GSA DATA REPOSITORY 2014037

Mángano, Buatois, Astini and Rindsberg– Intertidal trilobite trace fossils - List of supplementary materials:

Sup. Mat. 1. Figure DR1. Desiccation cracks in tidal-flat deposits of the Rome Formation.Sup. Mat. 2. Table DR1. Selected occurrences of trilobite trace fossils in intertidal depositsReferences

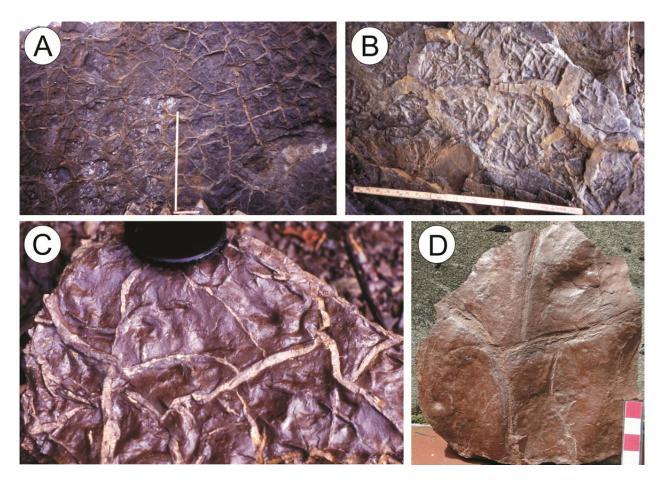


Figure DR1. Desiccation cracks in tidal-flat deposits of the Rome Formation. A. General view. B. Close-up showing several generations of desiccation cracks. C. Close-up showing morphological details and orthogonal angles. Lens cap is 5.5 cm wide. D. Desiccation cracks overprinting ripple surface. Scale bar is 2 cm long. Desiccation cracks in are V-shaped in cross section and displays connected rectilinear polygonal patterns in plane view. Recurrent desiccation cracks of incremental sizes suggest increased dehydration of the cohesive substrate due to progressively more prolonged exposures during neap-spring cycles.

AGE	TRACE FOSSILS	SEDIMENTOLOGIC CHARACTERISTICS	SEDIMENTARY ENVIRONMENT	UNIT	COMMENTS	REFERENCE
Cambrian Stages 2 to 3	Cruziana brannae, C. fasciculata, C. plicata, C. pormensis, Cruziana isp., Diplichnites isp., Monomorphichnus lineatus, Monoorphichnus isp., Rusophycus bonnarensis, R. carinatus, R. cerecedensis, R. leonensis, R. transversensis, Rusophycus isp.	Heterolithic facies. Flaser, wavy and lenticular bedding. Herringbone cross- stratification, desiccation cracks, planar cross-bedding, current and wave ripple cross- lamination, and parallel lamination.	Lower intertidal sand flat to upper intertidal mud flat and tidal channels	Herrería Formation (Spain)		Crimes et al. (1977)
Cambrian Stages 2 to 3	Monomorphichnus lineatus, Monomorphichnus isp., Rusophycus isp.	Heterolithic facies. Flaser, wavy and lenticular bedding. Herringbone cross- stratification, desiccation cracks, planar cross-bedding, current and wave ripple cross- lamination, and parallel lamination.	Lower intertidal sand flat to upper intertidal mud flat and tidal channels	Cándana Quartzite (Spain)	Tidal-flat deposits stacked forming fining- upward parasequences.	Crimes et al. (1977)
Cambrian Stages 3 to 4	Diplichnites isp., Dimorphichnus isp., Rusophycus carbonarius	Heterolithic facies. Flaser and wavy bedding. Syneresis and desiccation cracks, wrinkle marks, current and wave ripple cross- lamination, interference ripples and mudstone intraclasts.	Lower intertidal sand flat to upper intertidal mud flat	Lake Oesa Member of the St Piran Formation	Tidal-flat deposition is associated with a forced regression.	Desjardins et al. (2012)
Cambrian Stage 4 to Cambrian Series 3.	Cruziana problematica, Diplichnites isp., Rusophycus carbonarius, R. leifeirikssoni, Rusophycus isp.	Heterolithic facies. Flaser and wavy bedding. Syneresis cracks, wrinkle marks, current and wave ripple cross- lamination, ripple patches, interference ripples and flat-topped ripples.	Lower intertidal sand flat to middle intertidal mixed flat	Campanario Formation (Argentina)	Tidal-flat deposits typically occur above subtidal sandbodies forming fining- upward parasequences.	Mángano & Buatois (2004)
Cambrian Series 3	Cruziana problematica, Diplichnites isp., Dimorphichnus cf. D. obliquus, Rusophycus carbonarius, Rusophycus isp.	Heterolithic facies. Wrinkle marks, current and wave ripple cross- lamination, and parallel lamination.	Tidal flats interfingering with a braided delta	Haneh Member of the Burj Formation and Umm Ishrin Formation (Jordan)	Some of these ichnotaxa also occur in the underlying delta- front deposits. Stratal pattern indicates forced regression.	Selley (1970); Makhlouf & Abed (1991); Amireh et al (1994); Hofmann et al. (2012); Mángano et al. (2013)
Cambrian Series 3	Cruziana barbata, Rusophycus ramellensis	Heterolithic facies. Wavy and lenticular bedding. Herringbone cross-stratification., desiccation cracks, current and wave ripple cross- lamination, and parallel lamination.	Lower intertidal sand flat to middle intertidal mixed flat and tidal channels	Oville Sandstone and Shales (Spain)	Bimodal-bipolar paleoecurrents.	Legg (1985)
Cambrian Series 4	Cruziana omanica, C. semiplicata, C. cf. tortworthi, Cruziana isp., Monomorphichnus bilinearis,	Heterolithic facies. Flaser, wavy and lenticular bedding. Herringbone cross-	Lower intertidal sand flat to shallow subtidal.	Pico de Halcón Member of the Santa Rosita Formation	Bimodal-bipolar paleoecurrents.	Mángano et al. (1996)

Cambrian Series 4 to Floian	Rusophycus carbonarius, R. latus, Rusophycus isp. Cruziana furcifera, C. goldfussi, C. rugosa, C. semiplicata, Dimorphichnus	stratification., planar cross-bedding, syneresis cracks, current and wave ripple cross- lamination,, and parallel lamination. Heterolithic facies. Flaser, wavy and lenticular bedding.	Middle intertidal mixed flat to upper intertidal mud flat	(Argentina) Cabo Series (Spain)		Baldwin (1977)
i Man	isp., <i>Diplichnites</i> isp., <i>Rusophycus</i> isp.	Current and wave ripple cross- lamination.	and tidal channels			
Tremadocian to Floian	Cruziana barriosi, C. furcifera, C. goldfussi, C. rugosa, C. semiplicata, Rusophycus morgati, Rusophycus isp.	Heterolithic facies. Flaser, bedding. Herringbone cross- stratification., current and wave ripple cross- lamination.	Lower intertidal sand flat to upper intertidal mud flat and tidal channels	Barrios Formation (Spain)	Tidal-flat deposits stacked forming fining- upward parasequences.	Baldwin (1977)
Tremadocian to Floian	Cruziana billingsi, C. breadstoni, C. furcifera, C. goldfussi, C. problematica, C. rugosa, C. semiplicata, C. tortworthi, C. ispp., Dimorphichnus obliquus, Diplichnites [Petalichnus] ispp., Monomorphichnus bilinearis, M. intersectus, M. lineatus, M. multilineatus, Monomorphichnus isp., Rusophycus biloba, R. crimesi, R. didymus, R. cf. dispar, R. eutendorfensis, R. latus, R. leifeiriksoni, R. morgati, R. cf. pedroanus, R. cf. pudicus, Rusophycus ispp., Trichophycus venosus	Heterolithic facies. Flaser and wavy bedding. Herringbone cross-stratification, planar cross-bedding, flat-topped ripples, interference ripples, curren ripples and ripple cross- lamination, scours, channels. Wrinkle marks, mudstone intraclasts, load casts, rill marks, and swash marks.	Lower intertidal sand flat to middle intertidal mixed flat	Beach, Ochre Cove and Power Steps formations (Canada)	Upper intertidal and supratidal flats are represented but contain no trilobite trace fossils. Heterolithic middle intertidal flats show the greatest ichnodiversity.	Fillion and Pickerill (1990)
Floian to Darriwilian	Cruziana furcifera, C. goldfussi, C. rugosa, Dimorphichnus isp.	Heterolithic facies. Flaser, wavy and lenticular bedding. Desiccation and syneresis cracks, planar cross-bedding, current and wave ripple cross- lamination, and interference ripples.	Lower intertidal sand flat to upper intertidal mud flat	Mojotoro Formation (Argentina)	Tidal-flat deposits typically occur above subtidal sandbodies forming fining- upward parasequences.	Mángano et al. (2001)
Floian to Darriwilian	C. bagnolensis, C. furcifera, C. lefebvrei, C. rugosa	Herringbone cross- stratification, reactivation surfaces, wrinkle marks and desiccation cracks.	Tidal flats	Grès Armoricain (France)		Durand (1985)
Katian	Petalichnus isp., Taenidium barrretti	Siltstone and shale, desiccation cracks, mudstone drapes and mudstone intraclasts.	Upper intertidal mud flat	Ringgold Member of the Sequatchie Formation (USA)		Rindsberg (1983); Martin & Rindsberg (1999)

Table DR1. Selected occurrences of trilobite trace fossils in lower Paleozoic intertidal deposits. *Monomorphichnus* isp., *Diplichnites* isp., *Rusophycus carbonarius* and *Cruziana problematica* are included in the list, but production by other arthropods cannot be completely ruled out. The degree of certainty in the environmental interpretations varies from case to case. However, only examples in which diagnostic structures of intertidal conditions were noted by the authors of each study are included in the table.

- Amireh, B.S., Schneider, W., and Abed, A.M., 1994, Evolving Fluvial Transitional Marine Deposition through the Cambrian Sequence of Jordan: Sedimentary Geology, v. 89, p.65–90.
- Baldwin, C.T., 1977, The stratigraphy and facies associations of trace fossils in some Cambrian and Ordovician rocks of north western Spain; *in*, Crimes, T.P., and Harper, J.C., eds.Trace Fossils 2: Geological Journal Special Issue, v. 9, p. 9-40.
- Crimes, T. P., Legg, I., Marcos, A., and Arboleya, M., 1977, ?Late Precambrian-low LowerCambrian trace fossils from Spain; *in*, Crimes, T.P., and Harper, J.C., eds. Trace Fossils2: Geological Journal Special Issue, v. 9, p. 91-138.
- Desjardins, P.R., Buatois, L.A., Pratt, B.R., and Mángano, M.G., 2012, Forced-regressive tidal flats: Response to falling sea level in tide-dominated settings: Journal of Sedimentary Research, v. 82, p. 149-162.
- Durand, J., 1985, Le Gres Armoricain. Sédimentologie-Traces fossils: Milieux de dépôt: Centre Armoricain d'Étude structurale des Socles, Mémoires et Documents, v. 3, p. 1-150.
- Fillion, D., and Pickerill, R.K., 1990, Ichnology of the Lower Ordovician Bell Island and Wabana Groups of eastern Newfoundland: Palaeontographica Canadiana, v. 7, p. 1-119.
- Hofmann, R., Mángano, M.G., Elicki, O., and Shinaq, R., 2012, Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian of Jordan: Journal of Paleontology, v. 86, p. 931-955.

Legg, I.C., 1985, Trace fossils from a Middle Cambrian deltaic sequence, North Spain, in,

Curran, H.A., ed., Biogenic Structures: Their use in interpreting depositional environments: Society of Economic Paleontologists and Mineralogists, Special Publication no. 35, p. 151-165.

- Makhlouf, I.M., and Abed, A.M., 1991, Depositional facies and environments in the Umm Ishrin Sandstone Formation, Dead Sea area, Jordan: Sedimentary Geology, v. 71, p. 177–187.
- Mángano, M.G., and Buatois, L.A., 2004a, Reconstructing early Phanerozoic intertidal ecosystems: Ichnology of the Cambrian Campanario Formation in northwest Argentina, *in*, Webby, B.D., Mángano, M.G., and Buatois, L.A., eds., Trace Fossils in Evolutionary Palaeoecology: Fossils & Strata, v. 51, p. 17–38.
- Mángano, M.G., Buatois, L.A., and Aceñolaza, G.F., 1996, Trace fossils and sedimentary facies from an Early Ordovician tide-dominated shelf (Santa Rosita Formation, northwest Argentina): Implications for ichnofacies models of shallow marine successions: Ichnos, v. 5, p. 53–88.
- Martin, A.J., and Rindsberg, A.K., 1999, Just what were those trilobites doing on the tidal flats?Meniscate burrows from the Upper Ordovician of the southern Appalachians [abs.]:Geological Society of America, Abstracts with Papers, v. 31, no. 3, p. A-28.
- Mángano, M.G., Buatois, L.A., and Moya, M.C., 2001, Trazas fósiles de trilobites de la Formación Mojotoro (Ordovícico inferior-medio de Salta, Argentina): Implicancias paleoecológicas, paleobiológicas y bioestratigráficas: Revista Española de Paleontología, v. 16, p. 9-28.
- Mángano, M.G., Buatois, L.A., Hofmann, R., Elicki, O., and Shinaq, R., 2013, Exploring the aftermath of the Cambrian Explosion: The evolutionary significance of marginal- to

shallow-marine ichnofaunas of Jordan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 374, p. 1-15.

- Rindsberg, A.K., 1983, Ichnology and paleoecology of the Sequatchie and Red Mountain Formations (Ordovician-Silurian), Georgia-Tennessee: Unpublished M.S. thesis, University of Georgia, Athens, Georgia, 381 pp., 23 pl.
- Selley, R.C., 1970. Ichnology of Paleozoic sandstones in the Southern Desert of Jordan: A study of trace fossils in their sedimentologic context. In: Crimes, T.P., Harper, J.C. (Eds.), Trace Fossils. Geological Journal Special Issue 3, 477-488.