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Stress Modeling Parameters 
 

A full description of the underlying theory, methods and modeling assumptions 
used in the present paper are described in Luttrell and Sandwell (2010). For the Amazon 
margin, the structural cross-section and elastic plate thickness (H=35 km; Figure 3a) 
assigned to the models were based on results from Watts et al. (2009). As a conceptual 
illustration, Supplementary Figures S2 and S3 show how sensitive the ΔCf models are to 
changes in elastic thickness (H=15, 35 and 50 km). The computation is semi-analytic in 
that it convolves the spatially-accurate shape of the ocean load due to 120 m of sea level 
rise with with a vertical Green’s function describing the response of the subsurface to a 
point load (Smith and Sandwell, 2006; Luttrell and Sandwell, 2010).  The effective 
elastic thickness (Te) of a region determined by flexural modeling of gravity anomalies is 
a good proxy for lithosphere thickness (e.g., Watts 2001) and we therefore choose elastic 
plate thickness values (H) appropriate for each region based on studies estimating 
effective elastic thickness.  The choice of H affects the flexural rigidity and flexural 
wavelength of the plate. Consequently, a thicker plate will affect a larger area around the 
coastline, whereas stresses in a thinner plate will be more localized. The models assume a 
Young’s modulus of 70 GPa, a Poisson’s ratio of 0.25, a mantle material density of 3300 
kg·m-3 (Luttrell and Sandwell, 2010). 

 
For simplicity all faults in our models are assigned a dip of 60°, the average dip 

for crystaline normal faults that comprise the dominant structural elements along these 
margins. Structural constraints on the Amazon and US Mid-Atlantic margins suggest that 
a 60° dip for thin-skinned faults is reasonable (Klitgord and Hutchinson, 1988; Watts et 
al., 2009).  The effect of wide variations in dip angle (e.g., 30º - 80º) is second order 



relative to the effects of elastic plate thickness, fault location relative to the coastline, and 
dip direction (e.g., toward or away from the ocean load).  The coefficient of friction for 
crystalline and thin-skinned faults in the model are set to μ=0.6 and μ=0.1, respectively; 
thin-skinned faults are expected to be weak and less capable of generating large 
earthquakes.  
 
Tables and Figures 
 
Table DR1. Catalog of published age constraints for major submarine landslides along 
glacial and non-glacial margins, and the approximate cessation age of coarse-grained 
deposition on deep-sea fan systems. See below for expanded reference list. 
 
Figure DR1. Structural cross-sections for (a) the Amazon margin (based on Watts et al., 
2009) and (b) the North Carolina margin (based on Hutchinson and Klitgord, 1988) that 
were used in stress models (Figures 3 and 4a; Supp. Figures S2 and S3). Coulomb failure 
stress (ΔCf) models across the Amazon margin (b-d) based on Watts et al. (2009). See 
Supp. Text for a detailed description of model parameters. The basement hinge-zone 
defines the landward edge of the marginal sedimentary basins. Structures within the 
hinge-zone include half-grabens with seaward dipping border faults, tilted blocs and syn-
rift sedimentary wedges that formed primarily during Mesozoic rifting. Seaward of the 
hinge zone, growth faults are observed in the post-rift sedimentary section and appear to 
accommodate gravitational collapse of the sedimentary wedge and differential subsidence 
across the margin (Klitgord and Hutchinson, 1988; Steckler et al., 1988). Transitional 
crust separates the continental crust (30—40 km) from thinner oceanic crust (5–10 km 
thick). 
 
Figure DR2. Coulomb failure stress (ΔCf) models across the Amazon margin. Elastic 
thickness (H) is varied across panels a, b and c to show the show the sensitivity in ΔCf 
across various fault systems. Regardless of the elastic thickness used, fault rupture is 
promoted along at least one fault system within 100 km of the shelf-edge. Numbered 
stars are receiver faults whose ΔCf time variations are shown in Supp. Figure S3. See 
Supp. Text for a detailed description of model parameters. 
 
Figure DR3. (a) Eustatic sea level curve of Peltier and Fairbanks (2006). (b–d) Load 
induced ΔCf for six different receiver faults (see corresponding numbers in Supp. Figure 
S2) using H=15, 35 and 50 km.  
 
 
 
 



Large-scale glacial landslides
Map # Name Age (kyr BP) Reference

8 Grand Banks 0.07 Piper et al. (1999)
12 Logan Canyon 1 0.84 ± 0.05 Jenner et al. (2007)

1 Traenadjupet 4.1 ± 0.1 Laberg et al. (2002)
13 Logan Canyon 2 5.7 ± 0.1 Jenner et al. (2007)

4 Afen 5.8 ± 0.1 Wilson et al. (2004)
3 Storegga 8.1 ± 0.3 Haflidason et al. (2005)
5 Faeroe 9.9 ± 0.1 Van Weering et al. (1998)

11 Verrill Canyon ~10 Piper et al (2003)
6 Peach 16.8 ± 2.1 Holmes et al. (1998)

10 Verrill Canyon ~12 Piper et al (2003)
9 Verrill Canyon 14 to 15 Piper et al (2003)
2 Nyk 16.3 ± 0.1 Lindberg et al. (2004)
7 Rockall 15 to 16 Flood et al. (1979)

14 South Whale basin 22 to 24 Piper et al. (2003)
N/A Hinlopen ~30 Winkleman (2007)

Large-scale non-glacial landslides
Map # Age (kyr BP) Reference

10 Nice Airport 0.03 Dan et al. (2007)
1 Baltimore-Norfolk Canyon 5.3 ± 0.15 Embley (1982)
1 Baltimore-Norfolk Canyon 6.7 ± 0.3 Embley (1982)
1 Baltimore-Norfolk Canyon 7.3 ± 0.3 Embley (1982)
1 Baltimore-Norfolk Canyon 10 ± 0.5 Embley (1982)

12 BIG '95 11.3 ± 0.3 Canals et al. (2004), Lastras et al. (2004)

3 Cape Fear 8 to 14
Embley (1980); Popenoe et al. (1993); Paull et 
al. (1996); Rodriguez and Paull (2000)

9 Canary 15 ± 2 Masson (2006)
8 Saharan 15 to 16 Embley (1982)
4 Amazon Shallow E 14 to 17 Maslin et al. (1998)
5 Amazon Shallow W 14 to 17 Maslin et al. (1998)
2 Currituck 25 to 50 Prior et al. (1986)
6 Amazon Deep E ~35 Maslin et al. (1998)
7 Amazon Deep W 42 to 45 Maslin et al. (1998)
8 Saharan ~60 Gee et al. (1999) 

11 Ana ~61.5 Berndt et al. (2012)

Deep-sea fan mass transport deposits
Map # Age (kyr BP) Reference

7 Nile 9 to 10 Garziglia et al. (2008)
4 Mauritania 10.5 to 10.9 Henrich et al. (2008)
9 Celtic 7 to 12 Zaragosi et al. (2000)

2 Mississippi 11 to 12
Kolla and Perlmutter (1993); Schwab et al. 
(1996); Twichell et al. (1992)

3 Amazon 13.3 ± 0.6 Flood (1991)
6 Tyrrhenian ~13.8 Trincardi et al (2003)
5 Madiera ~15 Weaver et al. (1983)
1 Black Shell (Hatteras) 15.9 ± 0.3 Elmore et al. (1979)
8 Horseshoe Abysal Plain ~17.7 Lebreiro et al. (1997)

Supplementary Table DR1: Submarine Mass Transport Age Constraints

Name

Name
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