GSA DATA REPOSITORY 2014131

Late Holocene fluctuations of Qori Kalis outlet glacier, Quelccaya Ice Cap, Peruvian Andes

Justin S. Stroup, Meredith A. Kelly, Thomas V. Lowell, Patrick J. Applegate and Jennifer A. Howley

DATA REPOSITORY FIGURES AND TABLES

Figures DR1-DR10 provide descriptions of all ¹⁰Be ages and interpreted moraine ages as well as photos of boulders sampled. To interpret the moraine ages, we excluded ¹⁰Be ages based on their contribution to the reduced chi-squared (χ_R^2) value (e.g. Kaplan and Miller, 2003). Similar to the approach used by Putnam et al. (2012), we rejected samples until the χ_R^2 value of ¹⁰Be ages of a moraine was close to one. We also used the stratigraphic order of moraines to reject or retain samples. Fig. DR10 is a comparison of moraine ages based on all ¹⁰Be ages and those based on ¹⁰Be ages were not rejected based on the above criteria. Table DR1 provides data for calculating ¹⁰Be ages. Table DR2 shows the interpreted moraine ages. All ages reported herein are in years before CE 2009 (yr).

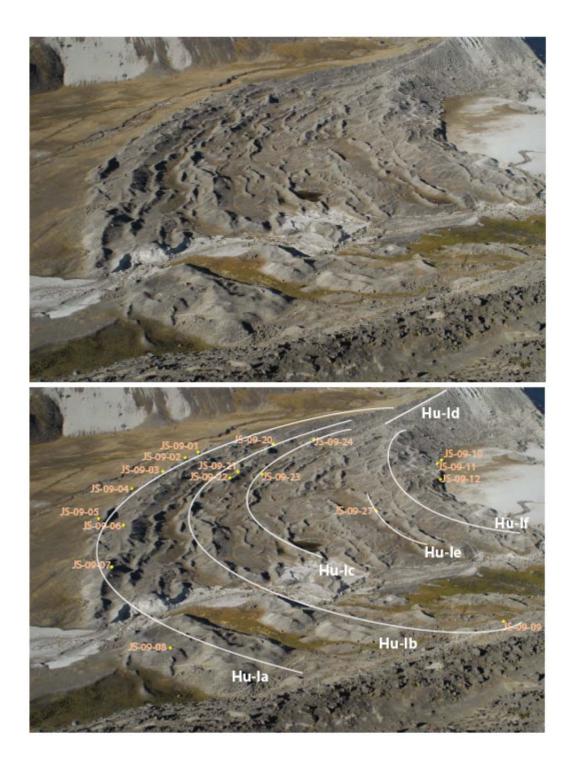


Fig. DR1. Top: Photo of Qori Kalis moraines looking north. Qori Kalis glacier is off the photo to the right (east). Bottom: Approximate moraine positions (labeled Hu-Ia to Hu-If) are marked in white and correspond to the geomorphic map (Fig. 1). ¹⁰Be sample locations are shown in yellow. Crosscutting of the Hu-Ia, Hu-Ib and Hu-Ic moraines by the Hu-Id moraine is apparent in the upper right of the image, indicating that the Hu-Id moraine was deposited by a readvance.

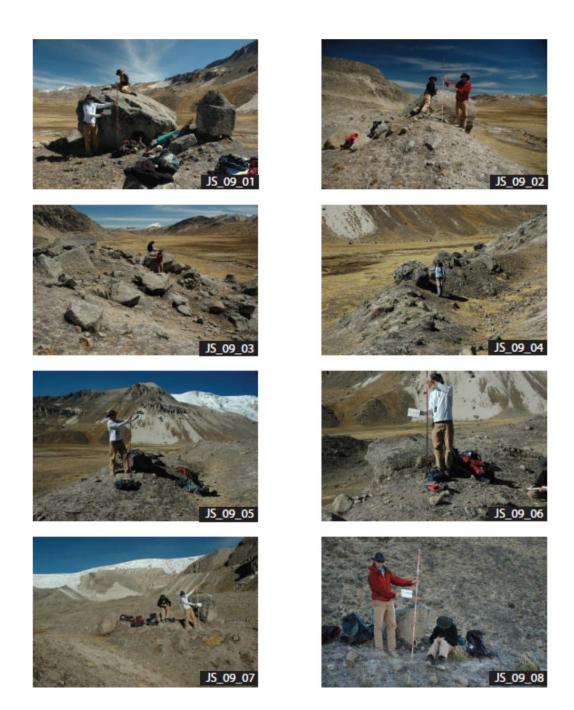


Fig. DR2. Photos of boulders sampled on the Hu-Ia moraine.

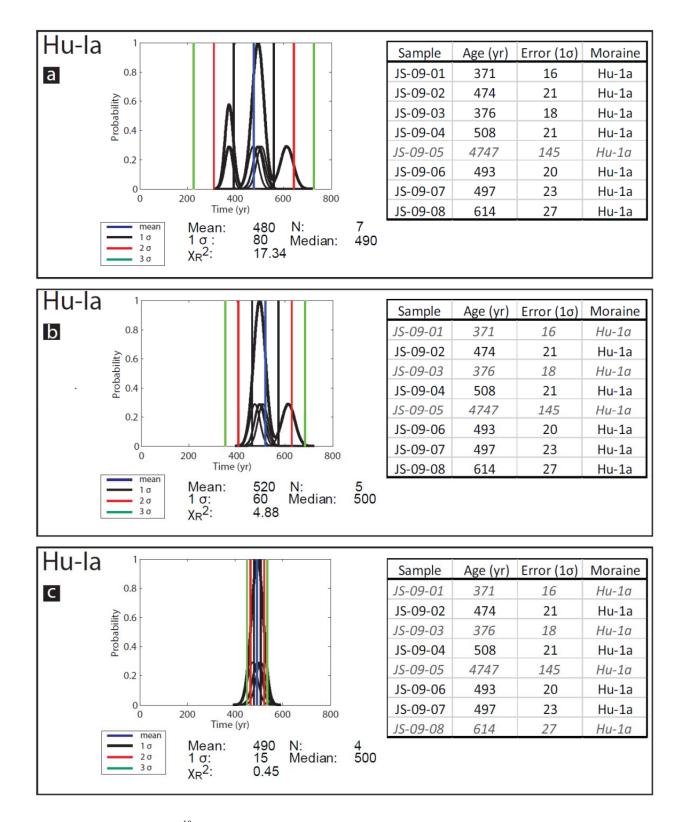


Fig. DR3. Statistics summary for ¹⁰Be ages of the Hu-Ia moraine. Plots (a, b and c) are probability distribution functions of ¹⁰Be ages. Vertical lines indicate the means (blue) and standard deviations at the 1σ , 2σ and 3σ confidence levels (black, red, and green lines, respectively). Statistics associated with the

age populations are shown below the probability distribution functions. Tables (a, b and c) show sample numbers and unrounded ¹⁰Be ages. The samples excluded from the associated statistical analysis are shown in grav italics. a) All ¹⁰Be ages of the Hu-Ia moraine excluding outlier JS-09-05 are included in the calculated statistics. Sample JS-09-05 is a clear outlier and is omitted from moraine age interpretations. With the exclusion of JS-09-05, ¹⁰Be ages (n=7) of the Hu-Ia moraine yielded a χ_R^2 value of 17.34. b) To lower the χ_R^2 value, we rejected samples JS-09-01 and -03. This yielded a χ_R^2 value of 4.88. c) Rejecting sample JS-09-08 further lowered the $\chi_{\rm R}^2$ value to 0.45; however, there is no geologic evidence that this sample should be removed. Therefore, we retained sample JS-09-08 and consider 520±60 yr as the age of the Hu-Ia moraine. ¹⁰Be ages of boulders on moraines may be apparently older than the age of a moraine if boulders contain ¹⁰Be from a prior period of exposure. ¹⁰Be ages of boulders on moraines may be apparently younger than the age of a moraine if boulders were covered by sediment, snow or vegetation, if they were exhumed from within the landform subsequent to the time of landform deposition, or if subaerial erosion acted on the boulder surface. As noted in Table DR1, it is unlikely that boulders sampled for this study were influenced by snow or vegetation cover; however, boulders may have been covered with sediment that was removed prior to our investigation. We were careful to sample only boulders on moraine crests and those that did not show evidence of exhumation.

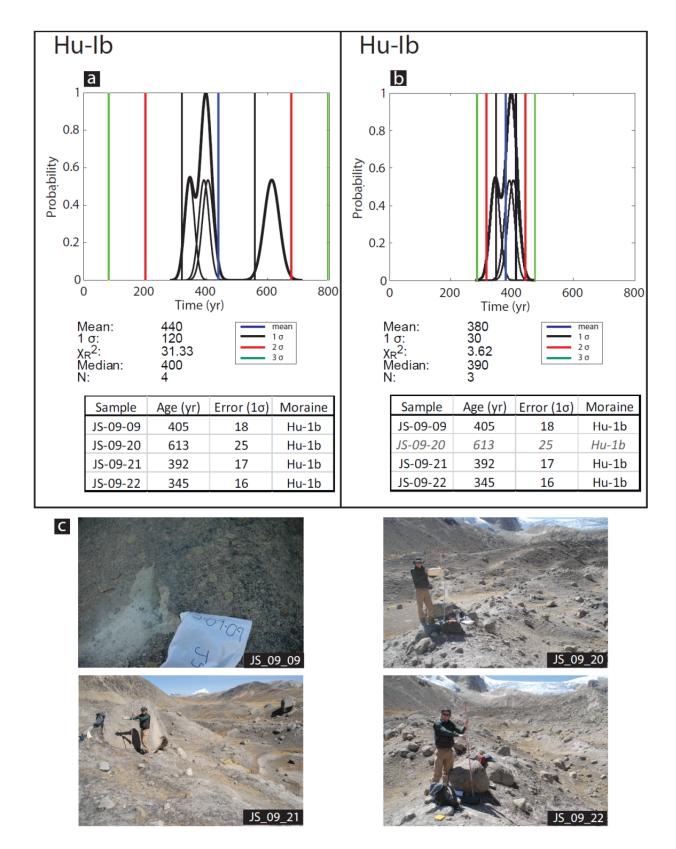


Fig. DR4. Statistics summary for ¹⁰Be ages of the Hu-Ib moraine (a and b) and photos of boulders sampled on the Hu-Ib moraine (c). a) and b) Same statistical calculations as Fig. DR3. a) All ¹⁰Be ages of

the Hu-Ib moraine are included in the calculated statistics. b) Sample JS-09-20 was excluded because it is older than ¹⁰Be age of the Hu-Ia moraines located downvalley and likely indicates ¹⁰Be from a prior period of exposure (Figs. 1, DR3). Excluding this sample yielded a χ_R^2 value of 3.62 and an interpreted moraine age of 380 ± 30 yr.

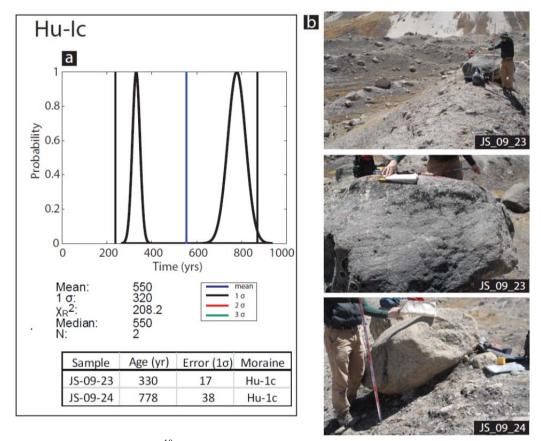


Fig. DR5. Statistics summary for ¹⁰Be ages of the Hu-Ic moraine (a) and photos of boulders sampled on the Hu-Ic moraine (b). a) Same statistical calculations as Fig. DR3. All ¹⁰Be ages of the Hu-Ic moraine are included in the calculated statistics. Sample JS-09-24 was rejected because it is older than ¹⁰Be ages of moraines located downvalley and likely indicates ¹⁰Be from a prior period of exposure (Fig. 1, Figs. DR3, DR4). Since there is only one ¹⁰Be age remaining on this moraine, no χ_R^2 value is reported. We interpret the age of the Hu-Ic moraine as 330±20 yr. b) The center image (sample JS-09-23) shows a striated boulder surface.

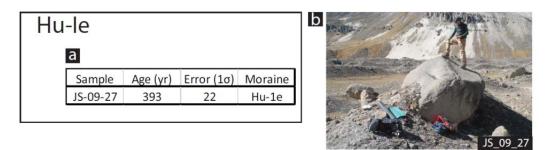


Fig. DR6. Table of the ¹⁰Be age of the Hu-Ie moraine (a) and photo of the boulder sampled on the Hu-Ie moraine (b). This sample was rejected because it is out of stratigraphic order with the ¹⁰Be ages of the Hu-Ic and Hu-If moraines. Therefore, we do not interpret an age of the Hu-1e moraine.

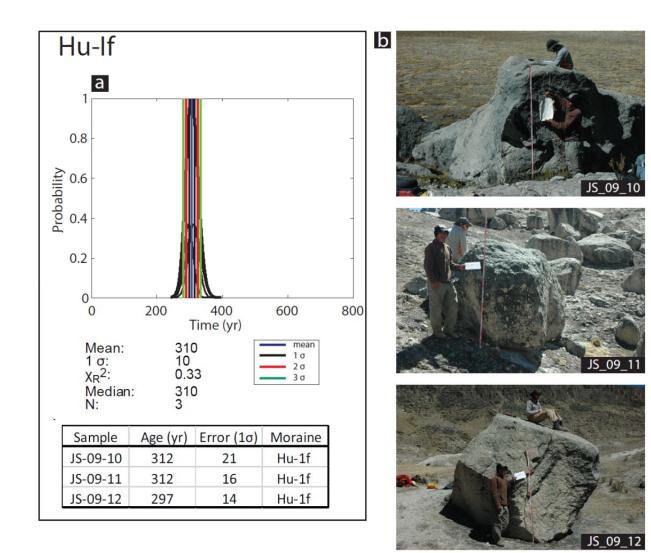


Fig. DR7. Statistics summary for ¹⁰Be ages of the Hu-If moraine (a) and photos of boulders sampled on the Hu-If moraine (b). a) Same statistical calculations as Fig. DR3. We interpret the age of the Hu-If moraine age as 310 ± 10 yr.

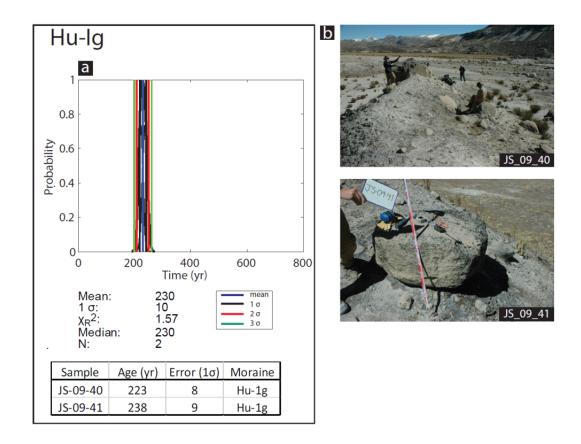


Fig. DR8. Statistics summary for ¹⁰Be ages of the Hu-Ig moraine (a) and photos of boulders sampled on the Hu-Ig moraine (b). a) Same statistical calculations as Fig. DR3. We interpret the age of the Hu-Ig moraine age as 230 ± 10 yr.

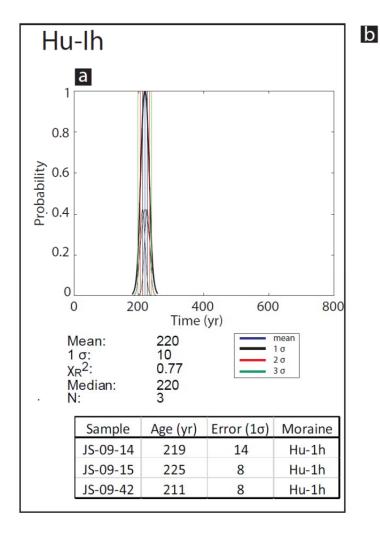


Fig. DR9. Statistics summary for ¹⁰Be ages on the Hu-Ih moraine (a) and photos of boulders sampled on the Hu-Ih moraine (b). a) Same statistical calculations as Fig. DR3. The Hu-Ih moraine marks an icemargin position similar to that observed in the CE 1963 air photos. The three ages are consistent with one another with a mean age of 220 ± 10 yr. These data likely indicate the ice margin position at CE 1963 and at 220 yr was similar. The ¹⁰Be ages on the Hu-Ih moraine are consistent with ice retreat from the Hu-Ig moraines. The ice position between ~220±10 yr and 1963 is unknown but it was likely at or smaller than the Hu-g and Hu-Ih moraine positions.

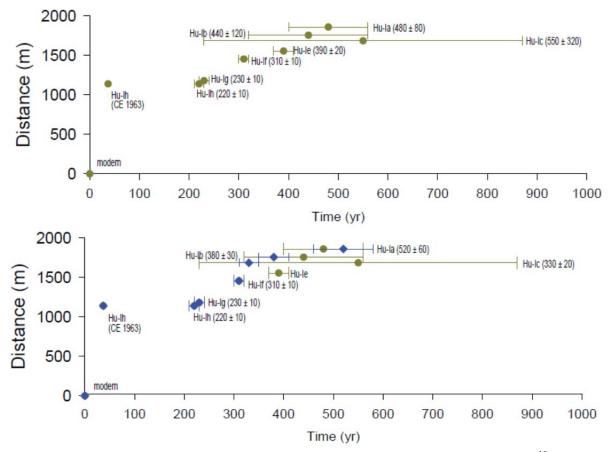


Fig. DR10. Top: The green circles and bars show the mean ages and 1σ uncertainties of all ¹⁰Be ages on the Qori Kalis moraines plotted on a graph of distance (down valley from the modern ice margin) and time (excluding sample JS-09-05 on the Hu-Ia moraine). Bottom: The green bars and circles are the same as the top panel. The blue bars and diamonds show the interpreted mean ages and 1σ of moraines based on our exclusion of ¹⁰Be ages. Each moraine is labeled with an interpreted moraine age (Figs. 1, 2 and Table DR2). Both plots indicate younger moraine ages trending upvalley, a pattern consistent with the stratigraphic order of moraines (Figs. 1 and DR1).

	<i>a</i>							MATION A			Age ±
Sample ID	CAMS	Latitude	Longitude	Elevation	Thickness	Shielding	Quartz	⁹ Be Carrier	$^{10}\text{Be/}^9\text{Be} \pm 1\sigma$	10 Be Conc. $\pm 1\sigma$	Uncertainty
	number	(°N)	(°W)	(masl)	(cm)	correction	wt. (g)	$(mg)^*$	$(10^{-14})^{\dagger}$	$(at g^{-1})^{\$}$	(yr) [#]
Hu-Ia											
JS-09-01 ^{**}	BE30981	-13.9001	-70.8478	4946	2.194	0.998	15.7239	$0.2044^{\dagger\dagger}$	1.8851 ± 0.0702	16376 ± 610	370 ± 20
JS-09-02	BE30982	-13.9000	-70.8481	4947	2.824	0.976	15.9589	$0.2052^{\dagger \dagger}$	2.3666 ± 0.0886	20338 ± 761	470 ± 20
JS-09-03 ^{**}	BE32652	-13.9000	-70.8487	4944	2.413	0.979	20.6724	0.1985	2.5296 ± 0.1023	16230 ± 656	380 ± 20
JS-09-04	BE30988	-13.9000	-70.8492	4932	2.215	0.929	15.5140	$0.2070^{\dagger\dagger}$	2.3269 ± 0.0794	20750 ± 708	510 ± 20
JS-09-05 ^{**}	BE32893	-13.9004	-70.8503	4935	1.551	0.902	18.3590	0.1903	27.3528 ± 0.5147	189421 ± 3564	4750 ± 150
JS-09-06	BE32653	-13.9008	-70.8503	4937	1.962	0.928	20.6103	0.1946	3.2032 ± 0.1037	20207 ± 654	490 ± 20
JS-09-07	BE30983	-13.9015	-70.8513	4932	2.318	0.966	15.7745	$0.2062^{\dagger\dagger}$	2.4120 ± 0.0940	21074 ± 821	500 ± 20
JS-09-08	BE32654	-13.9024	-70.8520	4931	2.560	0.877	20.5978	0.1960	3.7128 ± 0.1390	23613 ± 884	610 ± 30
Hu-Ib											
JS-09-09	BE32894	-13.9043	-70.8510	4947	2.173	0.982	14.7193	0.1953	1.9812 ± 0.0751	17566 ± 666	410 ± 20
JS-09-20 ^{**}	BE32655	-13.9007	-70.8470	4949	2.413	0.908	15.9614	0.1961	2.9962 ± 0.0973	24599 ± 799	610 ± 30
JS-09-21	BE30987	-13.9008	-70.8481	4941	2.507	0.989	15.4057	$0.2013^{\dagger\dagger}$	1.9536 ± 0.0691	17057 ± 603	390 ± 20
JS-09-22	BE32895	-13.9009	-70.8484	4935	2.464	0.902	18.6829	0.1939	1.9692 ± 0.0797	13659 ± 552	350 ± 20
Hu-Ic											
JS-09-23	BE32896	-13.9012	-70.8483	4939	2.180	0.962	17.4106	0.1940	1.8804 ± 0.0880	14003 ± 656	330 ± 20
JS-09-24 ^{**}	BE32656	-13.9011	-70.8465	4948	1.915	0.920	20.6218	0.1949	5.0284 ± 0.2136	31766 ± 1349	780 ± 40
Hu-Ie											
JS-09-27 ^{**}	BE32897	-13.9028	-70.8491	4940	2.473	0.988	20.3720	0.1946	2.6716 ± 0.1378	17057 ± 880	390 ± 20
Hu-If											
JS-09-10	BE30984	-13.9029	-70.8467	4938	2.637	0.980	15.8135	$0.2056^{\dagger \dagger}$	1.5434 ± 0.0988	13412 ± 858	310 ± 20
JS-09-11	BE30985	-13.9029	-70.8469	4937	1.973	0.981	15.9237	$0.2062^{\dagger\dagger}$	1.5576 ± 0.0709	13482 ± 614	310 ± 20
JS-09-12	BE30992	-13.9030	-70.8475	4934	2.176	0.994	15.5024	$0.2026^{\dagger \dagger}$	1.4874 ± 0.0579	12991 ± 506	300 ± 10
Hu-Ig											
JS-09-40	BE32898	-13.9051	-70.8465	4944	2.718	0.975	52.8348	0.1986	3.7995 ± 0.1036	9546 ± 260	220 ± 10
JS-09-41	BE32899	-13.9056	-70.8470	4935	3.656	0.911	47.8400	0.1943	3.4839 ± 0.1049	9454 ± 285	240 ± 10
H-Ih											
JS-09-42	BE32659	-13.9040	-70.8445	4942	3.117	0.950	68.2451	0.1957	4.5794 ± 0.1445	8774 ± 277	210 ± 10
JS-09-14	BE32657	-13.9053	-70.8459	4948	3.458	0.983	71.8010	0.1953	5.1839 ± 0.3026	9425 ± 550	220 ± 10
JS-09-15	BE32658	-13.9057	-70.8455	4939	2.421	0.978	71.6553	0.1946	5.3286 ± 0.1413	9670 ± 256	230 ± 10

TABLE DR1. BOULDER SAMPLE INFORMATION AND ¹⁰BE DATA

* All samples were prepared at Dartmouth College. Samples marked with an "^{††}" were prepared using the beryllium carrier "Lamont Carrier 5.1". All other samples were prepared using the beryllium carrier "4G Dartmouth Carrier."

[†] Beryllium measurements were made relative to the 07KNSTD3110 standard (Nishiizumi et al., 2007). Internal AMS uncertainties are reported.

 $^{\$}$ ¹⁰Be ages assume zero erosion and are calculated using the CRONUS-Earth online calculator (Balco et al., 2008) with a locally calibrated production rate (P_{Quel}; 3.78 ± 0.09 [St] atoms g⁻¹ yr⁻¹; Kelly et al. (2013).

[#] External uncertainties for ¹⁰Be age calculations, rounded to the nearest ten years.

** Sample excluded from interpreted moraine ages (DR3-10).

Table DR1. ¹⁰Be sample data and calculated ¹⁰Be surface exposure ages. Shown are Dartmouth sample numbers; Center for Accelerator Mass Spectrometry (CAMS) sample numbers; sample latitudes, longitudes and elevations; sample thicknesses; correction factors for sample surface slopes and topographic shielding (Shielding correction); sample quartz amounts (Quartz wt.); ⁹Be carrier amounts; measured ¹⁰Be/⁹Be ratios and 1σ uncertainties; calculated ¹⁰Be concentrations and 1σ uncertainties (¹⁰Be conc.); and calculated ¹⁰Be ages and external uncertainties (Age).

We collected ~1 kg samples of rock from the center of flat or gently sloping boulder surfaces using a hammer and chisel or the drill-and-blast method of Kelly (2003). Before sample extraction, we used a compass and clinometer to measure the strike and dip of the sample surface as well as horizon angles at 20° azimuth intervals. We used these measurements to calculate topographic shielding. There was no evidence for post-depositional boulder-surface erosion. On some boulder surfaces we observed glacial polish. We considered the effects of snow, sediment and vegetation cover of boulders to be negligible. Due to intense solar radiation, snow cover does not persist on the landscape. We did not observe sediment cover on any boulders. There was little-to-no vegetation on the moraines. All samples were prepared in the cosmogenic nuclide laboratory at Dartmouth College following methods modified from Stone et al. (2001) and similar to those used by Schafer et al. (2009). ¹⁰Be/⁹Be ratios were measured at the CAMS at Lawrence Livermore National Laboratory (LLNL) relative to the 07KNSTD3110 standard (Nishiizumi et al., 2007).

Moraine	Mean ± 1σ (yr)
Hu-la	520 ± 60
Hu-Ib	380 ± 30
Hu-Ic	330 ± 20
Hu-Id [*]	350-300
Hu-If	310 ± 10
Hu-Ig	230 ± 10
Hu-Ih	220 ± 10 and CE1963

TABLE DR2. INTERPRETED MORAINE AGES

*See figure caption for explanation of age assignment.

Table DR2. Summary of interpreted moraine ages. The Hu-Id moraine is not directly dated but it crosscuts the Hu-Ia, Ib and Ic moraines (Figs.1 and DR1) and must have been deposited prior to the deposition of the Hu-Ie moraine. The closest minimum-limiting age bracket for the Hu-Id moraine is provided by the age of the Hu-1f moraine. Using the ages from of the Hu-1c $(330\pm20 \text{ yr})$ and the Hu-If $(310\pm10 \text{ yr})$ moraines, we assigned the Hu-Id moraine an age of 350-300 yr.

REFERENCES CITED

- Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J., 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements: Quaternary Geochronology, v. 3, no. 3, p. 174-195.
- Kaplan, M. R., and Miller, G. H., 2003, Early Holocene delevelling and deglaciation of the Cumberland Sound region, Baffin Island, arctic Canada: Geological Society of America Bulletin, v. 115, no. 4, p. 445-462.
- Kelly, M. A., 2003, The Late Würmian Age in the western Swiss Alps Last Glacial Maximum (LGM) ice-surface reconstruction and ¹⁰Be dating of Late-glacial features [Ph.D. thesis]: University of Bern, 105 p.
- Kelly, M. A., Lowell, T. V., Appleby, P. G., Phillips, F. M., Schaefer, J. M., Smith, C. A., Kim, H., Leonard, K. C., and Hudson, A. M., 2013, A locally calibrated, late glacial ¹⁰Be production rate from a low-latitude, high-altitude site in the Peruvian Andes: Quaternary Geochronology, v. (in press).
- Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J., 2007, Absolute calibration of ¹⁰Be AMS standards: Nuclear Instruments and Methods in Physics Research Section B-beam Interactions with Materials and Atoms, v. 258, no. 2, p. 403-413.
- Putnam, A. E., Schaefer, J. M., Denton, G. H., Barrell, D. J. A., Finkel, R. C., Andersen, B. G., Schwartz, R., Chinn, T. J. H., and Doughty, A. M., 2012, Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene: Nature Geoscience, v. 5, no. 9, p. 627-630.
- Schaefer, J. M., Denton, G. H., Kaplan, M., Putnam, A., Finkel, R. C., Barrell, D. J. A., Andersen, B. G., Schwartz, R., Mackintosh, A., and Chinn, T., 2009, High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature: Science, v. 324, no. 5927, p. 622.
- Stone, J., 2001, Extraction of Al & Be from quartz for isotopic analysis, University of Washington Cosmogenic Isotope Laboratory, http://depts.washington.edu/cosmolab/chem/Al-26 Be-10.pdf. (accessed 2012).
- Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Zagorodnov, V. S., Howat, I. M., Mikhalenko, V. N., and Lin, P. N., 2013, Annually resolved ice core records of tropical climate variability over the past ~1800 years: Science, v. 340 p. 945-950