GSA Data Repository for: S.E.K. Bennett et al., Transtensional rifting in the proto-Gulf of California near Bahía Kino, Sonora, México: GSA Bulletin, doi: 10.1130/B30676.1.

SUPPLEMENTAL MATERIAL FAULT KINEMATICS Methods

Structural observations and fault kinematic data were collected from fault planes in outcrop (e.g. Fig. 4H, I) where fault-slip indicators (slickenlines or mullions) were preserved (e.g. Fig. 4J, K). 132 fault-slip indicators were measured within all non-Quaternary map units. Each fault-slip measurement consists of the strike/dip of the fault plane, rake of fault slip indicator, and sense of shear. A reliable shear sense indicator was absent for ~80% of the measured striae. Thus, a shear sense direction was systematically assigned to each fault kinematic datum based on models of predictable transtensional structures (e.g. Withjack and Jamison, 1986) formed from dextral oblique extension (e.g. a west-dipping fault with dip-slip slickenlines is assigned an extensional, not compressional, shear-sense indicator). Analysis

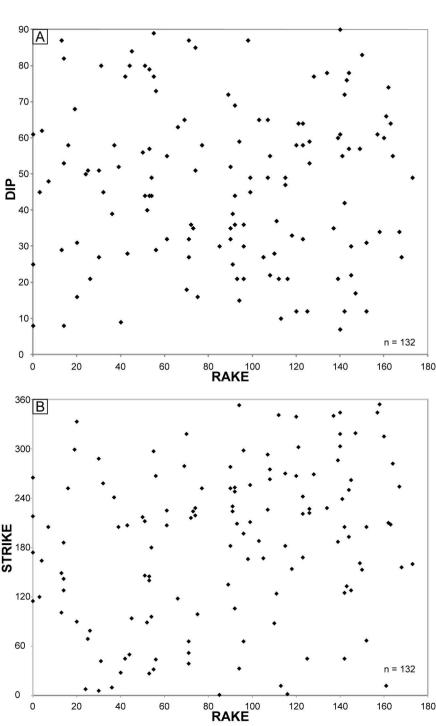
For this kinematic analysis, slickenlines are assumed to form in the direction of the maximum resolved shear stress on a fault plane (Wallace, 1951; Bott, 1959). Thus, the paleodirections of the most compressive and least compressive principal stresses on that fault form components of the orientation of the fault slickenline or mullion datum. Together these data, in the context of the orientation of the fault plane on which they are measured, yield a set of principal strain directions. If these represent infinitesimal strain (i.e. small-offset faults that have not been subsequently rotated) the strain axes should be representative of paleo-stress principal axes. Principal paleo-stress axes were determined using FaultKin v.4.3.5 software (Marrett and Allmendinger, 1990; Allmendinger et al., 2012), which utilizes the right dihedra geometrical method of Angelier and Mechler (1977) and Pfiffner and Burkhard (1987).

Variable amounts of clockwise vertical-axis rotation of fault blocks have occurred across the study area. This rotation greatly complicates the analysis, as faults may have slipped at an orientation different than that measured in outcrop. In our analysis we assume that the faults measured were formed prior to rotation. All fault kinematic data were thus rotated counterclockwise about a vertical-axis by the amount of rotation either determined by the paleomagnetic results of this study (up to 53°), or predicted from strain compatibility with adjacent blocks. **Results**

Fault kinematic data are highly variable and do not show a consistent relationship between fault dip and rake or fault strike and rake (Fig. DR1). This suggests that many faults have been rotated since their formation, complicating kinematic analysis. Overall the fault kinematic data are consistent with transtensional deformation of the area. Fault kinematic indicators measured in pre-12.5 Ma rocks (Fig. DR2A; n=89) are generally ignored in this analysis as they may record older, pre-rift episodes of deformation. Fault kinematic indicators measured in 12.5 - 0 Ma rocks (n=43) reflect all Gulf of California deformation, and display WSW-directed slightly oblique extension (T-axis azimuth 254°) with a near-vertical σ 1 principal stress (Fig. DR2B).

To test for a change in paleo-stress orientation with time (cf. Angelier et al., 1981), the well-dated stratigraphy was used as a chronologic filter as various periods of time were compared for similar or dissimilar paleo-stress axis orientations. Fault kinematic indicators (n=20) measured in early proto-Gulf rocks (12.5 to 11.5 Ma), which integrate all subsequent Gulf deformation, display a SW-NE slightly oblique extension direction (T-axis azimuth 232°) with a near-vertical σ 1 principal stress (Fig. DR2C). In latest proto-Gulf rocks (7 to ~6 Ma), fault kinematic indicators (n=23) suggest an approximate E-W slightly oblique extension direction (T-

axis azimuth 263°), again with a near-vertical σ 1 principal stress (Fig. DR2D). Although the paleo-stress results from the fault kinematic dataset appear to distinguish two distinctly different extension (i.e. σ 3 principal stress) directions for early proto-Gulf and latest proto-Gulf time periods, the confidence of this distinction is not high. Confidence contours for P- and T-axes strongly overlap (Fig. DR2). A major limitation of this dataset is that rocks deposited during a large portion of proto-Gulf time (~11.5–7 Ma) are not observed. Therefore, the kinematic data do not represent the tectonic style during a large portion of proto-Gulf time, and overall, these results should be taken with some level of reservation.


REFERENCES CITED

- Allmendinger, R.W., Cardozo, N.C., and Fisher, D., 2012, Structural Geology Algorithms: Vectors & Tensors: Cambridge, England, Cambridge University Press, 289 p.
- Angelier, J., and Mechler, P., 1977, Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: La méthode des dièdres droits: Bulletin de la Société Géologique de France, v. 7, p. 1309–1318.
- Angelier, J., Colletta, B., Chorowicz, J., Ortlieb, L., and Rangin, C., 1981, Fault tectonics of the Baja California Peninsula and the opening of the Sea of Cortez, Mexico: Journal of Structural Geology, v. 3, no. 4, p. 347–357, doi:10.1016/0191-8141(81)90035-3.
- Bott, M.H.P., 1959, The mechanics of oblique slip faulting: Geological Magazine, v. 96, p. 109–117.
- Marrett, R.A., and Allmendinger, R.W., 1990, Kinematic analysis of fault-slip data: Journal of Structural Geology, v. 12, p. 973–986.
- Pfiffner, O.A., and Burkhard, M., 1987, Determination of paleostress axes orientations from fault, twin and earthquake data: Annales Tectonicae, v. 1, p. 48–57.
- Wallace, R.E., 1951, Geometry of shearing stress and relation to faulting: Journal of Geology, v. 59, p. 118–130.
- Withjack, M.O., and Jamison, W.R., 1986, Deformation produced by oblique rifting: Tectonophysics, v. 126, p. 99–124, doi:10.1016/0040-1951(86)90222-2.

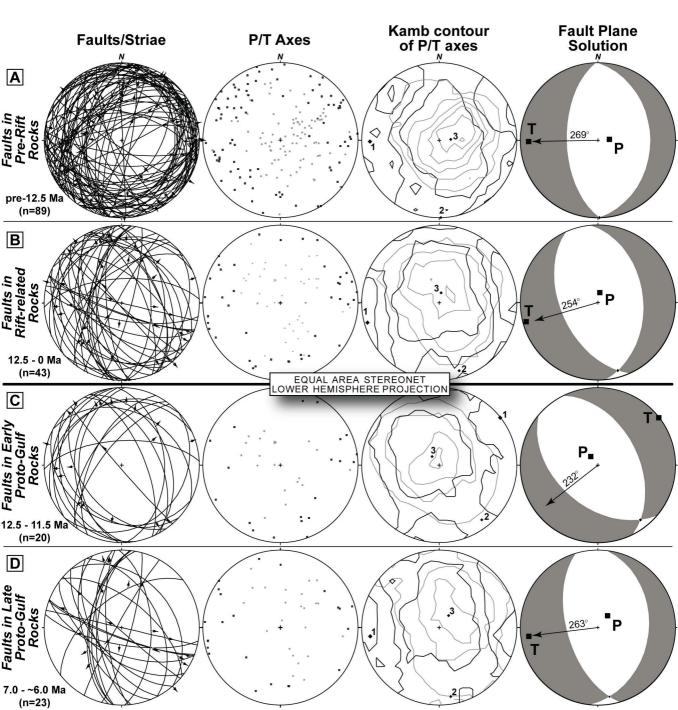

FIGURE DR1. (A) Fault Dip vs. Rake for all measured fault striae. (B) Fault Strike vs. Rake for all measured fault striae. See Table DR1 for a list of all measured fault striae.

FIGURE DR2. Fault kinematic data of slickenlines and mullions observed in coastal Sonora study area. Columns display (left) measured faults and striae, (left-center) P-axes (gray circles) and T-axes (black squares) for individual fault measurements, (right-center) Kamb contour of P-axes (gray) and T-axes (black), and (right) fault plane solution. All analysis conducted with FaultKin software (Marrett and Allmendinger, 1990; Allmendinger et al., 2012). (A) Kinematic data from pre-12.5 Ma rocks. (B) Kinematic data from rift-related (post-12.5 Ma) rocks. These rift-related fault data are further subdivided into faults measured in early proto-Gulf-age rocks (C) and in latest proto-Gulf-age rocks (D). It is assumed that the faults formed prior to rotation, which may be invalid. All fault kinematic data plotted here were first rotated counter-clockwise about a vertical-axis by the amount of rotation either determined by the paleomagnetic results of this study (up to 53°).

FIGURE DR1

FIGURE DR2

		TABLE	E DR1.	Fault kinematio	data measur	ed in the stu	dy are	ea.
Map Unit	Strike	Dip	Rake	Sense of Slip		Strike Di	2	Rake Sense of Slip
Tcu	050	80		ND	Tvu	341	21	112 ND
Tcu	164	62		dextral	Tvu	115	25	0 ND
Tcu Tcu	208 222	64 59	163 126		Tvu Tvu	090 052	16 87	20 ND 71 ND
Tcu	221	64	123		Tvu	340	35	137 ND
Tcu	211	49		normal	Tvu	002	21	116 ND
Tcu	166	87		ND	Tvu	205	48	7 ND
Tcu	187	60	139		Tvu	193	78	144 ND
Tcu	174 217	61 56		ND	Tvu	254	34 8	167 ND 0 ND
Tcu Tcu	145	56 79		normal ND	Tvu Tvu	265 315	60	160 ND
Tcu	033	59		ND	Tvu	182	32	90 ND
Tcu	161	57	149		Tvu	066	30	96 ND
Tcu	800	50	24	ND	Tvu	167	27	105 ND
Tcu	225	55		ND	Tvu	099	16	75 ND
Tcu	210	74	162		Tvu	303	61	140 ND
Tcu Tcu	146 344	80 61	157	ND	Tvu Tvu	293 042	49 80	107 ND 31 ND
Tcu	135	72		ND	Tvu	154	33	118 ND
Tcu	318	90	140		Tvu	252	35	90 ND
Tcu	354	34	158		Tvu	262	22	145 ND
Ttmc	219	85		ND	Tvu	226	65	107 ND
Ttsf	302	64		normal/dextral	Tvu	228	78	134 ND
Ttsf	010	39		ND	Tvu	120	45	3 ND
Ttsf Ttsf	333 241	31 58		ND ND	Tvu Tvu	096 224	49 35	54 ND 73 normal/sinistral
Ttsf	250	57	144		Tvu	207	32	61 normal/sinistral
Ttsf	149	87		ND	Tvu	339	12	120 normal/dextral
Ttsf	079	21		ND	Tvu	001	30	85 ND
Ttsf	168	32	123	ND	Tvu	319	17	147 ND
Ttsf	156	27	168		Tvu	227	53	126 ND
Ttsf	209	21		ND	Tvu	353	15	94 ND
Ttsf Ttsf	205 253	12 69	152	ND normal	Tvu Tvu	133 067	76 31	143 ND 152 ND
Ttsf	200	51		ND	Tvu	069	51	25 ND
Ttsf	212	44		ND	Tvu	242	58	123 ND
Ttsf	012	66	161	ND	Tvu	128	53	14 ND
Tvln	27	44		normal	Tvu	066	27	71 ND
Tvls	180	44		ND	Tvu	248	44	92 ND
Tvls Tvls	263 298	22 21	108	ND ND	Tvu Tvu	282 318	55 18	164 ND 70 ND
Tvls	230	39		ND	Kg	228	51	74 normal
Tvs	088	28	110		Kg	299	68	19 ND
Tvs	270	49	115		Кğ	94	84	45 normal
Tvs	267	58	120		Kg	153	83	150 ND
Tvs	239	55	141		Kt dike	045	77	42 ND
Tvs	258 32	45 80		ND	Kt dike	205 279	72 65	142 ND
Tvu Tvu	32 297	89 77		ND ND	Kt Kt	279 106	65 36	69 normal 92 normal
Tvu	142	8		ND	Kt	100	29	13 dextral
Tvu	288	27		ND	Kt	118	63	66 ND
Tvu	344	7	140		Kt	218	25	0 sinistral
Tvu	028	9		ND	Kt	216	36	72 normal
Tvu	045	12	125		Kt	140	57	53 thrust?
Tvu Tvu	045 188	12 65	142 103		Kt Kt	286 160	21 ⊿o	139 normal
Tvu Tvu	188 089	65 40	103 52	ND	Kt Kt	160 205	49 52	173 dextral 39 normal
Tvu	039	32		ND	Kt	128	30	145 normal
Tvu	044	29		ND	Kt	124	37	111 normal
Tvu	125	42	142		Kt	256	45	99 normal
Tvu	252	58		ND	Kt	267	73	56 normal
Tvu	252	58		ND	Kt	182	47	115 ND
Tvu	012	10 77	113		Kt Kt	224	25	91 ND
Tvu Tvu	269 275	77 55	128	normal/dextral	Kt Kt	186 207	82 28	14 ND 43 ND
Tvu	278	52		ND	Pziu	197	36	96 ND
'ND' indicates a fault striae measurment where the sense of fault slip motion was not determinable.								