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Model details, simplifications and sensitivity tests 

The reaction-transport model was developed in R - an open source statistical 

computing environment (R Development Core Team). Code was developed using 

‘ReacTran’, a package of functions, routines and solvers for reactive-transport modeling 

(Soetaert and Meysman, 2009). In addition, packages ‘seacarb’ and ‘marelec’ are used to 

calculate initial carbonate speciation, equilibrium constants and diffusion coefficients of 

chemical species under the specified physical and chemical conditions (Soetaert et al., 

2010; Lavigne and Gattuso, 2012). The task of carrying out batches of multiple model 

runs, for example, to test the sensitivity of results to a particular parameter, can made 

more efficient using parallel computing. The ‘multicore’ package was used to divide 

tasks between processor cores (Urbanek, 2009). 

The reaction-transport model finds a numerical solution to a set of 13-coupled 

partial differential equations describing the temporal change in distribution of [CO2], 

[HCO3
-], [CO3

2-], [13CO2], [13HCO3
-], [13CO3

2-], [H+], [OH-], [SO4
2-], [CH4], [H2S], [HS-], 

and [Ca2+] in a 1D porous sedimentary profile subject to diffusion and advection 

(transport), and chemical reactions (summarized in Table DR 3 and detailed below). 

Exchange with ocean water, assumed to behave as an infinite reservoir and represented 

by upper boundary conditions (Table DR 4), occurs by diffusion only.	  Advection and 

diffusion rates are calculated based on the physical parameters defined in Table DR 4. 

Explicit kinetics of all chemical reactions of the carbonate system are included in 

the model (Table DR 3) using the approach of Zeebe and Wolf-Gladrow, (2001).  

No rate constants are available for the dissociation of hydrogen sulfide, therefore, 

following the approach of Aloisi (2008), this reaction is considered to be very fast, with a 

rate constant of 1 x 1010 kg.mmol-1.a-1 ascribed to the protonation of HS-. The reverse 

reaction rate constant can then be calculated using the hydrogen sulfide dissociation 

constant (Millero, 1995). 

AOM in seeps is mediated by microbial consortia (Hoehler et al., 1994; Boetius et 

al., 2000), therefore a Michaelis–Menten expression is used to describe response of AOM 

rates to changing methane and sulfate concentration:  
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where RAOM is the rate of anaerobic methane oxidation, vmax is the maximum AOM rate, 

and KCH4 and KSO4 are the half-saturation constants of methane and sulfate, respectively. 

This expression mimics the effect of enzyme saturation, which places upper limits 

on reaction rates. The concentration of reactants at which enzyme saturation occurs is 

related to half-saturation constants. Laboratory studies indicate a half-saturation constant 

of ~0.5 mM for sulfate (KSO4), with KCH4 having values in the mM range (Wegener and 

Boetius, 2009). Therefore KSO4 and KCH4 are set at 0.5 and 1mM, respectively. Sensitivity 

tests show that the exact choice of half-saturation constants is not critical - the influence 

on isotope composition of pore fluids is minor.  

Carbonate precipitation rates depend on the saturation state of pore waters with 

respect to calcium carbonate (Ω), given by: 

€ 

ΩCaCO3
=
Ca2+[ ] CO3

2−[ ]
Ksp

	   	   	   	   (2)	  

Ksp is the solubility product of aragonite. ΩCaCO3 is linked to carbonate precipitation rates 

by the expression: 

€ 

Rcarbprec = kcarbprec(ΩCaCO3
−1)n 	   	   	   	   (3)	  

Kcarbprec is the kinetic constant for carbonate precipitation and n = 3, accounting for the 

non-linear dependence of precipitation rate on saturation state. 

Organic matter (OM) flux: Models of modern seeps usually take fluxes of OM to 

the sediment/water interface and subsequent burial into account because bacterial sulfate 

reduction of OM consumes sulfate. This reaction typically reduces the sulfate available 

for AOM and depresses the SMTZ (Regnier et al., 2011).  Reactive OM may also fuel 

methanogenesis when oxidants are exhausted, boosting the supply of methane for AOM 

(Regnier et al., 2011). The OM flux was assumed to be zero in our model because we 
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wish to optimize AOM, even at low [SO4
-]SW. At low [SO4

-]SW, methane is not the 

limiting factor on AOM rates in our simulations, it is set to seawater saturation at the 

lower model boundary, so additional generation in the sediment profile is not expected to 

impact AOM rates in a significant way.  

Sensitivity test of other parameters: Seeps form in a variety of settings 

encompassing a range of physical and chemical conditions. Table DR 5 shows the 

influence of changing various parameters (temperature, pressure, upper boundary pH, 

porosity, methane concentration at the lower boundary and diffusive boundary layer 

thickness) between natural extremes (while holding others at baseline values), on δ13C of 

carbonate precipitates, SMTZ depth and the integrated AOM rate. δ13CPDB variability is 

<1 ‰, confirming our assertion that [SO4
-]SW, DIC concentrations and isotopic 

composition of methane subject to AOM are the main controls on δ13CPDB of seep 

carbonates. 

Influence of other electron acceptors on AOM: Recent research has shown that 

bio-available, solid Fe3+ phases (oxides and oxy-hydroxides), may fuel AOM in addition 

to sulfate (e.g. Beal et al., 2009). The potential impact of Fe3+ based AOM on the 

temporal distribution of seep deposits was not considered in the present paper however, 

because unlike sulfate, sedimentary recharge of Fe3+ by diffusion cannot take place, 

severely limiting the extent of AOM. Furthermore, even in situations where Fe3+ is in 

plentiful supply (like the lab experiments of Beal et al., 2009), AOM using Fe3+ proceeds 

at ~15% of the rate when sulfate is utilized. We also note that in the Proterozoic and 

Paleozoic, reducing oceanic conditions would also limit the flux of reactive Fe(III) 

phases reaching the seafloor. These factors severely limit the localized production of 

carbonate cements that are typically dominant mineral phase in ancient seep sediments.  
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FIGURES 

 
Figure DR1. Map showing the location and age (Ma) of ancient seep carbonates in the 

isotopic compilation shown in Fig. 1 (main text) and Table DR1.  
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A 

	  
B	  

	  
Figure DR2. AOM rate and the δ 13C (PDB) of carbonates as a function of advection 
velocity with AOM maximum rate constants set at (A) 50, and (B) 300 mmol kg-1a-1. 
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Figure DR3. Comparison of model results (solid lines) with pore water data (points) 

from Hydrate Ridge core SO143/114-1 (Luff et al., 2005). 
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Table DR1. Minimum δ 13CPDB values of seep carbonates reported from the geological 

record. 

Approximate 
Age (Ma) Location  

Minimum 
δ13C (‰,	  
PDB) 

Reference 

0.1 Offshore Russia -49.2 Campbell et al., 2002 

0.5 Central Japan -62.3 
Shibasaki and Majima, 

1997 
1.8 Central Japan -55 Majima et al., 1996 
2 Japan -46 Majima et al., 2005 
2 Japan -53.2 Majima et al., 2005 
2 Japan -54.5 Majima et al., 2005 
4 Washington State, USA -33.6 Campbell, 1992 
5 Japan -58.8 Majima et al., 2005 

7 
Taranaki Basin, New 
Zealand -40 

Nyman and Nelson, 
2011 

8 Santa Cruz -13.8 Aiello et al., 2001 

14 N. Italy -40 
Clari et al., 1994; 

Peckmann et al., 1999 

14 Appenines, Italy -58 
Terzi et al., 1994; Conti 

and Fontana, 1999 

14 NE New Zealand -51.7 
Campbell and Francis, 

1998 
15 Japan -23 Majima et al., 2005 
23 North slope, Alaska -69 Campbell et al., 2000 

26 Heath Shale, Peru -37.9 
Kiel and Peckmann, 

2007 

28 Asphalt mine, Cuba -32.2 
Kiel and Peckmann, 

2007 

28 Columbia -51.3 
Kiel and Peckmann, 

2007 
28 Carpathians of Poland -39 Bojanowski, 2007 

28 
Lincoln Creek Fm, WA, 
USA -51 Peckmann et al., 2002 

31 Juan de Fuca, WA, USA -34.5 
Geodert and Campbell, 

1995 
36 Whiskey Creek, WA -36 Peckmann et al., 2003 

40 Lomitos chert, Peru -25.3 
Kiel and Peckmann, 

2007 
50 Bulgaria -44.8 De Boever et al., 2008 
60 Panoche hills, CA  -47 Schwartz et al., 2003 
76 Tepee Buttes, CO -50 Kauffman et al., 1996 
80 Hokkaido, Japan -43.5 Jenkins et al., 2007 
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112 California -24.9 Campbell et al., 2002 

112 

Canadian Arctic Islands 
(Ellef Ringes and Prince 
Patrick) -50 

Beauchamp et al., 
1989; Beauchamp and 

Savard, 1992 
135 California -24.3 Campbell et al., 2002 
145 Svalbard -43 Hammer et al., 2011 
150 Antarctica -44.6 Kelly et al., 1995 
150 California, USA -43.7 Campbell et al., 2002 
160 France -26.5 Gaillard et al., 1992 
190 Argentina -33 Gomez-Pérez, 2003 
215 Eastern Oregon, USA -36 Peckmann et al., 2011 
300 Namibia  -51 Himmler et al., 2008 

313 France -50 
Buggisch and Krumm, 

2005 
350 Germany -32 Peckmann et al., 2001 
370 Morocco -12 Peckmann et al., 2007 

390 Morocco -22 

Peckmann et al., 
1999b; Buggisch and 

Krumm, 2005; 
Peckmann et al., 2005 

420 Morocco -6.14 

Barbieri et al., 2004; 
Buggisch and Krumm, 

2005  
635 SE Australia -10 Kennedy et al., 2008 
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Table DR2. Summary of criteria used to identify Paleozoic seeps lacking carbonates with δ 13CPDB values <-30‰.  
 Age 
(Ma) Location  Criteria used in identification as a cold seep Diagenetic influence on δ13C values? Reference 

  Geological context, textures, fabrics Fossils   

370 Morocco 

Fibrous calcite cement that form isopachous 
rims and botryoids directly on brachiopod 
shells – similar textures found in other 
seeps. Pyrobitumen provides evidence of 
hydrocarbon seepage. 

Dense clusters of articulated 
(autochthonous) Dzieduszyckia 

brachiopods, with some tubeworm 
fossils. Fossilized threadlike 

microorganisms. 

Late-stage calcite filled veins crosscut 
banded/botryoidal cements. Original 
aragonitic mineralogy has been calcitized. 
However, most δ13CPDB-depleted cements 
have δ18O values close to oceanic 
equilibrium and distinctive from 
diagenetic phases. 

Peckmann et al., 
2007 

390 Morocco 

Association of the carbonate mound core 
with fissures and neptunian dykes, which 
may have provided conduits for 
hydrocarbon bearing fluids. Carbonates 
exhibit typical seep textures, consisting of 
clotted micrites, rim cements with 
botryoidal structures and stromotactis type 
pores. Moderate δ13CPDB depletion (to -22‰) 
make hydrocarbon oxidation likely source of 
carbonate alkalinity.  

Dense clusters of articulated 
(autochthonous) bivalves and 
tubeworms likened to fauna from 
modern seeps. In contrast, host 
sediments are fossil poor.  

Some neomorphic and vein filling 
dolomites reported. δ18OPDB values as low 
as -13‰, suggest post-burial 
recrystallization. But, carbonate cements 
with the lowest δ13CPDB values have 
δ18OPDB of -1.5‰ - suggesting 
preservation of original values. 

Peckmann et al., 
1999b; 

Buggisch and 
Krumm, 2005; 

Peckmann et al., 
2005 

420 Morocco 

Localized mound (70 by 30m) of authigenic 
carbonate with abundant microbial fabrics 
hosted by a siliciclastic flysch sequence. 
Multiple phases of carbonate cementation 
and recrystallization linked to changing seep 
fluid chemistry. The carbonate botryoids, 
splayed calcite and stromactoid structures 
observed are common in other seeps. 

Dense, localized, mono-specifc, 
accumulations of fully articulated 
Atrypid brachiopods. Interpreted as 
being preserved insitu and 
harboring chemoautotrophic 
symbionts. Remnant microbial mat 
textures comparable to mats from 
modern chemosynthesis based 
environments.  

Some post-burial diagenesis indicated by 
alteration of brachiopod shells. However, 
early cavity filling carbonate cements 
have δ13CPDB between -5 to +20‰  (the 
heavy values recording methanogenesis); 
the heterogeneity indicates preservation 
of original signals. Carbonates with 
δ13CPDB minima used in our compilation 
have δ18OPDB values of  -5‰, close to 
expected equilibrium values with 
seawater. 

Barbieri et al., 
2004; Buggisch 

and Krumm, 
2005  
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635 SE 
Australia 

Highly δ18O enriched carbonates typical of 
methane seeps. Network of carbonate 
cemented chimneys hosted by sandstones 
indicates syndepositional fluid seepage.  

NA 

Minimal diagenetic influence on stable 
isotopes supported by: 1) microcrystalline 
nature of cement, 2) isotopic 
heterogeneity on millimetre scales, and 3) 
clay mineralogy of host sediments 
indicate diagenetic temperatures < 100°C. 

Kennedy et al., 
2008 
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Table DR3. Model reaction terms. 

Species Reaction term 

CO2 ((K-1[H+]+K-4)[HCO3
-]) - ((K+1+K+4[OH-])[CO2]) 

HCO3
- ((K+1+K+4[OH-])[CO2]) - ((K-1[H+]+K-4)[HCO3-]) + ((KH+5[H+]+KOH-5)[CO3

2-]) - ((KH-5+KOH+5[OH-])[HCO3
-]) + RAOM 

CO3
2- ((KH-5+KOH+5[OH-])[HCO3

-]) - ((KH+5[H+]+KOH-5)[CO3
2-]) - Rcarbprec 

13CO2 ((K'-1[H+]+K'-4)[H13CO3
-]) - ((K'+1+K'+4[OH-])[13CO2]) 

H13CO3
- ((K'+1+K'+4[OH-])[13CO2]) - ((K'-1[H+]+K'-4)[H13CO3

-]) + ((KH+5[H+]+KOH-5)[13CO3
2-]) - ((KH-5+KOH+5[OH-])[H13CO3

-]) +R13CAOM 
13CO3

2- ((KH-5+KOH+5[OH-])[H13CO3
-]) - ((KH+5[H+]+KOH-5)[13CO3

2-]) - R13Ccarbprec 
H+ K+1[CO2] - K-1[H+][HCO3

-] + KH-5[HCO3
-] - KH+5[H+][CO3] + K+6 - K-6[H+][OH-] 

OH- K-4[HCO3
-] - K+4[CO2][OH-] - KOH+5[HCO3

-][OH-] + KOH-5[CO3
2-] + K+6- K-6[H+][OH-] 

HS- (K+7[H2S]) - (K-7[HS-][H+]) 
H2S (K-7[HS-][H+]) - (K+7[H2S]) 
Ca2+ - Rcarbprec 
CH4 - RAOM 
SO4

2- - RAOM 
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Table DR4. Model parameter values used in the baseline simulation of pore water data 

from Hydrate Ridge. 

Parameter  Value  Unit 
Length of the simulated core 35 cm 
Number of layers used in model simulation 800  
Temperature 5 °C 
Salinity 34.3 PSU 
Pressure 79 Bar 
Background porosity at the sediment surface 0.76  
Background porosity at base of simulated 
profile 0.66  
Porosity depth attenuation coefficient 0.22  
Fluid velocity at sediment-water interface 30 cm a-1 

Kinetic constant of aragonite precipitation 0.03 mmol kg-1cm-3a-1 

Kinetic constant of AOM 300 mmol kg-1a-1 
Diffusive boundary layer thickness 0.2 cm 
Half-saturation constant methane 1 mmol kg-1 

Half-saturation constant sulfate 0.5 mmol kg-1 

Water chemistry (sediment/water interface)   
Total alkalinity 2.46 mmol kg-1 

pH 7.66  
Total sulfide  0.11 mmol kg-1 

δ13CPDB of seawater 0  
Calcium concentration 10.09 mmol kg-1 

Base of simulated column   
δ13CPDB of methane -65 ‰ 
Methane concentration 66 mmol kg-1 
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Table DR5. Results of sensitivity tests; showing the influence of parameters other than 

the dissolved inorganic carbon concentration, sulfate concentration, and the carbon 

isotope composition of methane, on the mean δ13CPDB of carbonates, SMTZ depth and 

integrated AOM rate at seeps. 

Parameter tested 

Mean 
δ13CPDB of 
carbonates 

(‰) 

SMTZ 
depth 
(cm) 

Integrated 
AOM rate 

(mol m-2 a-1) 
Temperature (°C)    

5 -58.8 1.55 12.2 
19 -58.3 2.21 15.4 

Pressure (bar)    
10 (~100 m depth) -58.6 1.55 12.2 

310 (~3100 m depth) -59.2 1.55 12.2 
Bottom water pH    

7 -58.2 1.55 12.2 
9 -59.1 1.55 12.2 

Diffusive boundary layer 
(mm)    

0.5 -58.7 1.64 12.4 
2.5 -58.8 1.51 12.2 

Methane concentration at base (mM)   
50 (saturation @3 °C, 

~1000m) -58.8 1.90 11.6 
150  (saturation @20 °C, 

~3000m) -58.8 0.85 13.0 
Porosity    

0.5 (set as constant) -58.8 1.47 11.2 
0.9 (set as constant) -58.6 2.03 13.8 
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