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Supplementary Item DR1 

Estimate of maximum levee height with deep-seated failure 

In a channel-levee system (Figure 1), slope stability is decreased through both levee 
deposition, which increases levee height (hl),  and channel erosion, which decreases the 
thickness of sediment beneath the channel (hc).  We simulate the stability of this channel-levee 
system as a system of earth retaining structures at Coulomb failure (e.g. Lambe and Whitman 
(1969)).  

Slope stability is controlled by the weight of the embankment (Wedge II and Wedge III) 
(Figure 1), the resisting force provided by the passive weight of Wedge I (channel), and the 
friction along the basal failure surfaces. Wedge III works with gravity, while Wedge I works 
against gravity.  We assume that the effective stress is zero along the basal failure surface 
(Wedge II is freely sliding), that there is hydrostatic pressure above this surface, and that 
material properties are homogenous with a friction angle, , = 30°; and unit weight, 20 = ,ߛ kN/m3. 
We assume that the levee wedge (Wedge III) is in a state of active (extensional) failure, and the 
channel wedge (Wedge I) is in passive (compressional) failure. This leads to a normal fault of 

60° on the levee side and a thrust fault at 30 at the toe of the channel (for a friction angle =30°, 

failure planes occur at 45േథ

ଶ
).



Figure DR1. A) Simplified channel-levee system. Failure surface (bold line with arrows 
showing sense of direction) for an embankment of total height ்݄ adjacent to a channel with a 
height ݄௖. B) Forces acting on Wedges I, II, and III.  

The active pressure ( ௔ܲ) and passive pressure ( ௣ܲ) act at an angle of 30, due to friction 

between the wedges (theory of retaining walls with wall friction, Lambe & Whitman (1969)) 
(Fig. 2).As wedge II is sliding in a frictionless manner, horizontal equilibrium gives: 

௔ܲ,௛ ൌ 	 ௣ܲ,௛  (1) 

where, 

௔ܲ ൌ
ଵ

ଶ
்݄ߛ

ଶܭ௔  (2) 

and 

௣ܲ ൌ
ଵ

ଶ
 ௣ܭ௖ଶ݄ߛ (3). 

The coefficients of active stress, ܭ௔ and passive stress, ܭ௣ are obtained by graphs 

correlating the friction angle of the material,  with the wall frictionw. In this case, ܭ௔ ≈ 0.295 
and ܭ௣≈ 7 (Lambe and Whitman, 1969). Substituting (2) and (3) in (1): 

௔ܲ cosሺ30°ሻ ൌ ௣ܲcos	ሺ30°ሻ,    (4) 
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்݄
ଶ ∗ 0.295 ൌ ݄௖ଶ ∗ 7,       (6) 

்݄ ൌ 4.9݄௖ .  (7) 

At failure, the total height (hT) above the weak layer on the active (levee) side is 4.9 times 
the height (hc) above the weak layer on the passive (channel) side.  At Ursa, hc is 75m. Thus, by 
Eq. 7, the total height (hT) is 367.5m, which means the maximum levee height is 217 m with the 
given sand unit (Blue Unit) thickness of 150 m (	݄௅ = 367.5m – 150m). We estimate from 
seismic data that the the levee thickness at Ursa was 200m, which is consistent with this analysis. 
If no channel erosion had occurred, hc would have been 150 m and the maximum levee height 



before failure would increase to 585m (4.9x150m-150m). No levees of this scale were observed.  
In summary, a meter of incision in the channel creates the same amount of instability as 4.9 
meters of deposition and levee failure will be very sensitive to erosion (destabilization) and 
deposition (stabilization) in the channel. 	
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Supplementary Item DR2  

Soil Model 

We use a two-dimensional finite element soil modeling package PLAXIS (Brinkgreve, 
2002). For plane strain, the mean total stress is (p) is 

2
31  

p ,  (1) 

and the maximum shear stress (q) is  

2
31  

q ,  (2) 

where 1  and 3 are the principal stresses. The mean effective stress (p’) controls soil 

behavior and is equal to the total stress less the pore pressure (u) 
upp ' .  (3) 

The excess pore pressure (ue) is the pore pressure less hydrostatic pressure (uh) 
ue = u - uh.   (4) 

For a change in total mean stress ( p ), the change in pore pressure ( u ) is  

pBu  ,  (5) 

where B is Skempton’s pore pressure parameter. The value of B is 1 for saturated soils, 
but is set to 0.99 for numerical stability in PLAXIS (Brinkgreve, 2002). The diffusion of excess 
pore pressure with time (t) is solved with the consolidation equation (Biot, 1941) 
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For each lithology we define a single value of hydraulic conductivity (K) and 
compressibility (mv), which are related to the coefficient of consolidation (cv): 
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where w  is the unit weight of water. The hydraulic conductivity is related to absolute 

permeability (k) by 
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 , (8) 

where is the dynamic viscosity of water. We do not model the change in permeability 

or compressibility with effective stress.  
To link effective stress to soil strain we used the well-known Mohr-Coulomb model 

(MC). MC is a poro-elastoplastic constitutive model in which a yield function separates elastic 
(recoverable) strain and plastic (irreversible) strain. Elastic strain obeys Hooke’s Law of linear 
elasticity, with the input parameters Young’s modulus (E) and Poisson’s ratio ( ). The yield 
function is the extension of Mohr-Coulomb theory to general states of stress with the effective 
stress input parameters of angle of internal friction ( ) and cohesion (c). Non-associated flow is 

assumed and defined with the dilatancy angle ( ). The angle of internal friction also defines the 

value of the lateral stress ratio (K0) according to Jaky’s formula (K0 = 1-sin ).  
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