1 Supplementary Information

2 Sampling strategy

3	Our study is base	ed on middle Miocen	e marine sediments	s recovered at Site U1338
	2			

- 4 (2°30.469'N, 117°58.178'W; 4200 m water depth) during IODP PEAT Expedition
- 5 321. Detailed site location, core recovery and lithological descriptions can be found in
- 6 Pälike et al. (2010). Cores were sampled in ~5 cm intervals from a composite
- 7 sequence (shipboard splice) from Holes U1338A, U1338B and U1338C (331.43 -
- 8 435.90 meters composite depth).
- 9

```
10 Isotope analysis
```

- 11 The δ^{18} O and δ^{13} C profiles from Site U1338 are plotted versus depth in
- 12 Supplementary Fig. 1. Age tie points are given in Figures 1-2 and Supplementary
- 13 Figs. 1-2. An expanded view of the late MCO interval (16-14.7 Ma) is provided in
- 14 Supplementary Fig. 3. The average sedimentation rate is ~3.8 cm/kyr (1.8 to 6.0
- 15 cm/kyr). Orbital tuning and calculation of sedimentation rates were performed with
- 16 AnalySeries 2.0.4.2 (Paillard et al., 1996).

17

18 *Time series analysis*

19 Wavelet software was provided by C. Torrence and G. Compo, and is available at

20 URL: http://atoc.colorado.edu/research/wavelets/. Details of wavelet analysis are

21 provided in Torrence and Compo (1998).

22

- 23 Opal (biogenic silica) measurements and accumulation rates
- 24 Samples for the analysis of opal were freeze-dried and ground in an agate mortar.

25 (Opal conte	nt was deter	mined by	the sea	uential l	eaching t	echnique	of DeMaste	r
-									

26 (1981) with further modifications by Müller and Schneider (1993).

27 The opaline material is extracted with 1M NaOH at 85°C in a stainless steel vessel

28 under constant stirring, and the increase in dissolved silica is continuously monitored.

- 29 For this purpose, a minor portion of the leaching solution is cycled to an autoanalyzer
- 30 and analyzed for dissolved silicon by molybdate-blue spectrophotometry. The
- 31 resulting absorbance versus time plot is then evaluated according to the extrapolation
- 32 procedure of DeMaster (1981).
- 33 Opal accumulation rates were calculated as follows:
- 34 Opal accumulation rate = linear sedimentation rate x density (from GRAPE density
- data in Pälike et al., 2010) x opal weight percentage
- 36 Opal weight percentages were estimated using the 5 point running average opal
- 37 (weight %) to Log(Si/Ti) power relationship ($y=1.4923*x^{3.203}$, R²=0.81969) in
- 38 Supplementary Fig. 4.
- 39

40 **References**

41

42	DeMaster,	D. J.	, 1981.	The supply	and	accumulation	of silica	in the 1	marine
----	-----------	-------	---------	------------	-----	--------------	-----------	----------	--------

- 43 environment. Geochimica et Chosmochimica Acta, v. 45, p. 1715-1732.
- 44 Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and Levrard, B., 2004.
- 45 A long term numerical solution for the insolation quantities of the Earth. Astron.
- 46 Astrophys., v. 428, p. 261-285.

47	Müller, P., and Schneider, R.R., 1993. An automated leaching method for the
48	determination of opal in sediments and particulate matter. Deep-Sea Res. I, v.
49	40, p. 425-444.
50	Paillard, D., Labeyrie, L., and Yiou, P., 1996. Macintosh program performs time-
51	series analysis. EOS Trans. AGU, v. 77, p. 379.
52	Pälike, H., Lyle, M.W., Nishi, H., Raffi, I., Gamage, K., and Klaus, A., and the
53	Expedition 320/321 Scientists, 2010. Proc. IODP, 320/321: Tokyo (Integrated
54	Ocean Drilling Program Management International, Inc.).
55	doi:10.2204/iodp.proc.320321.109.2010.
56	Torrence, C., and Compo, G.P., 1998. A Practical Guide to Wavelet Analysis. Bull.
57	Amer. Meteor. Soc., v. 79, p. 61-78.
58	
59	
60	Supplementary Figure captions
61	
62	Supplementary Figure 1: IODP Site U1338 benthic $\delta^{13}C(a)$ and $\delta^{18}O(b)$ records
63	versus composite depth (mcd). Red crosses indicate age control points. CM6
64	represents the last and most prominent 400 kyr δ^{13} C maximum of the "Monterey
65	Excursion".
66	
67	Supplementary Figure 2: Astronomically-tuned chronology over middle Miocene
68	interval (16-13 Ma) in IODP Site U1338. (a) Eccentricity-tilt-precession tuning target
69	(ET+0.3P) over interval 16 Ma and 12.7 Ma from Laskar et al. (2004). (b) IODP Site
70	U1338 benthic δ^{18} O record. Red crosses indicate age control points. Eccentricity and

3

obliquity maxima are labeled with numbers, precession maxima modulated byeccentricity are labeled with letters.

73

74	Supplementary Figure 3: Expanded view of late MCO interval (16-14.7 Ma) at
75	IODP Site 1338. (a) Silica content expressed as Log(Si/Ca). (b) Proportion of
76	sediment coarse (>63 μ m) fraction. (c) Carbonate percentages calculated from XRF
77	and GRAPE density data from Lyle et al. (2012). (d) Benthic for aminiferal $\delta^{13}C.$ (e)
78	Benthic for aminiferal δ^{18} O. (f) Sedimentation rates. (g) Eccentricity-tilt-precession
79	tuning target (ET+0.3P) from Laskar et al. (2004). Orange shading marks warm
80	intervals, characterized by intense $\delta^{18}O$ and $\delta^{13}C$ minima, poorer carbonate
81	preservation, lower sedimentation rates and higher Log(Ti/Ca) at eccentricity
82	maxima.
83	
84	Supplementary Figure 4: Relationships of opal weight percentages to XRF scanner
85	derived Log(Si/Ti) at IODP Site 1338. Regressions were calculated using 2.5 cm
86	resolution (a , c) and 5 point moving average smoothed (b , d) XRF scanner records.

87 Linear regressions exhibit good correlations at low opal percentages, but tend to

88 overestimate intermediate and to underestimate high opal values. Exponential

regressions tend to overestimate high opal values, while power regressions exhibit

90 highest R^2 and best fit at intermediate and high values.

Supplementary Figure 1

Supplementary Figure 3

60 ₋

