
Mathematical derivation 

Our mathematical model is based on 1D fluid dynamic shear models (e.g. Turcotte and 

Schubert, 2002). We apply a constitutive equation in the form of a dislocation creep flow law 
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where v zγ = ∂ ∂  is the shear strain rate, z is the vertical coordinate across the shear zone 

being zero at the base and increasing positively upwards, v is the horizontal (i.e. parallel to the 

shear zone) velocity, σ is the shear stress, A is a pre-exponential factor, 𝑛 is the power-law 

stress exponent, Q is the activation energy, R is the gas constant and T is the temperature. We 

solve (1) for  𝜎 which yields 
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This can be more generally expressed as 

 1/= nσ µ γ  (3)  

where µ is a viscosity coefficient. We assume a normal geotherm and, hence, that the 

temperature increases linearly with depth inside the shear zone 

 0T T zθ= −  (4)  

where T0 is the temperature at the base of the shear zone and θ is the temperature gradient. 

Substituting (4) into (2) provides the viscosity factor in (3):  
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It is difficult to derive an analytical solution for terms of the form 1/ ze  as in (5). A common 

simplification is to use the Frank-Kamenetzky approximation which employs a term of the 

form ze . The alternative viscosity coefficient η has then the form 
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where η0 is the coefficient at the base of the shear zone (z=0) and λ is the e-fold length. λ 

quantifies the distance over which the value of η increases by a factor of e. The material 

parameters in (5) derived from laboratory rock deformation experiments can be related to the 

new parameters η0 and λ. The deformation is most intense at the base of the shear zone and, 

therefore, we want that µ is well approximated by η at the base. We require that both the 

values and the spatial derivatives of µ and η are identical at z=0 which provides two 

equations: 
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The explicit form of these equations is 
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Solving the two equations yields 
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The expression for the stress can now be written as  
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We consider a 1D horizontal shear zone where the vertical velocities are zero. We assume that 

horizontal pressure gradients are negligible and, therefore, the 1D force balance is (e.g. 

Turcotte and Schubert, 2002) 
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Substituting (10) into (11) and using the two kinematic boundary conditions 0 0zv v= = and 

0z Wv = = , with W being the shear zone width, yields the velocity 
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We make the solution for v dimensionless by introducing 
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z is the non-dimensional vertical coordinate, and v  is the non-dimensional horizontal 

velocity. The value of β depends on the thickness of the shear zone, W. Using /T Wθ = ∆

with ΔT being the temperature difference between the temperature at the bottom and the top 

of the shear zone provides an expression for β independent on W: 
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The value of β does not depend on the material properties n and η0 but only on the parameters 

Q, Δ𝑇 and  𝑇0. The dimensionless velocity now depends only on β: 
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The larger the value of β the stronger the strain localizes (Fig. 2).  

 




