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Data selection.

We use the earthquake catalogue recorded during the aftershock sequence of the 2009 LAquila
earthquake at a very dense seismic network of 60 stations operating for 9 months after the My
6.1 mainshock, composed by about 64k precisely located aftershocks (inset to the left in Fig. 1;
Valoroso et al, 2013). Data were analysed by combining an accurate automatic picking
procedure for P- and S-waves (Aldersons et al, 2009), together with cross-correlation and
double-difference location methods (Waldhauser and Schaff, 2008) reaching a completeness
magnitude (i.e. the minimum magnitude above which all the events occurring in a study area
can be reliably detected and located; Weimer and Wyss, 2000) equal to 0.7, which corresponds
to a source dimension of ~50 m based on a circular crack model usinga 3
MPa stress drop. Earthquake relative location errors are in the range of a few meters to
tens of meters (i.e., the error ellipsoids obtained at the 95% confidence level for 200 bootstrap
samples show median values of the distribution along the major/minor horizontal and
vertical direction of 24, 15 and 27 m; see Valoroso et al., 2013 for details). These errors
are comparable to the spatial dimension of the earthquakes themselves, allowing us
to confidently image the internal structure of the fault zone down to the tens
of meter scale.

We select from the entire earthquake catalogue those aftershocks nucleating on
the causative fault of the Mw6.1 L’Aquila

mainshock (black dots in Figure 1). With this aim, we choose all earthquakes
occurring within 6 km (+/- 3 km) from the AF plane as modelled by inverting
strong motion, GPS and DInSAR data (Cirella et al., 2012). This plane is 20-
km-long along the N133°E striking direction and dips 54° to SW, intersecting the
mainshock hypocentre (the projection at the surface of this plane is shown as a red box in
the map in Figure 1). The resulting catalogue is made of ~19k aftershocks (black dots in
Figure 1).

Paalt zertd thicknkss eshimdtions. catalogue computed by Chiaraluce et al, (2011) and
bh ewdircad imndstigistashel deinilsddnattize mepatesehtative eveltsdindighZratdrzadire damage
noareusooiptd the AF, we divide the 20-km-long volume in forty (40) 500-m-wide vertical boxes
(NW-trending black traces in Fig. 1 of the manuscript). All the 40 vertical sections reporting the

earthquake distribution at depth are shown in Fig. DR1. For each cross-section, we compute



the number of aftershocks occurring every 50 m within 6 km (+/- 3) of distance
perpendicularly to the fault plane modelled by Cirella et al. (2012; red dotted lines in the cross-
sections) and we build histograms describing the detailed earthquake occurrence around the
fault plane (histograms in Fig. DR1).

In order to exclude the portion of the fault characterized by multiple fault strands at shallow
depth, which might complicate the interpretation of our results, we include only aftershocks
occurring at depths larger than 4 km. Negative and positive distances in the histogram indicate
the footwall and the hanging-wall block, respectively. Almost all the histograms show a
Gaussian distribution of the earthquakes. Thus, we define the damage zone thickness (DZT) as

2 times the standard deviation of the distribution (i.e., 95% of the aftershocks).

Damage density decay estimation.

We measure the faultnormal earthquake density decay (i.e. the number of earthquakes
occurring every 50 m) as a function of distance from the fault plane. We find that the decay is
well fit by a power-law function in agreement with numerous geological (e.g. Savage and
Brodsky, 2011) and seismological (e.g. Powers and Jordan, 2010; Hauksson, 2010) data. Then,
we compute the decay exponent (n) by plotting our data in a log-log scale and fitting the data
using a least squares method for both the footwall and hanging-wall block (Fig. DR2A and
DR2B, respectively). The slope of the linear regression (black dotted line in Fig. DR2)

represents the earthquake decay exponent of the power-law function.

Fault zone thickness and mainshock rupture evolution.

We compared the fault zone thickness with the mainshock rupture evolution both in terms of
coseismic slip distribution (see Fig. 4 of the main manuscript) and rupture velocity. In Fig DR3,
we show the local rupture velocity distribution computed by Cirella et al, (2012) on the fault
plane of the 2009 L’Aquila main shock overlapped by the slip contour (white line, in metres)
and the seismicity occurring within 6 km (+/- 3) of distance perpendicularly to the fault plane.

Fig. DR3 shows how at the SE end of the fault, the rupture front stopped where the geometry
of the fault becomes complex, indicating that off-fault damage strongly influences the arrest of

the earthquake rupture propagation.
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Figure DR1: NE-trending vertical sections (1-40) showing: the aftershocks distribution (black
dots scaled to represent the approximate source dimension assuming a 3 MPa circular constant
stress drop source); the projection at depth of the coseismic rupture plane computed by Cirella
et al (2012; red dotted line); the hypocentral location of the largest magnitude events (red
stars). For each cross-section we also report a histogram showing the number of earthquakes
occurring every 50 m within 6 km (+/- 3 km) of distance perpendicularly to the modelled fault
plane (Cirella et al, 2012).
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Figure DR1.
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Figure DR2: Logarithmic plots of the fault normal earthquake density distribution (black dots)
for (A) footwall and (B) hanging-wall block, with the computed linear fit of the distribution
(grey dotted line). The slope of the line is the decay exponent (n) of the power-law function,

while R represents the quality of the fit.
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Figure DR3: Local rupture velocity distribution on the fault plane for the 2009 L’ Aquila main shock
overlapped by the slip contour (white line, in metres), by the rupture velocity vectors (black and
grey arrows show the rupture velocity vector for rupture times between 0 and 2.0 s and over 2.0 s,
respectively) and by the aftershocks occurring within 6 km (+/- 3 km) from the fault plane.
Modified after Cirella et al., (2012).
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