
Table DR1. Abundance and species richness of higher taxa in the studied 

quantitative samples. 

Higher taxon 
number of families number of species number of fossils 

Demospongea 1 1 166
Scleractinia 3 4 540
Polychaeta 1 1 19
Cirripedia 1 2 395
Decapoda 1 1 34
Molluscs 62 138 36122
Echinodermata 1 1 3
Chondrichthyes 3 3 34
Osteichthyes 6 8 232
Total 80 159 37545

Table DR2. Number of samples in the four biofacies along with their environmental 

and stratigraphic affiliation. 

Biofacies 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Agapilia Granulolabium- Nassarius-Turritella- Nassarius- 

Agapilia Corbula Paphia-Loripes

Total no. of samples 20 31 28 29 

Water depth intertidal 19 31 2 8 
subtidal 1 0 26 21 

Sediment type pelitic 14 17 23 6 
sandy 6 14 5 23 

Position W 17 16 25 19
E 3 9 3 10 
Swell 0 6 0 0 

Sequence one 15 25 14 22 
two 5 0 14 7 

Systems tract TST1 2 23 11 20 
HST 13 8 4 2 
TST2 5 0 13 7 
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samples belong in roughly equal numbers to the two TSTs, only four are from the 

HST (Table DR2). Cluster 4 (29 samples) is characterized by the Nassarius-Paphia-

Loripes biofacies (Fig. DR2, Fig. DR4). The majority of samples here is from sandy, 

subtidal settings and three quarters belong to the lower fourth order cycle. Samples 

are mostly from TST1, followed by TST2, only two are from the HST (Table DR2). 

R-mode cluster analysis revealed four clusters of taxa with similar distributions 

among samples (Fig. DR2).Cluster I consists of Agapilia and Granulolabium, two 

species of gastropods that strongly dominate cluster A (Agapilia biofacies) and B 

(Granulolabium-Agapilia biofacies) and are considered as indicators of intertidal 

environments. Cluster II consists of the gastropods Nassarius and Turritella, and the 

bivalves Corbula, Striarca, Pelecyora and Anadara, which are all typical components 

of cluster C (Nassarius-Turritella-Corbula biofacies) and can be considered as 

indicators of sublittoral and rather pelitic environments. Cluster III consists of Loripes 

and Paphia, two bivalve species which typically occur in samples of cluster D 

(Nassarius-Paphia-Loripes biofacies) and are considered as indicators of sublittoral 

sandy environments. Cluster IV consists of the remaining species, which are best 

characterized by their rather patchy distributions. Accordingly, most of these species 

occur in low mean abundances (<5%) in all biofacies. Exceptions are the coral 

Porites, which is abundant in cluster 2 and Bittium, which is abundant in cluster 1. 

 

Appendix DR1: Actualistic comparison of abundant taxa 
 

The quantitatively most important taxon Agapilia is an extinct member of the neritid 

gastropods, a family which today is present in different habitats worldwide but mostly 

in intertidal rock and mangrove regions (subtropical and tropical) (Scott and Kenny, 

1998). The quantitatively very important Granulolabium belongs to the potamidid 

gastropods, which today also live in the intertidal, in estuaries or sandy mudflats 

(Healy and Wells, 1998) and are known from temperate and tropical mudflats in the 

Indo-West Pacific (Ewers, 1963; Wells, 1984). Nassariid gastropods which occur 

globally from intertidal to shallow subtidal marine habitats (Cernohorsky, 1984) but 

mostly in estuarine and shallow marine (soft-substrate) environments of temperate 

and tropical zones (Harasewych, 1998) are also numerous. The two abundant 

species of this family in our study, Nassarius edlaueri and  Cyllenina ternodosa were 

also recorded from coeval deposits from northern Korneuburg basin and are there 

interpreted as brackish-marine species, dwelling on intertidal mudflats to shallow 



sublittoral habitats (Zuschin et al., 2004). Cerithiid gastropods (“sand creepers”) are 

common in shallow marine water in subtropical and tropical zones globally and in 

different substrata like sand flats or mangroves (Healy and Wells, 1998), and the 

genus Bittium mainly occurs in vegetated marine environments (Bernasconi and 

Stanley, 1997; Olabarria et al., 1998; Schneider and Mann, 1991, Weber & Zuschin 

2013). The brackish and freshwater species Hydrobiidae occur in different habitats 

like rivers or estuarine mudflats (Ponder and De Keyzer, 1998); they are for example 

typical components of inner tidal flat assemblages in the northern Adriatic Sea 

(Weber & Zuschin, 2013) and of tidal flats on the Atlantic coast of France (Poirier et 

al. 2010). Turritellidae are mostly common on sublittoral muddy-sandy bottoms 

(Healy and Wells, 1998); they were for example abundantly present in sublittoral 

muddy sediments of the northern Adriatic Sea (Sawyer & Zuschin 2010). Scaliolid 

gastropods like Sandbergeria perpusilla live in sandy-mud substrate in the intertidal 

and littoral (Healy and Wells, 1998) and are known from the subtropical and tropical 

Indo-West Pacific (Ponder, 1994). In the northern Red Sea, scaliolids are widely 

distributed, but most abundant in sublittoral muddy sediments (Janssen et al. 2011). 

The most abundant bivalve in our study is Loripes, a member of the Lucinidae which 

are known from the intertidal to the shallow subtidal (Reid and Slack-Smith, 1998; 

Taylor and Glover, 2006), typically harbour chemosymbionts (Berg and Alatalo, 1984; 

Reid and Brand, 1986; Reid and Slack-Smith, 1998; Johnson & Fernandez 2001) 

and are often associated with seagrass environments in warm waters (Barnes and 

Hickman, 1999; Johnson et al., 2002, Zuschin & Oliver 2003, van der Heide et al. 

2012). The venerid bivalve Paphia occurs worldwide in different environments but 

mostly in the intertidal of tropical (Indo-Pacific) to temperate regions (Harte, 1998) 

and is known from subtidal habitats in the Mediterranean and the Red Sea (e.g. 

Poppe and Goto 1993, Zuschin and Oliver 2003). Corbulidae are shallow subtidal 

inhabitants in soft-bottom environments (Hrs-Brenko, 2006; Lamprell et al., 1998) and 

Corbula gibba lives in the coastal and estuarine subtidal (Holmes and Miller, 2006). 

Cardiidae (“heart cockles”) live mostly infaunal in shallow habitats (Rufino et al., 

2010, Wilson, 1998) and the genus Cerastoderma prefers estuarine conditions in 

temperate regions (Boyden and Russel, 1972). Living Cerastoderma in the northern 

Adriatic Sea occur from the outer tidal flat to the shallow sublittoral, but its empty 

valves are frequently distributed across the tidal flat (Weber & Zuschin 2013). On the 

Atlantic coast of France, living Cerastoderma is restricted to the tidal flats, but its 



empty valves are transported into the sublittoral (Poirier et al. 2010). Striarca is a 

neotiid bivalve, and this family is today common in the intertidal and shallow sub-

littoral (Stanley, 1970; Oliver, 1985). Striarca lactea occurs today in the sublittoral 

northern Adriatic Sea in shallow, sandy sediments (Weber & Zuschin 2013). The 

endobyssate arcid bivalve Anadara today lives in sublittoral environments, for 

example in the northern Red Sea (Zuschin & Oliver 2003) and northern Adriatic Sea 

(Sawyer & Zuschin 2010). Porites is very abundant in Miocene reefs of the 

Paratethys Sea (e.g., Riegl & Piller 2000, Reutter & Piller 2011) and among the main 

builders in modern coral reefs (e.g. Cortés et al. 1994, Grossman and Fletcher 2004, 

Macintyre et al. 1992). Quantitatively less important but environmentally indicative 

are clionids, balanids, decapods and goniasterids. Clionids are mainly limestone-

boring sponges (Goreau and Hartman, 1963; Rützler, 1975) and often dominate 

shallow-water sponge associations (Rützler, 2002). Balanus amphitrite is an acorn 

barnacle (Desai and Anil, 2005) which lives in the intertidal (Thiyagarajan, 2010). The 

recent B.amphitrite is known from warm, tropical and Balanus tinntinabulum from 

temperate and tropical regions (Wöhrer, 1998). The unspecified decapod-claws could 

indicate a marine, soft-muddy environment (Müller, 1998). Goniasterid star fishes 

typically occur in shallow sublittoral habitats (Villier et al., 2004). 
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