GSA Data Repository 2013121

Expanded method section, tables and additional figures

Item DR1: Sample Analysis

The analysis process involveed four key stages; pre-concentration of ${ }^{234} \mathrm{U}$ and ${ }^{230} \mathrm{Th}$, separation of ${ }^{234} \mathrm{U}$ and ${ }^{230} \mathrm{Th}$, analysis of samples using mass spectroscopy and processing of results for age calculation. All stages of the analytical procedure were carried out at the Scottish Universities Environmental Research Centre (SUERC). Selected samples were ground to <200 mesh and well mixed before aliquots were taken for analysis. Complete dissolution of samples was achieved by nitric acid digestion. Samples were spiked with a mixed ${ }^{229} \mathrm{Th}-{ }^{236} \mathrm{U}$ tracer. U and Th were isolated from the aliquots using the first stage of the column separation method described by Yokoyama et al. (1999). Matrix elements of the sample were eluted with $4 \mathrm{M} \mathrm{HNO}_{3}$, Th eluted with 5 M HCl and U with $0.1 \mathrm{M} \mathrm{HNO}_{3} .5 \mathrm{M}$ HCl was used to prevent the carry-over of Th into the U fraction and optimise U-Th separation. After separation the U faction was diluted with $5 \%(\mathrm{v} / \mathrm{v}) \mathrm{HNO}_{3}$ in order to achieve an appropriate concentration of $U(\sim 50 \mathrm{ppb})$ for analysis. Th samples were taken up in a 50 ppb solution of the certified reference material (CRM) NBL112-A (natural U) which was used to monitor and correct instrumental mass bias.

Analysis of samples was carried out on an upgraded Micromass Isoprobe MC-ICPMS equipped with 9 Faraday collectors and an ion counting Daly-photo-multiplier detector located behind a wide-access retarding potential (WARP) filter. An Elemental Scientific Inc. Apex nebuliser system equipped with heating, cooling and decolvation stages was used to introduce samples to the ICP-MS. For ${ }^{234} \mathrm{U}$ analysis a 2 -cycle measurement was employed. In the first cycle ${ }^{234} \mathrm{U}$ was analysed using the Daly detector (typically 5000 cps) while ${ }^{235} \mathrm{U},{ }^{236} \mathrm{U}$ (spike), and ${ }^{238} \mathrm{U}$ were measured simultaneously using Faraday detectors. In cycle $2,{ }^{235} \mathrm{U}$ was measured on the Daly detector and ${ }^{238} \mathrm{U}$ was measured on a Faraday. The two ${ }^{238} \mathrm{U}$ measurements were used to correct for any fluctuation in ion beam intensity while the ${ }^{235} \mathrm{U}$ measurements were used to quantify the relative gains of Daly and Faraday detectors (nominally 97% and stable to less than 0.1% over several hours). Measured ${ }^{235} \mathrm{U} /{ }^{238} \mathrm{U}$ was used to correct instrumental mass bias assuming a natural ratio and an exponential law. Th analysis was also carried out with a 2 cycle routine with ${ }^{229} \mathrm{Th}$ spiked to an appropriate level to allow detection on both Daly and Faraday detectors. In cycle $1{ }^{229} \mathrm{Th}$ was measured on the Daly and ${ }^{235} \mathrm{U}$ and ${ }^{238} \mathrm{U}$ were measured on Faradays and used to correct mass bias using an exponential law and the certified natural ratio of NBL112-A. In cycle $2{ }^{229} \mathrm{Th}$ was measured on a Faraday and used to calculate the relative Daly-Faraday gain (typically about 0.5\% lower than that measured for U) ${ }^{232}$ Th was measured on a Faraday (although low signal sizes often militate against precise analyses) and ${ }^{238} \mathrm{U}$ was measured by Faraday to quantify any signal fluctuation and used to correct ${ }^{229} \mathrm{Th}$ before calculation of the Daly gain. Details of the performance of the SUERC instrument for a variety of U standards were presented elsewhere by Ellam and Keefe (2006).

Ages of the samples were calculated using the decay constants of Cheng et al. (2000) and Isoplot/Ex rev. 2.49 (Ludwig 2001). The decay constant errors of ${ }^{230} \mathrm{Th}$ and ${ }^{234} \mathrm{U}$ are propagated into the age-error calculation along with errors on the activity ratio to provide overall analytical errors. The effective dating range for U-series dating is considered to be around 6 half-lives of ${ }^{230} \mathrm{Th}\left(\sim 350 \mathrm{ka}\right.$) (Chabaux et al. 2003). However, if an excess of ${ }^{234} \mathrm{U}$ is present, and the initial uranium activity ratio, $\left({ }^{234} \mathrm{U} /{ }^{238} \mathrm{U}\right)_{0}$, is adequately high, as is the case in this study, material older than 350 ka can be dated.

Item DR2: Repeat Measurements

Repeat analysis was carried out on three samples of distinct age (from mounds L2, L6 and L8) from the Little Grand Wash fault (Table DR1). Considering the small analytical errors on the age results (0.5 to 1%) the repeat analyses demonstrated good levels of reproducibility. The reproducibility in terms of percentage difference between the two repeat analyses was 10.4% for $\mathrm{L} 2,1.6 \%$ for L 8 and 6.3% for L6. Recent work utilising U-series dating suggests that the main control on reproducibility is sample integrity rather than analytical capability such that duplicate samples often do not reproduce at the level of precision available from mass spectrometric methods (Thompson 2010). Variation in open-system behaviour of U within the aragonite vein samples is likely to be the main reason for the discrepancies between ages. Samples from the L2 mound provided the least reproducible result as younger samples have low levels of ${ }^{230} \mathrm{Th}$, leading to inherently poorer counting statistics and increasing any effect from detrital ${ }^{232} \mathrm{Th}$.

Item DR3: Age Estimates

As dated mound ages correlate with their height above the local drainage we were able to calculate an incision rate for the SWG and use this rate to estimate the ages of non-dated mounds. For this calculation we classed the local drainage as the closest tributary to the Green River and measured elevations using a differential GPS. The height above nearest drainage was determined by subtracting the elevation of the closest section of the tributary from the elevation of river gravel entrained within the dated travertine. These immature piedmont gravels are a key indicator of base level when the travertine was actively precipitated. There are eight dated travertine on the SWG which contain river gravels. Three of these are associated with the Big Bubbling Wash (S7, S8, S9) and five are associated with the Salt Wash (S6, S11, S12, S17, S20) streams. To estimate the ages of non-dated travertine the height of the base of the surface deposited carbonates (or river gravel if present) above the nearest section of local drainage was divided by the calculated incision rate.

Supplemental Figures and Tables

Figure DR1: Geological maps showing the location of U-Th dated travertine (white boxes), from Table S1, and estimated age travertine (green boxes), from Table DR2.

Figure DR2: Images of the Crystal Geyser and associated travertine deposit. A) Picture taken at the peak of geyser activity in the midst of an eruption cycle. B) Close-up of surface
carbonate formed by degassing of the run-off water from the geyser. Note the complex morphology of the carbonate and the presence of windblown material from the surroundings. C) SEM image of a surface carbonate sample. The arrows highlight the presence of detrital contamination; grey arrows indicate quartz and the white arrow feldspar.

TABLE DR1: U-TH RESULTS OF TRAVERTINE SAMPLES.

Moun d	U-Th age (years) (2 σ)	$\begin{gathered} \left({ }^{234} \mathrm{U} /{ }^{238} \mathrm{U}\right)_{0} \\ (2 \sigma) \end{gathered}$	(ppm)	Th (ppb)	$\left[{ }^{230} \mathbf{T h} /{ }^{232} \mathrm{Th}\right]$
L2.1	$5,029 \pm 31$	5.12 ± 0.01	4.54	0.64	2,875
L2.1 ${ }^{\text { }}$	$8,629 \pm 30$	4.37 ± 0.01	1.66	730	1.5
L2.2	$5,699 \pm 26$	3.63 ± 0.01	6.49	0.39	50,459
L2.2*	$5,060 \pm 40$	3.65 ± 0.01	5.16	0.24	19,841
L2.2 ${ }^{\text { }}$	$6,927 \pm 22$	4.67 ± 0.01	3.27	236	11.1
L3.1	$50,890 \pm 390$	4.12 ± 0.02	4.11	1.47	13,721
L3.2	$49,088 \pm 187$	4.42 ± 0.02	2.16	16.37	499
L4	$113,912 \pm 604$	4.01 ± 0.01	5.08	0.04	905,311
L4	$109,614 \pm 901$	5.09 ± 0.01	4.22	0.06	675,748
L4	$106,526 \pm 544$	4.79 ± 0.01	5.09	0.38	888,662
L4	$103,172 \pm 1,486$	4.90 ± 0.02	4.75	§	§
L4 ${ }^{\text {4 }}$	$114,098 \pm 646$	3.72 ± 0.01	2.16	63	13.5
L5	$31,217 \pm 297$	5.97 ± 0.03	0.52	13.43	164
L6	$61,274 \pm 504$	6.38 ± 0.02	8.02	0.31	187,559
L6*	$56,419 \pm 506$	6.27 ± 0.02	8.96	0.4	170,636
L7	$75,495 \pm 656$	6.26 ± 0.02	8.3	0.73	93,471
L8	$27,405 \pm 80$	7.23 ± 0.02	5.93	0.64	416,542
L8*	$26,716 \pm 250$	7.42 ± 0.02	7.49	0.08	370,026
S1	$38,906 \pm 161$	2.02 ± 0.01	3.3	0.15	367,166
S2	$60,188 \pm 443$	4.05 ± 0.01	7.31	§	§
S3	$29,028 \pm 107$	4.35 ± 0.01	7.05	0.15	139,424
S4	291,307 $\pm 5,594$	4.18 ± 0.04	3.03	3.54	6,820
S5	$\begin{gathered} 413,474 \pm \\ 15,127 \end{gathered}$	6.57 ± 0.22	2.41	0.11	212,447
S6	$13,068 \pm 59$	3.34 ± 0.01	6.02	4.74	1,442
S7	$100,378 \pm 562$	5.37 ± 0.01	4.91	0.67	62,991
S8	$106,088 \pm 660$	5.28 ± 0.01	4.75	0.02	168,936
S9	$135,135 \pm 1,142$	5.21 ± 0.02	6.25	0.01	828,531
S10	$51,290 \pm 248$	4.44 ± 0.01	3.2	2.99	5,102
S11	92,792 $\pm 1,118$	4.84 ± 0.02	4.7	0.08	2,217
S12	$28,375 \pm 238$	5.03 ± 0.01	0.79	0.24	11,154
S13	$10,797 \pm 42$	4.91 ± 0.01	3.2	49.25	91
S14	$34,971 \pm 142$	5.31 ± 0.01	4.28	112	44,315
S15	$65,085 \pm 334$	2.84 ± 0.01	2.31	7.5	1,125
S16	$57,014 \pm 412$	5.50 ± 0.01	3.98	13.49	1,871
S17	$4,792 \pm 30$	3.14 ± 0.01	1.7	8.15	89
S18	$112,804 \pm 634$	6.78 ± 0.02	2.39	0.05	462,932
S19	$130,666 \pm 831$	6.75 ± 0.02	2.57	0.36	85,363
S20	$110,000 \pm 634$	6.80 ± 0.02	2.28	0.57	44,284

S21	$116,788 \pm 691$	7.15 ± 0.02	2.14	0.89	28,864
S22	$9,749 \pm 45$	6.96 ± 0.02	2.18	1.8	2,174

© Surface carbonate samples.

* Repeat analyses
$\S{ }^{232} \mathrm{Th}$ levels were too low to be counted

For sample location see Figure DR1. Analytical errors are presented as uncertainty in the decay constants (Cheng et al. 2000) propagated to the age uncertainty and are generally 0.5 1% of the age. Repeat analyses demonstrate good levels of reproducibility considering the small analytical errors (see MS2). The presence of detrital contamination is shown by the ${ }^{230} \mathrm{Th}{ }^{232} \mathrm{Th}$ activity ratio. Surface carbonate samples have values lower than the limit of 15 to 20 that indicates the presence of non-radiogenic ${ }^{230} \mathrm{Th}$ (Geyh 2008). The addition of thorium from contamination increases the $\left[{ }^{230} \mathrm{Th} /{ }^{234} \mathrm{U}\right]$ and results in an over-calculated age.

TABLE DR2: ESTIMATED TRAVERTINE AGES, DIMENSIONS AND CO_{2} CONTENT.

Mound	Age (years)	$\begin{aligned} & \text { Area }\left(\mathrm{m}^{2}\right) \\ & \pm 1 \mathrm{~m}^{2} \end{aligned}$	Thickness (m) $\pm 0.1 \mathrm{~m}$	Volume (m^{3})	Volume of CO_{2} trapped in the mound (tonnes)
$\frac{\text { LGW }}{\text { (dated) }}$					
L1	71	5,868	1	5,868	7,222
L2.1	$5,029 \pm 31$	240	1	240	295
L2.2	$5,380 \pm 33$	5,122	3.6	5,238	6,447
L3.1	$50,890 \pm 390$	335	1	335	412
L3.2	$49,088 \pm 187$	388	1	388	478
L4	$113,912 \pm 604$	11,610	6	69,660	85,735
L5	$31,217 \pm 297$	2,580	0.6	1,621	1,995
L6	$58,847 \pm 505$	2,043	5	10,213	12,570
L7	$75,495 \pm 656$	72	0.5	36	44
L8	$27,067 \pm 165$	635	2.5	1,588	1,954
$\frac{\text { SWG }}{(\text { dated })}$					
S1	$38,906 \pm 161$	471	0.4	188	232
S2	$60,188 \pm 443$	2,229	1	2,229	2,743
S3	$29,028 \pm 107$	634	0.2	150	184
S4	$291,307 \pm 5,594$	332	0.1	41	51
S5	$413,474 \pm 15,127$	1,207	0.4	543	668
S6	$13,068 \pm 59$	1,013	0.5	507	624
S7	$100,378 \pm 562$	833	1	833	1,026
S8	$106,088 \pm 660$	864	0.6	518	638
S9	$135,135 \pm 1,142$	1,110	1	1,110	1,366
S10	$51,290 \pm 248$	199	0.1	15	18
S11	$92,792 \pm 1,118$	5,612	1	5,612	6,907
S12	$28,375 \pm 238$	612	1.2	734	904
S13	$10,797 \pm 42$	911	0.4	364	448
S14	$34,971 \pm 142$	534	0.2	106	131

S15	$65,085 \pm 334$	12,013	0.5	6,006	7,392
S16	$57,014 \pm 412$	2,331	0.6	1,399	1,721
S17	$4,792 \pm 30$	1,080	0.3	324	399
S18	$112,804 \pm 634$	2,614	1	2,545	3,132
S19	$130,666 \pm 831$	4,125	1.5	6,341	7,804
S20	110,000 ± 634	2,392	0.7	1,674	2,061
S21	$116,788 \pm 691$	357	1.1	393	484
S22	$9,749 \pm 45$	637	0.4	255	313
S23	9,342	742	0.5	371	457
SWG (estimated)					
S24	52,942	808	0.3	244	300
S25	13,009	5,230	1	5,230	6,437
S26	58,792	443	0.2	73	90
S27	48,660	651	0.2	158	194
S28	64,336	1,215	0.9	1,094	1,346
S29	690,792	1,013	0.4	383	471
S30	131,934	4,607	0.9	4,146	5,103
S31	82,940	4,236	2	8,472	10,427
S32	162,078	1,896	0.5	948	1,167
S33	190,029	1,124	2	2,248	2,767
S34	320,295	819	0.3	250	308
S35	105,033	819	1	819	1,009
S36	158,825	2,251	0.8	1,888	2,323
S37	77,332	6,296	2.3	14,768	18,177
S38	172,056	1,883	0.7	1,321	1,625
S39	67,375	1,567	0.6	915	1,126
S40	75,919	1,382	0.5	711	875
S41	120,118	1,215	0.5	550	677
SWG (active springs)					
S42	Modern	493	0.2	99	121
S43	Modern	435	0.2	87	107
S44	Modern	3,787	0.5	1,894	2,331
S45	Modern	1,130	0.5	565	695
S46	Modern	1,963	0.2	393	483
S47	Modern	988	0.3	297	365

For travertine locations see Figure DR1. Crystal Geyser (L1) is given an age of 71 years as this was the time between drilling of the abandoned exploration well and the volume estimates. Estimated ages for the SWG mounds use height above the nearest Green River tributary, measured with a differential GPS, divided by the local incision rate of $0.17 \mathrm{~mm} / \mathrm{y}$.

Additional References

Ellam, R.M. and Keefe, K., 2006, MC-ICP-MS analysis of non-natural U isotope ratios using $a^{229} \mathrm{Th} /{ }^{232} \mathrm{Th}$ external mass bias correction: Journal of Analytical Atomic Spectrometry, v.22, p. 147-152.

Geyh, M.A., 2008, Selection of suitable data sets improves ${ }^{230} \mathrm{Th} / \mathrm{U}$ dates of dirty material: Geochronometria, v.30, p. 69-77.
Ludwig, K.R., 2001, Isoplot/Ex version 2.49: Berkeley Geochronology Centre Special Publication, v. $1^{\text {a }}, 55$ p.
Thompson, W.G., 2010, Strategies for the treatment of coral age data in the reconstruction of sea-level change, in Earth, Energy and the Environment: Proceedings of the 2010 Goldschmidt Conference, Goldschmidt, Knoxville, Tennessee, June 13-18 ${ }^{\text {th }}, 2010$.
Yokoyama, T., Makishima, A., and Nakamura, E., 1999, Separation of thorium and uranium from silicate rock samples using two commercial extraction chromatographic resins: Analytical Chemistry, v. 71, p. 135-141.

Figure DR1

Figure DR2

