 |  |  | 102824 | 101.9 | 102.1 | 0.2 | 3.82 | 493 |
| 07THD001 |  |  | 102825 | 105.9 | 106.1 | 0.2 | 4.90 | 903 |
| 07THD001 |  |  | 102826 | 111.1 | 111.3 | 0.2 | 4.93 | 942 |
| 07THD001 |  |  | 102827 | 114.1 | 114.3 | 0.2 | 5.22 | 901 |
| 07THD001 |  |  | 102828 | 117.9 | 118.1 | 0.2 | 5.01 | 992 |
| 07THD001 |  |  | 102829 | 121.2 | 121.5 | 0.3 | 4.36 | 278 |
| 07THD001 |  |  | 102830 | 125.2 | 125.4 | 0.2 | 0.52 | 16 |
| 07THD001 |  |  | 102831 | 126.2 | 126.4 | 0.2 | 5.10 | 906 |
| 07THD001 |  |  | 102832 | 129.8 | 130.0 | 0.2 | 5.86 | 761 |
| 07THD001 |  |  | 102833 | 134.0 | 134.2 | 0.2 | 5.58 | 1015 |
| 07THD001 |  |  | 102834 | 138.1 | 138.3 | 0.2 | 5.53 | 475 |
| 07THD001 |  |  | 102835 | 142.2 | 142.4 | 0.2 | 2.28 | 1026 |
| 07THD001 |  |  | 102836 | 145.9 | 146.1 | 0.2 | 5.89 | 846 |
| 07THD001 |  |  | 102837 | 150.1 | 150.3 | 0.2 | 5.66 | 939 |
| 07THD001 |  |  | 102838 | 154.1 | 154.3 | 0.2 | 4.97 | 1020 |
| 07THD001 |  |  | 102839 | 158.1 | 158.3 | 0.2 | 5.26 | 1087 |
| 07THD001 |  |  | 102840 | 161.9 | 162.1 | 0.2 | 5.33 | 851 |
| 07THD001 |  |  | 102841 | 165.9 | 166.1 | 0.2 | 4.94 | 1119 |
| 07THD001 |  |  | 102842 | 169.9 | 170.1 | 0.2 | 4.53 | 819 |
| 07THD001 |  |  | 102843 | 174.2 | 174.4 | 0.2 | 4.48 | 921 |
| 07THD001 |  |  | 102844 | 177.9 | 178.1 | 0.2 | 5.88 | 246 |
| 07THD001 |  |  | 102845 | 180.1 | 180.3 | 0.2 | 4.55 | 160 |
| 07THD001 |  |  | 102846 | 181.0 | 181.2 | 0.2 | 4.45 | 1081 |
| 07THD002 | 342847 | 7392547 | 103143 | 70.1 | 70.3 | 0.2 | 4.32 | 882 |
| 07THD002 |  |  | 103144 | 74.1 | 74.3 | 0.2 | 4.02 | 952 |
| 07THD002 |  |  | 103145 | 78.1 | 78.3 | 0.2 | 4.04 | 931 |
| 07THD002 |  |  | 103146 | 82.1 | 82.3 | 0.2 | 4.26 | 556 |
| 07THD002 |  |  | 103147 | 86.1 | 86.3 | 0.2 | 4.74 | 856 |
| 07THD002 |  |  | 103148 | 90.1 | 90.3 | 0.2 | 4.58 | 896 |
| 07THD002 |  |  | 103149 | 94.1 | 94.3 | 0.2 | 4.76 | 887 |
| 07THD002 |  |  | 103150 | 98.1 | 98.3 | 0.2 | 4.87 | 744 |
| 07THD002 |  |  | 103151 | 102.1 | 102.3 | 0.2 | 5.26 | 571 |


| 07THD002 |  |  | 103152 | 106.1 | 106.3 | 0.2 | 5.28 | 764 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 07THD002 |  |  | 103153 | 110.1 | 110.3 | 0.2 | 5.60 | 455 |
| 07THD002 |  |  | 103154 | 114.1 | 114.3 | 0.2 | 4.96 | 390 |
| 07THD002 |  |  | 103155 | 118.1 | 118.3 | 0.2 | 5.06 | 602 |
| 07THD002 |  |  | 103156 | 122.1 | 122.3 | 0.2 | 5.88 | 687 |
| 07THD002 |  |  | 103157 | 126.1 | 126.3 | 0.2 | 6.29 | 429 |
| 07THD002 |  |  | 103158 | 130.1 | 130.3 | 0.2 | 6.05 | 662 |
| 07THD002 |  |  | 103159 | 134.1 | 134.3 | 0.2 | 5.68 | 558 |
| 07THD002 |  |  | 103160 | 138.3 | 138.5 | 0.2 | 5.85 | 695 |
| 07THD002 |  |  | 103161 | 142.1 | 142.3 | 0.2 | 5.80 | 636 |
| 07THD002 |  |  | 103162 | 146.1 | 146.3 | 0.2 | 5.96 | 779 |
| 07THD002 |  |  | 103163 | 150.1 | 150.3 | 0.2 | 5.79 | 907 |
| 07THD002 |  |  | 103164 | 154.1 | 154.3 | 0.2 | 5.56 | 955 |
| 07THD002 |  |  | 103165 | 158.1 | 158.3 | 0.2 | 5.95 | 940 |
| 07THD002 |  |  | 103166 | 162.1 | 162.3 | 0.2 | 5.23 | 980 |
| 07THD002 |  |  | 103167 | 166.1 | 166.3 | 0.2 | 4.62 | 925 |
| 07THD002 |  |  | 103168 | 170.1 | 170.3 | 0.2 | 4.50 | 1149 |
| 07THD002 |  |  | 103169 | 172.6 | 172.8 | 0.2 | 4.46 | 996 |
| 07THD002 |  |  | 103170 | 179.1 | 179.3 | 0.2 | 4.54 | 349 |
| 07THD002 |  |  | 103171 | 180.1 | 180.3 | 0.2 | 4.82 | 489 |
| 08THD004 | 340653 | 7368377 | 104825 | 50.0 | 55.0 | 5.0 | 3.22 | 800 |
| 08THD004 |  |  | 104826 | 55.0 | 60.0 | 5.0 | 3.32 | 950 |
| 08THD004 |  |  | 104827 | 60.0 | 65.0 | 5.0 | 3.63 | 950 |
| 08THD004 |  |  | 104828 | 65.0 | 70.0 | 5.0 | 4.26 | 900 |
| 08THD004 |  |  | 104829 | 70.0 | 75.0 | 5.0 | 4.94 | 800 |
| 08THD004 |  |  | 104830 | 75.0 | 80.0 | 5.0 | 5.11 | 700 |
| 08THD004 |  |  | 104831 | 80.0 | 85.0 | 5.0 | 5.01 | 750 |
| 08THD004 |  |  | 104832 | 85.0 | 90.0 | 5.0 | 5.36 | 750 |
| 08THD004 |  |  | 104833 | 90.0 | 92.9 | 2.9 | 5.21 | 450 |
| 08THD004 |  |  | 104834 | 100.0 | 100.2 | 0.2 | 5.87 | 950 |
| 08THD004 |  |  | 104835 | 105.1 | 105.3 | 0.2 | 5.19 | 900 |
| 08THD004 |  |  | 104836 | 110.1 | 110.3 | 0.2 | 5.29 | 700 |
| 08THD004 |  |  | 104837 | 115.1 | 115.3 | 0.2 | 5.21 | 800 |
| 08THD004 |  |  | 104838 | 120.1 | 120.3 | 0.2 | 4.84 | 800 |
| 08THD004 |  |  | 104839 | 123.0 | 123.2 | 0.2 | 4.21 | 500 |
| 08THD005 | 340786 | 7369310 | 104899 | 35 | 40 | 5 | 3.03 | 800 |
| 08THD005 |  |  | 104900 | 40 | 45 | 5 | 3.20 | 1400 |
| 08THD005 |  |  | 104901 | 45 | 50 | 5 | 3.85 | 900 |
| 08THD005 |  |  | 104902 | 50 | 55 | 5 | 4.41 | 900 |
| 08THD005 |  |  | 104903 | 55 | 60 | 5 | 4.73 | 800 |
| 08THD005 |  |  | 104904 | 60 | 65 | 5 | 4.81 | 1150 |
| 08THD005 |  |  | 104905 | 65 | 70 | 5 | 5.44 | 1100 |
| 08THD005 |  |  | 104906 | 70 | 75 | 5 | 5.45 | 1000 |
| 08THD005 |  |  | 104907 | 75 | 78 | 3 | 5.67 | 1050 |
| 08THD005 |  |  | 104908 | 78.1 | 78.3 | 0.2 | 6.91 | 1000 |
| 08THD005 |  |  | 104909 | 80.1 | 80.3 | 0.2 | 6.33 | 1050 |
| 08THD005 |  |  | 104910 | 85.1 | 85.3 | 0.2 | 4.78 | 1100 |
| 08THD005 |  |  | 104911 | 90.1 | 90.3 | 0.2 | 5.36 | 1000 |
| 08THD005 |  |  | 104912 | 95.1 | 95.3 | 0.2 | 5.34 | 800 |
| 08THD005 |  |  | 104913 | 100.1 | 100.3 | 0.2 | 5.26 | 500 |
| 08THD005 |  |  | 104914 | 105.3 | 105.5 | 0.2 | 3.66 | 400 |
| 08THD006 | 339858 | 7367657 | 104992 | 49.0 | 54.0 | 5.0 | 3.32 | 100 |


| 08THD006 |  |  | 104993 | 54.0 | 59.0 | 5.0 | 3.53 | 700 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 08 THD006 |  |  | 104994 | 59.0 | 64.0 | 5.0 | 3.40 | 750 |
| 08THD006 |  |  | 104995 | 64.0 | 69.0 | 5.0 | 2.65 | 1000 |
| 08 THD006 |  |  | 104996 | 70.4 | 70.6 | 0.2 | 2.64 | 1550 |
| 08THD006 |  |  | 104997 | 72.5 | 72.7 | 0.2 | 3.03 | 4700 |
| 08THD006 |  |  | 104998 | 77.4 | 77.6 | 0.2 | 3.25 | 2600 |
| 08 THD006 |  |  | 104999 | 82.4 | 82.6 | 0.2 | 2.62 | 1350 |
| 08THD006 |  |  | 105000 | 86.8 | 87.0 | 0.2 | 1.36 | 1000 |
| 08THD006 |  |  | 104961 | 91.6 | 91.8 | 0.2 | 2.21 | 2750 |
| 08THD006 |  |  | 104962 | 96.7 | 96.9 | 0.2 | 3.02 | 1600 |
| 08THD006 |  |  | 104963 | 100.3 | 100.5 | 0.2 | 3.12 | 1250 |
| 08 THD006 |  |  | 104964 | 104.7 | 104.9 | 0.2 | 2.97 | 1700 |
| 08THD006 |  |  | 104965 | 110.3 | 110.5 | 0.2 | 3.20 | 1150 |
| 08THD006 |  |  | 104966 | 115.5 | 115.7 | 0.2 | 3.78 | 1700 |
| 08 THD006 |  |  | 104967 | 120.5 | 120.7 | 0.2 | 3.20 | 900 |
| 08THD006 |  |  | 104968 | 125.4 | 125.6 | 0.2 | 3.98 | 750 |
| 08 THD006 |  |  | 104969 | 130.5 | 130.7 | 0.2 | 5.09 | 1050 |
| 08THD006 |  |  | 104970 | 135.5 | 135.7 | 0.2 | 5.34 | 900 |
| 08THD006 |  |  | 104971 | 140.3 | 140.5 | 0.2 | 5.01 | 1000 |
| 08 THD006 |  |  | 104972 | 145.3 | 145.5 | 0.2 | 4.73 | 800 |
| 08THD006 |  |  | 104973 | 150.4 | 150.6 | 0.2 | 5.52 | 150 |
| 08THD006 |  |  | 104974 | 154.7 | 154.9 | 0.2 | 5.06 | 1000 |
| 08 THD006 |  |  | 104975 | 160.1 | 160.3 | 0.2 | 5.99 | 1100 |
| 08THD006 |  |  | 104976 | 165.1 | 165.3 | 0.2 | 5.82 | 1100 |
| 08THD006 |  |  | 104977 | 170.1 | 170.3 | 0.2 | 4.89 | 1100 |
| 08THD006 |  |  | 104978 | 175.5 | 175.7 | 0.2 | 4.87 | 1550 |
| 08THD006 |  |  | 104979 | 180.4 | 180.6 | 0.2 | 5.06 | 1350 |
| 08THD006 |  |  | 104980 | 185.4 | 185.6 | 0.2 | 4.49 | 450 |
| 08THD006 |  |  | 103601 | 187.2 | 187.4 | 0.2 | 4.41 | 400 |
| 08THD007 | 339863 | 7367666 | 103663 | 90.1 | 90.3 | 0.2 | 1.38 | 1250 |
| 08 THD007 |  |  | 103664 | 95.1 | 95.3 | 0.2 | 1.92 | 700 |
| 08 THD007 |  |  | 103665 | 100.1 | 100.3 | 0.2 | 2.49 | 1300 |
| 08 THD007 |  |  | 103666 | 105.1 | 105.3 | 0.2 | 2.98 | 1050 |
| 08 THD007 |  |  | 103667 | 110.1 | 110.3 | 0.2 | 3.60 | 650 |
| 08THD007 |  |  | 103668 | 115.1 | 115.3 | 0.2 | 5.14 | 1250 |
| 08 THD007 |  |  | 103669 | 120.1 | 120.3 | 0.2 | 2.95 | 1900 |
| 08THD007 |  |  | 103670 | 125.1 | 125.3 | 0.2 | 3.70 | 450 |
| 08 THD007 |  |  | 103671 | 129.6 | 129.8 | 0.2 | 4.66 | 700 |
| 08 THD007 |  |  | 103672 | 135.1 | 135.3 | 0.2 | 5.16 | 550 |
| 08 THD007 |  |  | 103673 | 140.2 | 140.4 | 0.2 | 5.41 | 750 |
| 08 THD007 |  |  | 103674 | 145.1 | 145.3 | 0.2 | 5.32 | 800 |
| 08THD007 |  |  | 103675 | 150.1 | 150.3 | 0.2 | 5.24 | 800 |
| 08 THD007 |  |  | 103676 | 155.2 | 155.4 | 0.2 | 5.45 | 4100 |
| 08 THD007 |  |  | 103677 | 160.1 | 160.3 | 0.2 | 5.45 | 1050 |
| 08THD007 |  |  | 103678 | 165.1 | 165.3 | 0.2 | 6.32 | 650 |
| 08THD007 |  |  | 103679 | 170.1 | 170.3 | 0.2 | 5.92 | 1100 |
| 08 THD007 |  |  | 103680 | 175.2 | 175.4 | 0.2 | 5.67 | 1000 |
| 08 THD007 |  |  | 103681 | 180.2 | 180.4 | 0.2 | 5.16 | 1000 |
| 08THD007 |  |  | 103682 | 185.3 | 185.5 | 0.2 | 5.11 | 600 |
| 08THD007 |  |  | 103683 | 189.6 | 189.8 | 0.2 | 4.81 | 550 |
| 08 THD007 |  |  | 103684 | 190.3 | 190.5 | 0.2 | 6.48 | 300 |
| 08THD008 | 340828 | 7367809 | 103753 | 48 | 52 | 4.0 | 2.79 | 150 |


| 08THD008 |  |  | 103754 | 52 | 56 | 4.0 | 2.85 | 400 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 08THD008 |  |  | 103755 | 56 | 60 | 4.0 | 3.03 | 1050 |
| 08THD008 |  |  | 103765 | 60 | 65 | 5.0 | 2.84 | 1150 |
| 08THD008 |  |  | 103766 | 65 | 70 | 5.0 | 3.18 | 900 |
| 08THD008 |  |  | 103756 | 70.5 | 70.7 | 0.2 | 3.55 | 900 |
| 08THD008 |  |  | 103757 | 75.1 | 75.3 | 0.2 | 3.91 | 650 |
| 08THD008 |  |  | 103758 | 80.1 | 80.3 | 0.2 | 3.56 | 1000 |
| 08THD008 |  |  | 103759 | 85.1 | 85.3 | 0.2 | 4.28 | 900 |
| 08THD008 |  |  | 103760 | 90.1 | 90.3 | 0.2 | 5.11 | 900 |
| 08THD008 |  |  | 103761 | 95.1 | 95.3 | 0.2 | 5.31 | 850 |
| 08THD008 |  |  | 103762 | 100.1 | 100.3 | 0.2 | 5.39 | 800 |
| 08THD008 |  |  | 103763 | 105.1 | 105.3 | 0.2 | 2.52 | 950 |
| 08THD008 |  |  | 103764 | 110 | 110.2 | 0.2 | 2.62 | 700 |
| 08THD008 |  |  | 103767 | 115.2 | 115.4 | 0.2 | 5.55 | 800 |
| 08THD008 |  |  | 103768 | 120.1 | 120.3 | 0.2 | 6.83 | 850 |
| 08THD008 |  |  | 103769 | 125.1 | 125.3 | 0.2 | 5.95 | 950 |
| 08THD008 |  |  | 103770 | 130.1 | 130.3 | 0.2 | 6.35 | 950 |
| 08THD008 |  |  | 103771 | 135 | 135.2 | 0.2 | 6.00 | 850 |
| 08THD008 |  |  | 103772 | 140.1 | 140.3 | 0.2 | 6.28 | 900 |
| 08THD008 |  |  | 103773 | 145.1 | 145.3 | 0.2 | 6.57 | 1000 |
| 08THD008 |  |  | 103774 | 150.2 | 150.4 | 0.2 | 5.94 | 950 |
| 08THD008 |  |  | 103775 | 155 | 155.2 | 0.2 | 5.79 | 1000 |
| 08THD008 |  |  | 103776 | 160 | 160.2 | 0.2 | 5.70 | 1000 |
| 08THD008 |  |  | 103777 | 165.1 | 165.3 | 0.2 | 5.31 | 1050 |
| 08THD008 |  |  | 103778 | 170.2 | 170.4 | 0.2 | 5.02 | 1150 |
| 08THD008 |  |  | 103779 | 175.1 | 175.3 | 0.2 | 3.63 | 650 |
| 08THD008 |  |  | 103780 | 176.1 | 176.3 | 0.2 | 2.75 | 50 |
| 08THD009 | 340176 | 7367683 | 103844 | 80.0 | 80.2 | 0.2 | 2.69 | 1350 |
| 08THD009 |  |  | 103845 | 85.0 | 85.2 | 0.2 | 3.22 | 200 |
| 08THD009 |  |  | 103846 | 90.0 | 90.2 | 0.2 | 3.56 | 1050 |
| 08THD009 |  |  | 103847 | 95.1 | 95.3 | 0.2 | 3.73 | 1050 |
| 08THD009 |  |  | 103848 | 100.0 | 100.2 | 0.2 | 3.73 | 950 |
| 08THD009 |  |  | 103849 | 105.1 | 105.3 | 0.2 | 3.40 | 700 |
| 08THD009 |  |  | 103850 | 110.1 | 110.3 | 0.2 | 4.29 | 1000 |
| 08THD009 |  |  | 103851 | 115.1 | 115.3 | 0.2 | 5.12 | 950 |
| 08THD009 |  |  | 103852 | 120.1 | 120.3 | 0.2 | 5.17 | 800 |
| 08THD009 |  |  | 103853 | 125.1 | 125.3 | 0.2 | 5.44 | 950 |
| 08THD009 |  |  | 103854 | 130.1 | 130.3 | 0.2 | 5.49 | 850 |
| 08THD009 |  |  | 103855 | 135.1 | 135.3 | 0.2 | 5.34 | 850 |
| 08THD009 |  |  | 103856 | 140.2 | 140.4 | 0.2 | 5.75 | 900 |
| 08THD009 |  |  | 103857 | 145.1 | 145.3 | 0.2 | 5.95 | 900 |
| 08THD009 |  |  | 103858 | 150.1 | 150.3 | 0.2 | 6.10 | 1100 |
| 08THD009 |  |  | 103859 | 155.1 | 155.3 | 0.2 | 6.12 | 1000 |
| 08THD009 |  |  | 103860 | 160.1 | 160.3 | 0.2 | 5.32 | 1050 |
| 08THD009 |  |  | 103861 | 165.2 | 165.4 | 0.2 | 5.39 | 950 |
| 08THD009 |  |  | 103862 | 170.1 | 170.3 | 0.2 | 5.41 | 950 |
| 08THD009 |  |  | 103863 | 175.1 | 175.3 | 0.2 | 5.27 | 950 |
| 08THD009 |  |  | 103864 | 180.2 | 180.4 | 0.2 | 4.87 | 700 |
| 08THD009 |  |  | 103865 | 185.1 | 185.3 | 0.2 | 4.63 | 900 |
| 08THD010 | 339948 | 7367407 | 104033 | 52 | 54 | 2 | 1.71 |  |
| 08THD010 |  |  | 104037 | 60.1 | 60.3 | 0.2 | 4.23 | 900 |
| 08THD010 |  |  | 104038 | 65.0 | 65.2 | 0.2 | 4.38 | 900 |


| 08THD010 |  |  | 104039 | 70.0 | 70.2 | 0.2 | 4.46 | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 08THD010 |  |  | 104040 | 75.2 | 75.4 | 0.2 | 2.87 | 750 |
| 08THD010 |  |  | 104041 | 80.1 | 80.3 | 0.2 | 3.63 | 1050 |
| 08THD010 |  |  | 104042 | 85.1 | 85.3 | 0.2 | 3.71 | 1050 |
| 08THD010 |  |  | 104043 | 90.2 | 90.4 | 0.2 | 2.87 | 250 |
| 08THD010 |  |  | 104044 | 95.1 | 95.3 | 0.2 | 2.85 | 1100 |
| 08THD010 |  |  | 104045 | 100.1 | 100.3 | 0.2 | 3.42 | 1050 |
| 08THD010 |  |  | 104046 | 105.1 | 105.3 | 0.2 | 2.97 | 350 |
| 08THD010 |  |  | 104047 | 110.2 | 110.4 | 0.2 | 3.68 | 900 |
| 08THD010 |  |  | 104048 | 115.2 | 115.4 | 0.2 | 4.19 | 100 |
| 08THD010 |  |  | 104049 | 120.2 | 120.4 | 0.2 | 4.54 | 600 |
| 08THD010 |  |  | 104050 | 125.2 | 125.4 | 0.2 | 4.81 | 250 |
| 08THD010 |  |  | 104051 | 130.1 | 130.3 | 0.2 | 4.87 | 850 |
| 08THD010 |  |  | 104052 | 135.2 | 135.4 | 0.2 | 5.22 | 650 |
| 08THD010 |  |  | 104053 | 140.1 | 140.3 | 0.2 | 5.04 | 850 |
| 08THD010 |  |  | 104054 | 145.1 | 145.3 | 0.2 | 5.85 | 800 |
| 08THD010 |  |  | 104055 | 150.2 | 150.4 | 0.2 | 6.08 | 1150 |
| 08THD010 |  |  | 104056 | 155.2 | 155.4 | 0.2 | 5.52 | 1050 |
| 08THD010 |  |  | 104080 | 160.2 | 160.4 | 0.2 | 5.34 | 950 |
| 08THD010 |  |  | 104081 | 165.2 | 165.4 | 0.2 | 4.76 | 1150 |
| 08THD010 |  |  | 104086 | 190.1 | 190.3 | 0.2 | 4.11 | 1050 |
| 08THD010 |  |  | 104087 | 195.2 | 195.4 | 0.2 | 4.49 | 1100 |
| 08THD010 |  |  | 104088 | 200.1 | 200.3 | 0.2 | 4.61 | 1200 |
| 08THD011 | 339805 | 7368492 | 104139 | 64 | 69 | 5 | 3.40 | 950 |
| 08THD011 |  |  | 104140 | 69 | 74 | 5 | 3.61 | 1050 |
| 08 THD011 |  |  | 104141 | 74 | 79 | 5 | 3.43 | 1150 |
| 08THD011 |  |  | 104142 | 79 | 84 | 5 | 4.31 | 950 |
| 08THD011 |  |  | 104143 | 84 | 88 | 4 | 3.07 | 1100 |
| 08THD011 |  |  | 104171 | 90.0 | 90.2 | 0.2 | 4.76 | 400 |
| 08THD011 |  |  | 104170 | 95.2 | 95.4 | 0.2 | 5.11 | 1150 |
| 08THD011 |  |  | 104169 | 100.1 | 100.3 | 0.2 | 5.44 | 1150 |
| 08THD011 |  |  | 104168 | 105.2 | 105.4 | 0.2 | 5.31 | 1050 |
| 08THD011 |  |  | 104167 | 110.1 | 110.3 | 0.2 | 5.82 | 1000 |
| 08THD011 |  |  | 104166 | 115.0 | 115.2 | 0.2 | 6.23 | 350 |
| 08THD011 |  |  | 104165 | 120.2 | 120.4 | 0.2 | 5.90 | 900 |
| 08THD011 |  |  | 104164 | 125.1 | 125.3 | 0.2 | 5.69 | 750 |
| 08THD011 |  |  | 104163 | 129.8 | 130.0 | 0.2 | 5.77 | 700 |
| 08THD011 |  |  | 104162 | 135.1 | 135.3 | 0.2 | 5.34 | 850 |
| 08THD011 |  |  | 104161 | 139.8 | 140.0 | 0.2 | 5.69 | 900 |
| 08THD011 |  |  | 104160 | 145.1 | 145.3 | 0.2 | 5.41 | 900 |
| 08THD011 |  |  | 104159 | 150.2 | 150.4 | 0.2 | 5.19 | 900 |
| 08 THD011 |  |  | 104158 | 155.1 | 155.3 | 0.2 | 4.87 | 950 |
| 08THD011 |  |  | 104157 | 160.1 | 160.3 | 0.2 | 3.86 | 1000 |
| 08THD011 |  |  | 104156 | 165.2 | 165.4 | 0.2 | 3.96 | 1000 |
| 08THD011 |  |  | 104155 | 170.2 | 170.4 | 0.2 | 3.51 | 1000 |
| 08THD011 |  |  | 104154 | 175.1 | 175.3 | 0.2 | 3.48 | 950 |
| 08THD011 |  |  | 104153 | 180.2 | 180.4 | 0.2 | 3.33 | 1150 |
| 08THD011 |  |  | 104152 | 184.8 | 185.0 | 0.2 | 3.23 | 1250 |
| 08THD011 |  |  | 104151 | 190.0 | 190.2 | 0.2 | 3.50 | 100 |
| 08 THD011 |  |  | 104150 | 195.2 | 195.4 | 0.2 | 2.04 | 1150 |
| 08THD011 |  |  | 104149 | 199.8 | 200.0 | 0.2 | 3.45 | 1050 |
| 08THD011 |  |  | 104148 | 205.1 | 205.3 | 0.2 | 3.81 | 1050 |


| 08THD011 |  |  | 104147 | 209.8 | 210.0 | 0.2 | 3.60 | 1050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 08THD012 | 339954 | 7367417 | 104213 | 60.2 | 60.4 | 0.2 | 3.68 | 950 |
| 08THD012 |  |  | 104214 | 65.1 | 65.3 | 0.2 | 4.53 | 1000 |
| 08THD012 |  |  | 104215 | 70.2 | 70.4 | 0.2 | 4.24 | 800 |
| 08THD012 |  |  | 104216 | 75.2 | 75.4 | 0.2 | 4.24 | 700 |
| 08THD012 |  |  | 104217 | 80.2 | 80.4 | 0.2 | 3.73 | 1100 |
| 08THD012 |  |  | 104218 | 85.1 | 85.3 | 0.2 | 3.56 | 1050 |
| 08THD012 |  |  | 104219 | 90.2 | 90.4 | 0.2 | 2.72 | 1200 |
| 08THD012 |  |  | 104220 | 95.2 | 95.4 | 0.2 | 2.69 | 1050 |
| 08THD012 |  |  | 104221 | 100.2 | 100.4 | 0.2 | 3.33 | 600 |
| 08THD012 |  |  | 104222 | 105.2 | 105.4 | 0.2 | 2.92 | 1050 |
| 08THD012 |  |  | 104223 | 110.2 | 110.4 | 0.2 | 3.55 | 1050 |
| 08THD012 |  |  | 104224 | 115.1 | 115.3 | 0.2 | 3.03 | 250 |
| 08THD012 |  |  | 104225 | 120.2 | 120.4 | 0.2 | 3.71 | 1050 |
| 08THD012 |  |  | 104226 | 125.1 | 125.3 | 0.2 | 4.10 | 950 |
| 08THD012 |  |  | 104227 | 130.1 | 130.3 | 0.2 | 3.88 | 250 |
| 08THD012 |  |  | 104228 | 135.1 | 135.3 | 0.2 | 4.81 | 850 |
| 08THD012 |  |  | 104229 | 140.1 | 140.3 | 0.2 | 5.12 | 400 |
| 08THD012 |  |  | 104230 | 145.0 | 145.2 | 0.2 | 5.57 | 800 |
| 08THD012 |  |  | 104231 | 150.4 | 150.6 | 0.2 | 3.61 | 150 |
| 08THD012 |  |  | 104232 | 155.1 | 155.3 | 0.2 | 5.11 | 450 |
| 08THD012 |  |  | 104233 | 160.1 | 160.3 | 0.2 | 2.90 | 100 |
| 08THD012 |  |  | 104234 | 165.1 | 165.3 | 0.2 | 6.04 | 650 |
| 08THD012 |  |  | 104235 | 170.1 | 170.3 | 0.2 | 6.35 | 550 |
| 08THD012 |  |  | 104236 | 175.1 | 175.3 | 0.2 | 6.08 | 650 |
| 08THD012 |  |  | 104237 | 180.4 | 180.6 | 0.2 | 5.64 | 850 |
| 08THD012 |  |  | 104238 | 185.2 | 185.4 | 0.2 | 4.46 | 500 |
| 08THD012 |  |  | 104239 | 190.2 | 190.4 | 0.2 | 5.74 | 1000 |
| 08THD012 |  |  | 104240 | 195.0 | 195.2 | 0.2 | 5.31 | 1100 |
| 08THD012 |  |  | 104241 | 200.1 | 200.3 | 0.2 | 4.94 | 150 |
| 08THD012 |  |  | 104242 | 202.1 | 202.3 | 0.2 | 3.75 | 150 |
| 08THD013 | 339958 | 7367401 | 104287 | 70.1 | 70.3 | 0.2 | 4.11 | 900 |
| 08THD013 |  |  | 104288 | 75.3 | 75.5 | 0.2 | 3.30 | 450 |
| 08THD013 |  |  | 104289 | 80.1 | 80.3 | 0.2 | 3.75 | 500 |
| 08THD013 |  |  | 104290 | 85.1 | 85.3 | 0.2 | 3.60 | 1050 |
| 08THD013 |  |  | 104291 | 90.3 | 90.5 | 0.2 | 3.30 | 1000 |
| 08THD013 |  |  | 104292 | 95.3 | 95.5 | 0.2 | 2.79 | 1200 |
| 08THD013 |  |  | 104293 | 100.8 | 101 | 0.2 | 4.78 | 100 |
| 08THD013 |  |  | 104294 | 105.1 | 105.3 | 0.2 | 3.05 | 200 |
| 08THD013 |  |  | 104295 | 110.2 | 110.4 | 0.2 | 3.40 | 1050 |
| 08THD013 |  |  | 104296 | 115 | 115.2 | 0.2 | 3.60 | 950 |
| 08THD013 |  |  | 104297 | 120.1 | 120.3 | 0.2 | 3.38 | 850 |
| 08THD013 |  |  | 104298 | 125.3 | 125.5 | 0.2 | 4.51 | 500 |
| 08THD013 |  |  | 104299 | 130.1 | 130.3 | 0.2 | 5.01 | 550 |
| 08THD013 |  |  | 104300 | 135.1 | 135.3 | 0.2 | 4.99 | 100 |
| 08THD013 |  |  | 104301 | 140.1 | 140.3 | 0.2 | 5.74 | 1000 |
| 08THD013 |  |  | 104302 | 145.2 | 145.4 | 0.2 | 5.21 | 800 |
| 08THD013 |  |  | 104303 | 150.2 | 150.4 | 0.2 | 4.89 | 850 |
| 08THD013 |  |  | 104304 | 155.1 | 155.3 | 0.2 | 5.37 | 900 |
| 08THD013 |  |  | 104305 | 160 | 160.2 | 0.2 | 5.16 | 950 |
| 08THD013 |  |  | 104306 | 165.1 | 165.3 | 0.2 | 5.27 | 900 |
| 08THD013 |  |  | 104307 | 168.6 | 168.8 | 0.2 | 5.34 | 1000 |


| 08THD013 |  |  | 104308 | 174.2 | 174.4 | 0.2 | 5.69 | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 08THD013 |  |  | 104309 | 180.1 | 180.3 | 0.2 | 5.54 | 1000 |
| 08 THD013 |  |  | 104310 | 185 | 185.2 | 0.2 | 5.21 | 950 |
| 08THD013 |  |  | 104311 | 190 | 190.2 | 0.2 | 5.37 | 850 |
| 08 THD013 |  |  | 104312 | 195.1 | 195.3 | 0.2 | 5.29 | 1050 |
| 08THD013 |  |  | 104313 | 200.1 | 200.3 | 0.2 | 5.06 | 1100 |
| 08THD013 |  |  | 104314 | 205.2 | 205.4 | 0.2 | 5.29 | 650 |
| 08 THD013 |  |  | 104315 | 209.3 | 209.5 | 0.2 | 4.73 | 1150 |
| 08THD014 | 340652 | 7368357 | 104374 | 65.2 | 65.4 | 0.2 | 4.56 | 50 |
| 08THD014 |  |  | 104375 | 70 | 70.2 | 0.2 | 5.02 | 50 |
| 08THD014 |  |  | 104376 | 74.8 | 75 | 0.2 | 5.01 | 800 |
| 08 THD014 |  |  | 104377 | 80 | 80.2 | 0.2 | 5.21 | 800 |
| 08 THD014 |  |  | 104378 | 85.5 | 85.7 | 0.2 | 5.22 | 850 |
| 08THD014 |  |  | 104379 | 90.3 | 90.5 | 0.2 | 5.52 | 900 |
| 08THD014 |  |  | 104380 | 95.2 | 95.4 | 0.2 | 5.59 | 350 |
| 08 THD014 |  |  | 104381 | 100 | 100.2 | 0.2 | 6.22 | 1000 |
| 08THD014 |  |  | 104382 | 105.1 | 105.3 | 0.2 | 5.16 | 950 |
| 08THD014 |  |  | 104383 | 110.2 | 110.4 | 0.2 | 5.49 | 600 |
| 08THD014 |  |  | 104384 | 115.1 | 115.3 | 0.2 | 5.59 | 700 |
| 08 THD014 |  |  | 104385 | 120.1 | 120.3 | 0.2 | 4.31 | 450 |
| THC001 | 417411 | 7321425 | 373545 | 0 | 3 | 3 | 0.66 | 100 |
| THC001 |  |  | 373546 | 3 | 5 | 2 | 2.52 | 120 |
| THC001 |  |  | 373547 | 5 | 10 | 5 | 3.51 | 440 |
| THC001 |  |  | 373548 | 10 | 15 | 5 | 5.12 | 1280 |
| THC001 |  |  | 373549 | 15 | 20 | 5 | 4.14 | 940 |
| THC001 |  |  | 373550 | 20 | 25 | 5 | 3.83 | 960 |
| THC001 |  |  | 373551 | 25 | 30 | 5 | 3.13 | 1000 |
| THC001 |  |  | 373552 | 30 | 35 | 5 | 2.6 | 1180 |
| THC001 |  |  | 373553 | 35 | 40 | 5 | 2.79 | 1140 |
| THC001 |  |  | 373554 | 40 | 45 | 5 | 3.32 | 1280 |
| THC001 |  |  | 373555 | 45 | 50 | 5 | 3.4 | 1160 |
| THC001 |  |  | 373556 | 50 | 55 | 5 | 3.71 | 1160 |
| THC001 |  |  | 373557 | 55 | 60 | 5 | 3.7 | 1080 |
| THC001 |  |  | 373558 | 60 | 65 | 5 | 3.73 | 1100 |
| THC001 |  |  | 373559 | 65 | 70 | 5 | 4.1 | 940 |
| THC001 |  |  | 373560 | 70 | 75 | 5 | 4.24 | 860 |
| THC001 |  |  | 373561 | 75 | 80 | 5 | 4.78 | 900 |
| THC001 |  |  | 373562 | 80 | 85 | 5 | 4.84 | 900 |
| THC001 |  |  | 373563 | 85 | 90 | 5 | 4.96 | 820 |
| THC001 |  |  | 373564 | 90 | 95 | 5 | 5.21 | 880 |
| THC001 |  |  | 373565 | 95 | 100 | 5 | 5.45 | 840 |
| THC001 |  |  | 373566 | 100 | 105 | 5 | 5.37 | 780 |
| THC001 |  |  | 373567 | 105 | 110 | 5 | 5.45 | 800 |
| THC001 |  |  | 373568 | 110 | 115 | 5 | 5.5 | 760 |
| THC001 |  |  | 373569 | 115 | 120 | 5 | 5.42 | 840 |
| THC001 |  |  | 373570 | 120 | 125 | 5 | 5.36 | 900 |
| THC001 |  |  | 373571 | 125 | 130 | 5 | 5.04 | 940 |
| THC001 |  |  | 373572 | 130 | 135 | 5 | 4.92 | 1020 |
| THC001 |  |  | 373573 | 135 | 140 | 5 | 4.89 | 920 |
| THC001 |  |  | 373574 | 140 | 145 | 5 | 4.97 | 740 |
| THC001 |  |  | 373575 | 145 | 150 | 5 | 6.95 | 160 |
| THC002 | 417207 | 7321426 | 373596 | 5 | 15 | 10 | 2.88 | 1040 |


| THCOO2 | 373597 | 15 | 25 | 10 | 3.38 | 920 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| THCOO2 | 373598 | 25 | 30 | 5 | 3.53 | 1000 |
| THCOO2 | 373599 | 30 | 35 | 5 | 4.08 | 960 |
| THCOO2 | 373600 | 35 | 40 | 5 | 4.39 | 900 |
| THCOO2 | 373601 | 40 | 45 | 5 | 4.84 | 780 |
| THCOO2 | 373602 | 45 | 50 | 5 | 5.24 | 760 |
| THCOO2 | 373603 | 50 | 55 | 5 | 5.34 | 820 |
| THC002 | 373604 | 55 | 60 | 5 | 5.39 | 760 |
| THCOO2 | 373605 | 60 | 65 | 5 | 5.24 | 800 |
| THCOO2 | 373606 | 65 | 70 | 5 | 5.44 | 680 |
| THCOO2 | 373607 | 70 | 75 | 5 | 5.22 | 800 |
| THCOO2 | 373608 | 75 | 80 | 5 | 5.19 | 920 |
| THCOO2 | 373609 | 80 | 85 | 5 | 4.96 | 740 |
| THCOO2 | 373610 | 85 | 90 | 5 | 4.94 | 720 |
| THCOO2 | 373611 | 90 | 95 | 5 | 5.36 | 860 |
| THCOO2 | 373612 | 95 | 100 | 5 | 5.06 | 900 |
| THC002 | 373613 | 100 | 105 | 5 | 3.03 | 2560 |

Table 1: $\mathrm{S}(\mu \mathrm{g} / \mathrm{g})$ and $\mathrm{MgO}(\mathrm{wt} \%)$ content of gabbroic sills from the Table Hills volcanic, intersected by 15 bore holes drilled in the officer basins (Fig. 1). Analyses determined by ICP-EOSDrilling carried out by AusQuest Limited company. Coordinates for each bore holes and depth of each samples are provided. Start of each bore hole data indicated in bold font.

Table DR6. Potential gas emissions for each individual short-lived single-pulse continental flood basalt provinces, depending on the nature of the country rocks intruded by the magma. Anne 10 : Potential gas emissions for each individual short-lived single-pulse continental flood basalt province, depending on the nature of the country rocks intruded by the magma. Compiled after ( 4 , 17 , 19, 21 - 26 and numerous references inside).

| Province | Age (Ma) | Size (km²) | Significant extinction | Major AOE | $\delta^{13} \mathrm{C}$ | Eruption rate (duration peak; Ma) | Mantle $\mathrm{CO}_{2}$ and $\mathrm{SO}_{2}$ | Evaporites $\left(\mathrm{SO}_{2}\right.$; Halocarbon) | Oil /gas $\pm$ Shale $\left(\mathrm{CH}_{4}\right)$ | Coal ( $\mathrm{CO}_{2}$ ) | Dolostone ( $\mathrm{CO}_{2}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Deccan | 66 | $1 \times 10^{6}$ | Cretaceous / Paleogene | No | Yes | Fast (<2Ma) | Likely | No | Yes | No | No |
| Parana-Etendeka | 132 | $2 \times 10^{6}$ | No | No | No | Fast to Moderate (23Ma) | Likely | Yes | No | Yes | No |
| Karoo | 182 | $3 \times 10^{6}$ | No | Yes | Yes | Slow ( $\sim 3-4 \mathrm{Ma}$ ) | Likely | No | No | Yes | No |
| CAMP | 201 | $10 \times 10^{6}$ | Triassic/Jurassic | No | Yes | Fast (<2Ma) | Likely | Yes | Yes | No | Yes |
| Siberia | 252 | $4 \times 10^{6}$ | Permian/Triassic | No | Yes | Fast (<2Ma) | Likely | Yes | Yes | Yes | Yes |
| Eimeshan | 259 | $>0.5 \times 10^{6}$ | End Guadalupian | No | Yes | Fast (<2Ma) | Likely | No | Yes | No | Yes |
| Viluy | 274 | ? | Frasnian-Fammenian | No | Yes | Unknown | Likely | Unknown | Unknown | Unknown | Yes |
| Kalkarindji | 510 | $2 \times 10^{6}$ | Early-Middle Cambrian | No | Yes | Fast? (<<3 Ma) | Likely | Yes | Yes | No | Yes |


[^0]:    ${ }^{1}$ The systematic uncertainties represent and addition of $\pm 0.2 \mathrm{Ma}(2 \sigma)$ and have been calculated using the error propagation calculations of (14) and the R-value ( $\mathrm{FCs} / \mathrm{Hb} 3 \mathrm{gr}$ ) of (13).

